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HOW DO RANDOM FIBONACCI SEQUENCES GROW?

ÉLISE JANVRESSE, BENOÎT RITTAUD, THIERRY DE LA RUE

Abstract. We study the random Fibonacci sequences defined by F1 = F2 = F̃1 = F̃2 = 1

and for n ≥ 1, Fn+2 = Fn+1 ± Fn (linear case) and F̃n+2 = |F̃n+1 ± F̃n| (non-linear case),
where each ± sign is independent and either + with probability p or − with probability 1 − p

(0 < p ≤ 1). Our main result is that the exponential growth of Fn for 0 < p ≤ 1, and of F̃n for
1/3 ≤ p ≤ 1 is almost surely given by

∫
∞

0

log x dνα(x),

where α is an explicit function of p depending on the case we consider, and να is an explicit
probability distribution on R+ defined inductively on Stern-Brocot intervals.

In the non-linear case, the largest Lyapunov exponent is not an analytic function of p, since
we prove that it is equal to zero for 0 < p ≤ 1/3. We also give some results about the variations
of the largest Lyapunov exponent, and provide a formula for its derivative.

1. Introduction

In this article, we wish to investigate the exponential growth of random Fibonacci sequences

(Fn)n≥1 and (F̃n)n≥1, defined inductively by F1 = F2 = F̃1 = F̃2 = 1, and for all n ≥ 1,

(1) Fn+2 = Fn+1 ± Fn (linear case),

(2) F̃n+2 = |F̃n+1 ± F̃n| (non-linear case),

where each ± sign is independent and either + with probability p or − with probability 1 − p

(0 < p ≤ 1). In the case p = 1/2, (|Fn|) and (F̃n) have the same distribution law as the
sequence (|tn|) studied by Viswanath [10]. In his paper, using Furstenberg’s formula [4] (see also
[1], Chapter II), Viswanath proves that with probability 1,

n
√
|tn| −−−−−→

n→+∞
1.13198824 . . . ,

where the logarithm of the number is computed as the integral of the function

m 7−→ 1

4
log

(
1 + 4m4

(1 + m2)2

)

with respect to some explicit “fractal” measure νf .
Our purpose here is to give a formula for any parameter p ∈]0, 1], and to provide some results

on the dependence on p of the upper Lyapunov exponents. By contrast with the linear case (1),
the non-linear case (2) cannot be viewed as a product of i.i.d. random matrices. This explains
why the upper Lyapunov exponent in the non-linear case is not an analytic function of p, as can
be seen in Theorem 1.1. Our method does not make use of Furstenberg’s formula, but relies on
the reduction of random Fibonacci sequences exposed in [8].

2000 Mathematics Subject Classification. 37H15, 60J05, 11A55.
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1.1. Results. Our main result is the following.

Theorem 1.1.

• Linear case:

1

n
log |Fn| −−−−→

n→∞
γp =

∫ ∞

0

log xdνα(x) a.s.,

where

α :=
3p − 2 +

√
5p2 − 8p + 4

2p
.

• Non-linear case: If p ≤ 1/3,
1

n
log F̃n −−−−→

n→∞
γ̃p = 0. If p ≥ 1/3,

1

n
log F̃n −−−−→

n→∞
γ̃p =

∫ ∞

0

log xdνα(x) a.s.,

where

α :=
2p

p +
√

p(4 − 3p)
.

In both cases, να is an explicit probability distribution on R+ defined inductively on Stern-Brocot
intervals (see Section 3.4 and Figure 1).

0/1 1/1 1/01/2 2/11/3
1/4 2/5 3/43/5 2/3 4/3 5/33/2 5/2 3/1 4/1

α2(1 − α) α2(1 − α) α2(1 − α)(1 − α)3 α3α(1 − α)2

(1 − α)2 α2 α(1 − α)

α(1 − α)2 α(1 − α)2

α1 − α

α(1 − α)

Figure 1. The measure να on Stern-Brocot intervals of rank 1, 2, 3. First assign
mass 1 − α to [0, 1] and α to [1,∞]. Once να is defined on some Stern-Brocot
interval of rank r, a proportion α of its mass is given to the left (respectively
right) subinterval of rank r + 1 when r is odd (respectively even).

For p = 1/2, we get α = φ−1 both in the linear and the non-linear cases, where φ := (1+
√

5)/2
is the golden ratio. The measure να is then equal to Viswanath’s fractal measure conditioned onR+. For p = 1, which corresponds to the classical Fibonacci sequence, α = 1 and να is the Dirac
mass on φ. When p → 0 in the linear case, or p → 1/3 in the non-linear case, α → 1/2 and
να → ν1/2 which is the probability measure on R+ giving the same mass 2−r to each Stern-Brocot
interval of rank r. This measure is related to Minkowski’s Question Mark Function (see [3]):

∀x ∈ [0, 1], ?(x) = 2 ν1/2([0, x]).

Remark 1.2. The exponents γp and γ̃p correspond to almost-sure exponential growth of random
Fibonacci sequences. We could also consider the average point of view, that is, ask for the limit

of
1

n
log(E(|Fn|)) and

1

n
log(E(F̃n)) (where E stands for the expectation).

In the non-linear case, we know how to give an explicit expression of the limit for any p. (Of
course, by Jensen’s inequality, this limit is bounded below by γ̃p.) It turns out that the critical
value of p for which this limit vanishes is p = 1/4 (compare it with the value 1/3 in Theorem 1.1).
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The techniques used to obtain this result are quite different from those presented here; They
mainly rely on ideas introduced in [8], in which the case p = 1/2 is treated. Details and proofs
will be given in a forthcoming paper.

In Section 4.3, we study some properties of the functions p 7→ γp and p 7→ γ̃p, and prove the
following theorem.

Theorem 1.3.

• Linear case: p 7→ γp is an increasing function of p, satisfying

lim
p→0

γp = 0, γ1 = log φ and
dγp

dp
(1) =

log 5

2
.

• Non-linear case: p 7→ γ̃p is a continuous function of p, increasing on ]1/3, 1], satisfying

γ̃p = 0 for p ≤ 1/3, γ̃1 = log φ and
dγ̃p

dp
(1) =

log 5

2
.

One of the ingredients for the proof is a formula for the derivative of γp (or γ̃p) with respect to
α, involving the product measure να ⊗ να (see Proposition 4.5).

γp

γ̃p

0 α

lnφ

11/20 p

lnφ

1

γ(α)

1/3 1/2

Figure 2. Graphs of γp and γ̃p as a function of p (left) and as a function of α
(right). Notice that γ̃p = 0 for p ∈]0, 1/3]. For p ∈ [1/3, 1], the graph of γ̃p is not
the straight line it looks like: Compare the average slope with the derivative in 1.

2. Reduced sequences

2.1. Random paths in T and T̃. The sequences (Fn)n and (F̃n)n can be read along random

paths in the trees T and T̃ described as follows. These two trees have the same structure, but
differ by the labels attached to the vertices. Each vertex is labelled by an integer: The root and
its only child are labelled by 1. Any other vertex has two children, left and right. If v is a right
child, its label is the sum of its father’s and grandfather’s labels; If v is a left child, its label is

the difference between its father’s and grandfather’s labels in the tree T, whereas in the tree T̃,
its label is the absolute value of the difference between its father’s and grandfather’s labels (see

Figure 3). Notice that all labels in T̃ are nonnegative.
The random paths in the trees are coded by a sequence (Xn)n≥3 of i.i.d. random variables

taking values in the alphabet {R, L} with probability (p, 1−p). The path starts from the root and
goes through its only child. Then the following steps are given by (Xn)n≥3: Each R corresponds
to going through the right child (right step) and each L corresponds to going through the left

child (left step). Note that Fn (respectively F̃n) is the label read in T (respectively T̃) at the end
of the path X3 · · ·Xn.

Observe that in the linear case, each step of the path can be interpreted as the right product
of (Fn, Fn+1) by one of the two matrices

(3) A :=

(
0 1
1 1

)
or B :=

(
0 −1
1 1

)
.
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0 0 0 0 2 20 2 4 2 4 2 8

1 1 11 1 3 1 5

1 1 1 3

0 2

1

1

2 2 20 0 0 0−2 −2 2 2 0−2 2 4 −2 4 2 8

−1 −1 −11 1 3 1 5

−1 1 1 3

0 2

1

1

Figure 3. First lines of the trees T (left) and T̃ (right).

The non-linear case involves multiplication by matrices A, B and C :=

(
0 1
1 −1

)
but their distri-

butions is no longer i.i.d., which makes this interpretation less convenient.

2.2. Reduction of paths. Our method relies on some properties of the trees T and T̃ illustrated
in Figure 4. In the following, we say an edge connecting a vertex v and its child v′ is labelled by
(a, b) when a is the label of v and b is the label of v′.

Suppose a random path goes through an edge labelled (a, b) and then follows the pattern RLL

in T̃. Then it ends with an edge which is also labelled (a, b). Therefore, we can remove from

(Xn)n all occurences of the pattern RLL when studying the sequence (F̃n)n, as long as we keep
in mind the number of such deletions.

The linear case is a bit more complicated. Suppose now a random path in T goes through an
edge labelled (a, b). Notice the labels of the left and the right child are respectively b−a and b+a.
If the path follows the pattern RLL, then it ends on a vertex labelled by −b and whose left child’s
and right child’s labels are respectively −(b + a) and −(b− a). Since we are only interested in the
behaviour of |Fn|, this allows us to remove in (Xn)n each pattern RLL, provided we exchange the
following letter and keep in mind the number of deletions.

This reduction process observed in T can be translated in the language of matrices by the
following relations satisfied by A and B:

ABBB = −A

ABBA = −B .

2.3. Reduced random Fibonacci sequence in the linear case. To formalize the reduction
process, we associate to X3 . . .Xn a (generally) shorter word Wn = Y n

3 · · ·Y n
k(n) by the following

induction.

• k(3) = 3 and Y 3
3 = X3.

• Wn+1 is deduced from Wn in two steps.
Step 1: Add one letter (R or L, see below) to the end of Wn.
Step 2: If the new word ends with the suffix RLL, remove this suffix.

Thus, we have either Wn+1 = WnY n+1
k(n)+1 (and k(n + 1) = k(n) + 1), or Wn+1 =

Y n
3 · · ·Y n

k(n)−2 (and k(n + 1) = k(n) − 2).

The letter which is added in step 1 depends on what happened when constructing Wn:

• If Wn was simply obtained by appending one letter to Wn−1 (or if n = 1), we add Xn+1

to the end of Wn.
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−(b + a) −(b − a)

b

b − a b + a

a

a

−b

R

L

L

b

b + a

a

a

b

R

L

L

Figure 4. The reduction pattern in the tree T (left) and in the tree T̃ (right).

• Otherwise, we had removed the suffix RLL when constructing Wn; we then add Xn+1 to
the end of Wn, where R := L and L := R.

Example: Let X3 . . .X9 = RRLLRLR. Then, the successive reduced sequence W3, . . . , W9 are
given by R, RR, RRL, R, RL, ∅, L.

Observe that the label read in the tree T at the end of the path coded by Wn has the same
absolute value as Fn.

Lemma 2.1. We denote by |Wn|R the number of R’s in Wn. We have

(4) |Wn|R −−−−→
n→∞

+∞ a.s.

In particular, the length k(n) of Wn satisfies

k(n) −−−−→
n→∞

+∞. a.s.

We postpone the proof of Lemma 2.1 to the end of the section. We will need in the sequel the
following definition:

Definition 2.2. We say that Y n
k(n) survives if, for all m ≥ n, k(m) ≥ k(n).

The divergence of k(n) in the previous lemma shows that, almost surely, for any k ≥ 3, there
exists a smallest nk such that k(nk) = k and Y nk

k survives. In this case, Y nk

k = Y m
k for all m ≥ nk.

We will then set

Yk := Y nk

k .

Note that Y3Y4 . . . contains infinitely many R’s (Lemma 2.1), and no pattern RLL. Therefore the
only place where consecutive L’s can appear is at the beginning of the sequence. However, these
starting L’s are not relevant. If Y3Y4 . . . starts with an L, we can delete the first three letters
without changing the values of the labels read along the path (see Figure 3). Without loss of
generality, we can henceforth assume that Y3 = R.

Proof of Lemma 2.1. We consider the successive changes in the number of R’s in Wn, which we
denote by S1, S2, . . . ∈ {±1}: If the j-th change corresponds to appending some R to Wn, Sj = 1;
and if the j-th change is the deletion of some suffix RLL, Sj = −1 . Observe that if Sj = 1, the
only way to get Sj+1 = −1 is to draw two L’s for the following two Xn’s (to remove the suffix
RLL before another R is appended to Wn). Therefore,P(Sj+1 = −1|Sj = 1, Sj−1, . . . , S1) = (1 − p)2.

On the other hand, Sj = −1 means that we have just deleted some suffix RLL, so that if the next
Xn is L (which happens with probability (1 − p)), we will have Sj+1 = 1. We thus getP(Sj+1 = 1|Sj = −1, Sj−1, . . . , S1) ≥ (1 − p).
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We claim that the above requirements on the conditional distribution of Sj+1 imply

(5) lim inf
L→∞

1

L

L∑

j=1

1Sj=1 ≥ 1

2 − p
>

1

2
a.s.

This comes from the comparison between the stochastic process (Sj) and the Markov chain (Mℓ)
taking values in {±1}, satisfying M1 = 1 and having the following transition probabilities:P(Ml+1 = −1|Mℓ = 1) = (1 − p)2,P(Ml+1 = 1|Mℓ = −1) = (1 − p).

Note that the invariant probability measure for the Markov chain (Mℓ) assigns mass 1
2−p to the

point 1, so that

lim
L→∞

1

L

L∑

ℓ=1

1Mℓ=1 =
1

2 − p
a.s.

We are now going to extract a subsequence (Mℓj
) from (Mℓ) by deleting only some −1’s, and

such that (Mℓj
) has the same distribution as (Sj). We set ℓ1 := 1. Suppose that ℓj is known. If

Mℓj
= 1 or Mℓj+1 = 1, we set ℓj+1 := ℓj + 1. Otherwise, Mℓj

= Mℓj+1 = −1. Let us denote by
β the probability P(Sj+1 = 1|Sj = Mℓj

, Sj−1 = Mℓj−1
, . . . , S1 = Mℓ1). We know that β ≥ 1 − p.

We then set

ℓj+1 :=





ℓj + 1 with probability
1 − β

p
,

inf{k > ℓj : Mk = 1} with probability
β − 1 + p

p
.

In this way, we get P(Mℓj+1
= 1|Mℓj

= −1, Mℓj−1
, . . . , Mℓ1) = β.

Since the proportion of 1’s is greater in (Mℓj
) than in (Mℓ), (5) follows, which in turn implies (4).

�

2.4. Reduced random Fibonacci sequence in the non-linear case. We associate to X3 . . . Xn

the word W̃n, which is obtained by the same induction as Wn, except that the letter added in

Step 1 is always Xn+1. The label read in the tree T̃ at the end of the path coded by W̃n is equal

to F̃n.

Lemma 2.3. We denote by |W̃n|R the number of R’s in W̃n. If p > 1/3, we have

|W̃n|R −−−−→
n→∞

+∞ a.s.

In particular, the length of W̃n goes to infinity almost surely.

Proof. Since each deletion of an R goes with the deletion of two L’s, if p > 1/3, the law of large
numbers ensures that the number of remaining R’s goes to infinity. �

The non-linear case for p ≤ 1/3 will be treated later (see Section 4.2).

2.5. Survival probability of an R. We are now able to study both cases by introducing the
probability c of appending an R after a deletion of the pattern RLL: c = 1−p in the linear case and
c = p in the non-linear case. In the sequel, we consider both the linear case for any p ∈]0, 1] and
the non-linear case for p > 1/3. For simplicity, we will use the same notations Wn = Y n

3 . . . Y n
k(n)

for the reduced word and (Yk) for the sequence of surviving letters in both cases.
Observe that, by construction of the sequence Wn, if Y n

k(n) has been appended at time n, its

survival only depends on the value of Y n
k(n) itself and the future Xn+1, Xn+2 . . .. We define

pR := P(Y n
k(n) survives |Y n

k(n) = R has been appended at time n
)

.

A consequence of Lemma 2.1 and Lemma 2.3 is that pR > 0. We now want to compute pR as a
function of p.
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We first need to analyze the following situation: Assume that in the construction of some Wn0

we have deleted a suffix RLL. Then the survival of Y n0

k(n0) depends on the nature of what we call

the next touching letter, defined by the following algorithm:
Step 1 Set n := n0.
Step 2 If the letter appended to Wn is L, it may interact with Y n

k(n) to delete it. Return L as

the next touching letter and halt the algorithm.
Step 3 If the letter appended to Wn is R and if this R survives, then so does Y n

k(n), and we

return R as the next touching letter and halt the algorithm.
Step 4 Else, the letter appended to Wn is a non-surviving R. Then there exists a smallest

integer m > n such that k(m) = k(n) (corresponding to the time when this R is deleted). Then
set n := m and go back to Step 2.

Each time the algorithm enters Step 2, it has a probability 1 − c to directly return L. Since
1 − c > 0, the algorithm ultimately halts with probability 1.

We now go back to our computation of pR. Here is an exhaustive list of all cases in which
Y n

k(n) = R, appended at time n, survives:

• Case 1: R [R . . .] R

Y n+1
k(n+1) = Xn+1 = R. Either it survives or it does not survive but the first touching letter

after ℓ ≥ 1 deletions is an R; This happens with probability

(6) p1 := ppR + p
∑

ℓ≥1

(1 − pR)ℓcℓpR =
ppR

1 − c(1 − pR)
·

• Case 2: R [R . . .] L [R . . .] R

Either Y n+1
k(n+1) = Xn+1 = L, or Y n+1

k(n+1) = Xn+1 = R which does not survive but the first

touching letter after ℓ ≥ 1 deletions is an L. In both cases, this L is immediately followed
either by a surviving R, or by a non-surviving R and the second touching letter is an R;
In view of the probability computed in Case 1, this happens with probability

p2 :=


(1 − p) + p

∑

ℓ≥1

(1 − pR)ℓcℓ−1(1 − c)


 ppR

1 − c(1 − pR)
·

Writing pR = p1 + p2, we get that pR satisfies

pR

(
c2p2

R + (p2 + 2c(1 − p − c))pR + (1 − c − 2p)(1 − c)
)

= 0.

When pR 6= 0, which is true in the linear case for any p and in the non-linear case for p > 1/3,
this equation has only one non-negative solution given by

(7) pR =
−p2 − 2c(1 − p − c) + p

√
p2 + 4c(1 − p)

2c2
.

Observe that in the non-linear case for p ≤ 1/3, the above expression is non-positive. Thus,
pR = 0.

2.6. Distribution of the reduced sequence. We deduce from the preceding analysis the prob-
ability distribution, when pR > 0, of the reduced sequence Y which is the concatenation of all
surviving letters. By construction, since we assumed Y3 = R, consecutive L’s are not allowed in
Y , hence P(Yk+1 = R|Yk = L) = 1.

Moreover, if Y n
k(n) = R has been appended at time n and survives, the following letter Yk(n)+1 in

Y only depends on Xn+1, Xn+2, . . ., which implies that (Yk) is a Markov chain. Observe that if
Yk = R, it is followed in Y by another R only in the last two cases of our exhaustive list. Hence,

(8) α := P(Yk+1 = R|Yk = R) =
p1

pR
=

2c

2c − p +
√

p2 + 4c(1 − p)
,
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which leads to

(9) α =





3p− 2 +
√

5p2 − 8p + 4

2p
(linear case),

2p

p +
√

p(4 − 3p)
(non-linear case).

The invariant probability measure of this Markov chain is given by

(10) (µR, µL) :=

(
1

2 − α
,
1 − α

2 − α

)
.

¿From now on, we denote by Pα the probability distribution on {R, L}{3,4,...} under which (Yk)
is a Markov chain with Y3 = R,Pα(Yk+1 = R|Yk = R) = α and Pα(Yk+1 = R|Yk = L) = 1 .

2.7. Compression rate. We are also interested in the ratio k
nk

of surviving letters when k is a

large integer. The number sk of R’s in Y3 . . . Yk, which is the number of surviving R’s up to time
nk, satisfies sk/k = µR + o(1). Let dk be the number of deleted R’s up to time nk. Observe that
the total number of R’s drawn up to time nk is sk + dk, so that sk/(sk + dk) = pR + o(1). Since
each deletion of an R comes with the deletion of two L’s, we have nk = k + 3dk. Therefore,

(11)
k

nk
−−−−→
k→∞

σ :=

(
1 + 3µR

1 − pR

pR

)−1

a.s.

It will be useful to see σ as a function of α. ¿From (6), we get α = p1/pR =
p

1 − c(1 − pR)
. Hence,

1 − pR =
1

c

(
1 − p

α

)
.

Moreover, (8) yields

p = α − c
(1 − α)2

α
·

Taking (10) into account, an elementary computation leads to

(12) σ =
(2α − 1)(2 − α)

α2 − α + 1
·

3. Continued fractions in the tree R

3.1. The tree R. The reduction of the sequence (Xn) lead us, both in the linear and the non-
linear case, to the study of a Markov chain (Yk) whose distribution is Pα on {R, L}{3,4,...}. The
only difference between the linear and the non-linear case is the value of the parameter α.

Let us consider the random sequence of integers (Gk)k≥1, where G1 = G2 = 1 and Gk is the

label read in the tree T (T̃ in the non-linear case) when following the path coded by Y3 · · ·Yk.

We get that for all k ≥ 1, Gk has the same absolute value as Fnk
(F̃nk

in the non-linear case).
We are thus left with the estimation of the exponential growth of the reduced Fibonacci sequence

(Gk)k≥1.
Since (Yk)k has no pattern RLL, the reduced Fibonacci sequence (Gk)k≥1 can be read along a

random path in the tree R introduced in [8], which is a sub-tree of T and T̃. The tree R is defined
as follows: The root of R has only one right child, which itself has only one right child. Any other
vertex v has either one right child or two (left and right) children, depending on whether v is itself
a left child or not: A left child has only one child, whereas a right child has two children. Each
vertex is labelled with an integer : The root and its only child are labelled by 1. If v is a right
child, its label is the sum of its father’s and grandfather’s labels; If v is a left child, its label is the
difference between its father’s and grandfather’s labels. (See Figure 5.)

Please note that the step from the root to its child does not appear in Y : The condition Y3 = R
corresponds to the fact that the only child of the root has only one right child. For technical
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2

1 3

3 1 5

2 24 4 8

5 51 13377 3

1

1

R

R

R

L

L

Figure 5. First lines of the tree R. The random path marked with the bold
edges is coded by the sequence Y = RLRRL . . .

1
b

b − a

α1 − α

b + a

a a

b

b + a

Figure 6. Distribution probability of the random path in R.

reasons, we will sometimes need to add an extra R at the beginning of Y , representing the step
from the root to its child, but this will be done explicitely.

From the preceding section, we know that the distribution of the random path is given by a
Markov chain: Each left step is followed by a right step, and each right step is followed by a right
step with probability α and by a left step with probability 1 − α, where α is given by (8) (see
Figure 6).

Let us recall some important properties of the tree R. First, it is easily proved by induction
that the label of each vertex is a positive integer. As a consequence, we get that

∀k ≥ 1, Gk > 0.

Another easy induction shows that, if x and y are the labels of a child and its father, then x and
y are relatively prime. Moreover, for each pair (x, y) of relatively prime integers, there is exactly
one vertex in R which is labelled by x and its father by y (see [8]). Therefore, for any positive
rational number q, there is a unique vertex x in R such that q is the quotient of the label of x by
its father’s. This vertex x is a right child if and only if q ≥ 1.

For all k ≥ 3, let Qk := Gk/Gk−1, so that

(13)
1

k
log Gk =

1

k

k∑

i=3

log Qi.
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The exponential growth of Gk will thus be deduced from the probability distribution of (Qk)k≥3,
which is related to the development in continued fractions of Qk.

3.2. Shape of a path and continued fractions. Let P be the set of all finite sequences
y = y3y4 . . . yk (k ≥ 3) of R’s and L’s with y3 = R and no pattern LL. Each sequence in P can
be interpreted (with the same conventions as above) as a finite-length path in the tree R.

To each sequence y = y3y4 . . . yk ∈ P, we associate a rational number q(y) defined as follows.
We decompose the path y3y4 . . . yk into pieces which are either elbows RL or single right steps R.
(This can be done in a unique way for all y ∈ P.) Next, we introduce a cutting between each
pair of (successive) identical pieces. We thus obtain a partition of the path into ℓ blocks; Let a1

be the number of pieces in the last block, a2 the number of pieces in the last but one block, and
so on. If the last piece of the last block is an elbow, q(y) is given by its development in continued
fractions

q(y) := [0, a1, . . . , aℓ] = 0 +
1

a1 +
1

a2 +
1

.. . +
1

aℓ

< 1,

otherwise, q(y) is set to

q(y) := [a1, . . . , aℓ] = a1 +
1

a2 +
1

.. . +
1

aℓ

> 1.

The following proposition shows that the random variables (Qk) are precisely given by the
preceding computation.

Proposition 3.1. Let y = y3 . . . yk ∈ P, coding a finite-length path in R. Let g1 = g2 =
1, g3, . . . , gk be the labels of the vertices visited by the path. Then q(Ry) = gk/gk−1.

(See Figure 7.)

Proof. We proceed by induction on k. Let us denote by qk the quotient gk/gk−1. For k = 3, the
sequence Ry is reduced to RR: We thus have two single right steps separated by a cutting and
we check that

q3 =
2

1
= 1 +

1

1
= q(RR).

Assume the result is proved up to k − 1 and consider a sequence y of R and L’s of length k. Let
us analyze the three possible configurations for yk−1yk.

• yk−1yk = LR (see Figure 8, case (1)): Since the last letter is an R, we have

qk =
gk

gk−1
=

gk−1 + gk−2

gk−1
= 1 +

1

qk−1
.

On the other hand, the induction hypothesis gives qk−1 = q(Ry3 . . . yk−1) = [0, a1, a2, . . . , aℓ],
with (ai) given by the number of pieces in the blocks. Hence, qk = [a1 + 1, a2, . . . , aℓ].
Since there is no change in the cuttings when appending the last R, the number a1 of
pieces in the last block is increased by 1 and the other ones are left unchanged. Therefore,
q(Ry3 . . . yk) = qk.

• yk−1yk = RR (see Figure 8, case (2)): We still have qk = 1 + 1/qk−1. The difference with
the previous case is that qk−1 = [a1, a2, . . . , aℓ] > 1, thus qk = [1, a1, a2, . . . , aℓ]. Here, the
last R has introduced a new cutting, so that we have one more block of length 1 and the
other blocks are left unchanged. Therefore, q(Ry3 . . . yk) = qk.
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7

2

1

3

4

1

5

6

7

13

27

1

6

20

R

L

R

L

R

R

L

L

R

R

L

R

R

R

1

1

a1 = 1

a2 = 2

a3 = 1

a4 = 6

Figure 7. Consider the sequence y = RLRRLRRLRLRLRR ∈ P. The corre-
sponding path in the tree R is represented above, as well as (gj)1≤j≤16. After
decomposing Ry into elbows and single right steps, and introducing the cuttings
between identical pieces, we obtain the development in continued fractions of
q(Ry) = g16/g15 = 27/20 by counting the number of pieces in each block: 27/20 =
[1, 2, 1, 6].

• yk−1yk = RL (see Figure 8, cases (3) and (4)): Since the last letter is an L, we have

qk =
gk

gk−1
=

gk−1 − gk−2

gk−1
=

1

1 +
1

qk−1 − 1

.

The induction hypothesis gives that qk−1 = q(Ry3 . . . yk−1) = [a1, a2, . . . , aℓ], with (ai)
given by the number of pieces in the blocks. Hence, the development in continued fractions
of qk depends on the value of a1.

If a1 = 1 (case (3)), we get qk = [0, a2 + 1, a3, . . . , aℓ]; Appending the last L transforms
the last piece into an elbow. The fact that a1 = 1 means we had a cutting just before this
last piece, which disappears after the transformation. Therefore, we have one less block
and the number of pieces of the last remaining block is increased by 1.

If a1 > 1 (case (4)), we get qk = [0, 1, a1 − 1, a2, . . . , aℓ]; The fact that a1 > 1 means we
had no cutting just before the last piece, and one is created when appending the last L.
Therefore, we have one more block of length 1, and the number of pieces of the last but
one block is decreased by 1.

In both cases, we get q(Ry3 . . . yk) = qk.

�
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(2) (4)(3)(1)

x

qk−1

y

qk

y − x

x

qk−1

qk

x + y

y

x
x

x + y

qk

y

qk−1

y

qk

y − x

qk−1

Figure 8. From qk−1 to qk. (1) corresponds to the case when qk−1 < 1, (2), (3)
and (4) correspond to the cases when qk−1 > 1.

3.3. Stern-Brocot intervals. We recall here the definition of the positive Stern-Brocot inter-

vals, which are the real intervals of the form [a
b , c

d ] where a, b, c, d are nonnegative integers with

ad − bc = −1. (We adopt the usual convention that 1
0 = +∞.) All these intervals can be obtained

inductively, starting with the interval [01 , 1
0 ] (the only Stern-Brocot interval of rank 0). Each Stern-

Brocot interval [a
b , c

d ] of rank r is cut into two Stern-Brocot intervals of rank (r + 1): [a
b , a+c

b+d ] and

[a+c
b+d , c

d ]. Recall also that a+c
b+d is called the mediant of a

b and c
d .

Let us fix a sequence s = s1 . . . sm ∈ P (we also include here the case where s is the empty
sequence). We now consider the set of finite paths in the tree R having s as a suffix:

Ys := {Ry : y = (yi)3≤i≤k ∈ P, k ≥ m + 2; yk−m+1 . . . yk = s1 . . . sm} .

Proposition 3.2. Let r be the number of pieces in the decomposition of s into elbows RL and
single right steps R. Then

• The closure q(Ys) of q(Ys) is a Stern-Brocot interval of rank r;

• if r is even (respectively odd), q(YRLs) is the left (respectively right) Stern-Brocot sub-

interval of rank r + 1 of q(Ys), and q(YRs) is the right (respectively left) one.

Proof. We proceed by induction on r. If r = 0, s is the empty sequence and Ys is the set of all
finite paths in R, so q(Ys) = [0, +∞]. Moreover, YRs = YR is the set of all finite paths ending

with an R, hence q(YRs) = [1, +∞]. YRLs = YRL is the set of all finite paths ending with an

elbow and q(YRLs) = [0, 1]. Therefore q(YRLs) is the left Stern-Brocot sub-interval of rank 1.

We consider a suffix s such that q(Ys) is a Stern-Brocot interval of rank r, and its two possible
extensions Rs and RLs. Assume for simplicity that s ends with an R (the proof is the same when
s ends with RL). Let ℓ be the number of blocks in s: q(s) = [a1, . . . , aℓ]. Since the last letters of
y give the beginning of the development in continued fractions of q(y), all q(y) for y ∈ Ys have
their first (ℓ − 1) partial quotients fixed, and equal to those of q(s). Moreover, their ℓ-th partial

quotient is at least aℓ. Thus, q(Ys) is the interval whose bounds are [a1, . . . , aℓ−1] and [a1, . . . , aℓ].
Notice the way these bounds are ordered depends on the parity of ℓ: [a1, . . . , aℓ−1] < [a1, . . . , aℓ]
iff ℓ is even.

Either Rs (if the first piece of s is an R) or RLs (if the first piece of s is an RL) counts
one more cutting than s and gives rise to the interval whose bounds are [a1, . . . , aℓ−1, aℓ, 1] and
[a1, . . . , aℓ−1, aℓ]. The other one gives rise to the interval whose bounds are [a1, . . . , aℓ−1] and
[a1, . . . , aℓ−1, aℓ+1]. In fact, since [a1, . . . , aℓ−1, aℓ, 1] = [a1, . . . , aℓ−1, aℓ+1], the two intervals have
a common bound. We let the reader check that this common bound is the mediant of [a1, . . . , aℓ−1]

and [a1, . . . , aℓ], so that q(YRs) and q(YRLs) are two Stern-Brocot intervals of rank r + 1. As a
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consequence of the previous remarks, the table below gives the relative positions of q(YRLs) and

q(YRs):

the first piece of s is R the first piece of s is RL
ℓ odd Rs ↔ left RLs ↔ left

RLs ↔ right Rs ↔ right
ℓ even RLs ↔ left Rs ↔ left

Rs ↔ right RLs ↔ right

Each time we extend the suffix s with one more piece, either this piece is similar to the first piece
of s, which introduces a new cutting, and ℓ is increased by 1, or the new piece is different and ℓ is
unchanged. Therefore, we move either vertically or horizontally in the table, so that the relative
positions of q(YRs) and q(YRLs) alternate. �

3.4. Probability distribution of (Qk)k≥3. We now turn back to the Markov chain Y following
the probability distribution Pα (see Section 2.6). The ergodic theorem for this Markov chain gives
that, almost surely,

1

k

k∑

i=3

1RY3...Yi∈YR
−−−−→
k→∞

µR.

If we decompose the sequence Y3 . . . Yi into pieces RL and R, it is not hard to see that all but the
last piece appear independently, with probability 1 − α for RL and α for R. Therefore, if we fix
some s ∈ P and denote by |s|RL (respectively |s|R) the number of pieces RL (respectively R) in
the decomposition of s into pieces, we get from the law of large numbers that

(14)
1

k

k∑

i=3

1RY3...Yi∈Ys
−−−−→
k→∞

c(s)α|s|R(1 − α)|s|RL ,

where

c(s) =

{
µR/α if s ends with an R,

(1 − µR)/(1 − α) otherwise.

Since for all i ≥ 3 we have Qi = q(RY3 . . . Yi), it is natural to introduce the following probability
distribution να on R+: να is defined by

∀s ∈ P, να

(
q(Ys)

)
:= α|s|R(1 − α)|s|RL .

In view of Proposition 3.2, this amounts to define it inductively on Stern-Brocot intervals in the
following way: First assign mass 1 − α to [0, 1] and α to [1,∞]. Once να is defined on some
Stern-Brocot interval of rank r, a proportion α of its mass is given to the left (respectively right)
subinterval of rank r + 1 when r is odd (respectively even) (See Figure 1). We can notice the
similarity between this construction and the Denjoy-Minkowski measure µ(α) presented in [2].
The difference lies in the fact that the proportion α is in our case alternatively given to the left
and the right subinterval.

From (14), we obtain that, for all f ∈ L1(να),

(15)
1

k

k∑

i=3

f(Qi) −−−−→
k→∞

1 − µR

1 − α

∫ 1

0

f(x) dνα(x) +
µR

α

∫ ∞

1

f(x) dνα(x) a.s.

Remark 3.3. Observe that we need the correction c(s) in (14) because the last piece of Y3 . . . Yi

has a different distribution. If we first cut the infinite sequence (Yi)i≥3 into pieces R and RL,
and denote by ij the index at the end of the j-th piece, then the distribution of q(RY3 . . . Yij

)
converges to να without correction.
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4. The Lyapunov exponent

4.1. Computation of the Lyapunov exponent. We now end the proof of Theorem 1.1. It is
easily seen that x 7→ log x belongs to L1(να). Using (13) and (15), we obtain

1

k
log Gk −−−−→

k→∞

1 − µR

1 − α

∫ 1

0

log(x) dνα(x) +
µR

α

∫ ∞

1

log(x) dνα(x) a.s.

Using (11) and µR = 1/(2 − α), we get

(16)
1

nk
log |Fnk

| −−−−→
k→∞

σ

2 − α

(∫ 1

0

log(x) dνα(x) +
1

α

∫ ∞

1

log(x) dνα(x)

)
a.s.

In the linear case, since we are dealing with a product of i.i.d. matrices, we know that the limit
of (1/n) log |Fn| exists almost surely, and is given by the largest Lyapunov exponent.

Of course, we get the same formula as (16) for (1/nk) log F̃nk
in the non-linear case for p > 1/3

(where α is given by (9)). As we already pointed out, this case cannot be reduced to a product of
i.i.d. matrices, therefore we need a little argument to get the almost-sure existence of the limit of

(1/n) log F̃n. It consists in controlling the size of the deleted blocks.

We already know the almost-sure convergence of (1/nk) log F̃nk
, along the subsequence (nk)

corresponding to surviving letters after the reduction process. Consider now n lying between nk

and nk+1. We have

∣∣∣∣
1

n
log F̃n − 1

nk
log F̃nk

∣∣∣∣ ≤
n − nk

n

1

nk
log F̃nk

+
1

n

∣∣∣∣∣log
F̃n

F̃nk

∣∣∣∣∣ .

We need to control the quantity Tk := nk+1 − nk, which is 1 plus the number of deleted letters
between two successive surviving letters. The probability distribution of the random variable Tk

is given by the law of the following stopping time for the i.i.d. sequence on the alphabet {R, L}
with probability (p, 1 − p): Draw a sample of this process and stop the first time the number of
L’s is equal to twice the number of R’s plus one. This sample without the last L corresponds
to all the patterns RLL, between two successive surviving letters, which are removed during the
reduction process. When p > 1/3, the stopping time is almost surely finite and its expected value
is finite.

Since the Tk’s are i.i.d. and have a finite expected value, we get

n − nk

n
≤ Tk

k
−−−−→
k→∞

0 a.s.

Observing that F̃n ≤ max{F̃nk
, F̃nk−1

}2n−nk , the convergence along the subsequence (nk) is

enough to conclude that the limit of (1/n) log F̃n exists almost surely, and is given by the right-
handside of (16).

It remains now to prove that this limit is equal to
∫ 1

0 log(x) dνα(x). To this end, we use some
changes of variables in the computation of the integral.

Lemma 4.1. For all f ∈ L1(να),
∫ 1

0

f

(
1

1 − x

)
dνα(x) =

1 − α

α

∫ ∞

1

f(x)dνα(x)

∫ 1

0

f

(
1 − x

x

)
dνα(x) = (1 − α)

∫ ∞

0

f(x)dνα(x)

Proof. It is sufficient to prove the equalities when f = 1[a/b,c/d] is the indicator function of a
Stern-Brocot interval (ad − bc = −1). The first equality becomes, for a ≥ b,

να

([
a − b

a
,
c − d

c

])
=

1 − α

α
να

([a
b
,
c

d

])
.
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Observe that
[

a−b
a , c−d

c

]
is also a Stern-Brocot interval, which has the same rank r as [a

b , c
d ]. For

r = 1, the equality holds trivially. Since x 7→ 1/(1−x) is increasing, the right sub-interval of [a
b , c

d ]

corresponds to the right sub-interval of
[

a−b
a , c−d

c

]
. The result follows by induction on r.

For f = 1[ a
b

, c
d
], the second equality reduces to

να

([
d

c + d
,

b

a + b

])
= (1 − α) να

([a
b
,
c

d

])
.

If [a
b , c

d ] is a Stern-Brocot interval of rank r,
[

d
c+d , b

a+b

]
is also a Stern-Brocot interval, but of rank

r + 1. For r = 1, the equality holds trivially. Since x 7→ (1 − x)/x is decreasing, the right sub-

interval of [a
b , c

d ] corresponds to the left sub-interval of
[

d
c+d , b

a+b

]
. The result follows by induction

on r. �

Applying Lemma 4.1 to x 7→ log x and summing, we get that

−
∫ 1

0

log(x)dνα(x) =
1 − α

α

∫ ∞

1

log(x)dνα(x) + (1 − α)

∫ ∞

0

log(x)dνα(x).

It follows immediately that
∫ 1

0

log(x)dνα(x) =
(α + 1)(1 − α)

1 − 2α

∫ ∞

0

log(x)dνα(x),

∫ ∞

1

log(x)dνα(x) =
α(α − 2)

1 − 2α

∫ ∞

0

log(x)dνα(x).(17)

Substituting in the right-handside of (16) and recalling (12), we conclude the proof of Theorem 1.1,
for all p in the linear case and for p > 1/3 in the non-linear case. The non-linear case for p ≤ 1/3
is treated in the next section.

4.2. Variation properties of the Lyapunov exponent. We now want to prove that p 7→ γ̃p

(non-linear case) is a non-decreasing function. We first establish a comparison lemma.

Lemma 4.2. Let x be a path in the tree T̃, and let x′ be obtained from x by turning an L into
an R. Then any label read along x is always smaller than the corresponding label read along x′.

Proof. Let y = y3 . . . yk ∈ P coding the end of a finite-length path in R. Assume that the
vertices of the edge preceding y are labelled by a and b. Then the last vertex of the path is
labelled by a linear combination of a and b of the form d(y)a + n(y)b, where n(y) and d(y) are
integers depending only on y (see Figure 9, left). More formally, n(y) and d(y) can be defined by
the following induction. n(∅) := 1, d(∅) := 0, n(R) := d(R) := 1, and for i ≥ 3

n(y3 . . . yiR) := n(y3 . . . yi) + n(y3 . . . yi−1)

d(y3 . . . yiR) := d(y3 . . . yi) + d(y3 . . . yi−1)

n(y3 . . . yiL) := n(y3 . . . yi) − n(y3 . . . yi−1)

d(y3 . . . yiL) := d(y3 . . . yi) − d(y3 . . . yi−1) .

Since y codes a path in R, an induction shows that d(y) and n(y) are nonnegative.

Consider two paths x and x′ in T̃ differing at level i : We decompose the end of the paths from
level i as LLry and RLry, where y starts with an R and r ≥ 0.

Suppose first that, after the difference, all letters of x and x′ are L’s (y = ∅). We let the reader
check that the labels after level i and i+1 are well-ordered. Moreover, the label after level k ≥ i+2
in x′ is equal to the label after level k−3 in x. This can be seen by making a reduction (removing
a pattern RLL) in the path x′. Denoting by a and b the (nonnegative) labels after level k− 3 and
k − 2 in x, the label after level k in x is given by |b − |b − a|| ≤ a.

Suppose now that the suffix y is reduced (y ∈ P). The above argument shows that labels
after level i + r − 1 and i + r are well-ordered: Denote these labels by a and b in x, and a′ and
x′ in x′. Then the label at the end of x (respectively x′) is the linear combination d(y)a + n(y)b
(respectively d(y)a′ + n(y)b′). Since d(y) and n(y) are nonnegative, we conclude this case.
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a + b

b

a

d(y)a + n(y)b

d(R) = 1, n(R) = 1

d(∅) = 0, n(∅) = 1

y

Figure 9. Definition of d(y) and n(y) (left); Comparison between two paths in R (right).

In the general case, we make all possible reductions on y. We are left either with a sequence in
P or with a sequence of L’s, which are the two situations we have already studied.

�

Proposition 4.3. If p ≤ 1/3, γ̃p := limn(1/n) log F̃n exists and is equal to 0. The function p 7→ γ̃p

is continuous and non-decreasing.

Proof. We start by proving that limpց1/3 γ̃p = 0. We can extend the definition of να to any
α ∈ [0, 1], and also set for 0 ≤ α ≤ 1/2

γ(α) :=

∫ ∞

0

log(x)dνα(x).

Observe that, if [a, b] is a Stern-Brocot interval, then [1/b, 1/a] is also a Stern-Brocot interval,
satisfying

να

(
[a, b]

)
= ν1−α

(
[1/b, 1/a]

)
.

Therefore, we get

γ(α) = −γ(1 − α).

In particular, γ(1/2) = 0. Moreover, α 7→ γ(α) is easily seen to be a continuous function (we can
write it as a uniform limit of continuous functions). Hence

lim
pց1/3

γ̃p = lim
α→1/2

γ(α) = 0.

Now, let 0 < p ≤ p′ ≤ 1. Let (Xn) and (X ′
n) be random paths in T̃ for the respective parameters

p and p′. We can realize a coupling of (Xn) and (X ′
n) such that for any n, Xn = R implies X ′

n = R.

From Lemma 4.2, it follows that the label F̃n read along X is always smaller than the label F̃ ′
n

read along X ′. If we choose p ≤ 1/3 and p′ > 1/3, we get that

lim sup
1

n
log F̃n ≤ lim

1

n
log F̃ ′

n = γ̃p′ .

Since limp′ց1/3 γ̃p′ = 0, we deduce that γ̃p = 0 for any p ≤ 1/3. Moreover, this argument obviously
shows that p 7→ γ̃p is a non-decreasing function. �

Corollary 4.4. The function p 7→ γp is increasing on ]0, 1[. The function p 7→ γ̃p is increasing on
]1/3, 1].

Proof. Recall that γ(α) =
∫∞

0 log xdνα(x) = γ̃p, for α = 2p/(p +
√

p(4 − 3p)). The function

p 7→ 2p/(p+
√

p(4 − 3p)) is increasing and sends ]1/3, 1] onto ]1/2, 1]. Hence γ(α) is non-decreasing
on ]1/2, 1].

In the linear case, we also have γp = γ(α) where now α = (3p−2+
√

5p2 − 8p + 4)/(2p) ∈]1/2, 1].
Since this expression is also increasing in p, p 7→ γp is non-decreasing. Moreover, we easily deduce
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from (17) that γp > 0 for any p ∈]0, 1[. We also know from [7] that γp is an analytic function of
p ∈]0, 1[, thus it is increasing.

This in turn implies that γ(α) is increasing on ]1/2, 1], and so is γ̃p for p ∈]1/3, 1]. �

4.3. Derivative of the Lyapunov exponents. The following proposition gives a formula for
the derivative of γ with respect to α, which uses the product measure να ⊗ να.

Proposition 4.5. For all 1/2 < α ≤ 1,

(18) γ′(α) = γ(α)
1 + 2α − 2α2

(2α − 1)(α2 − α + 1)
+

2α − 1

α2 − α + 1

∫ ∞

0

∫ ∞

0

log
x + y + xy

x + y + 1
να ⊗ να(dx, dy) .

Before proving this formula, we now use it to compute the derivatives of the Lyapunov exponents
for p = 1. When p = 1, α = 1 (both in the linear and in the non-linear cases), and να is the Dirac
measure on φ. (18) yields

dγ

dα
(1) = log φ + log

2φ + φ2

2φ + 1
=

log 5

2
.

Since
dα

dp
(1) = 1 (both in the linear and in the non-linear cases), we get

dγp

dp
(1) =

dγ̃p

dp
(1) = (log 5)/2.

We now turn to the proof of Proposition 4.5.

Proof of Proposition 4.5. We fix 1/2 < α − ε < α ≤ 1. Let Y be a Markov chain following Pα,
decomposed into pieces R and RL. We decide independently to change each piece R into RL
with probability ε/α. We thus obtain a new Markov chain Y ′ following Pα−ε. Let (Gk)k≥1 and
(G′

k)k≥1 be the labels read along the paths Y and Y ′ respectively. We introduce the subsequences
(km) and (k′

m) such that Gkm
and G′

k′

m
are the labels read after the m-th piece of Y and Y ′

respectively. We know that

γ(α) − γ(α − ε) = σ(α) lim
m→∞

E [ 1

km
log Gkm

]
− σ(α − ε) lim

m→∞
E [ 1

k′
m

log G′
k′

m

]

= (σ(α) − σ(α − ε))
γ(α)

σ(α)
+ σ(α − ε) lim

m→∞
E [ 1

km
log Gkm

− 1

k′
m

log G′
k′

m

]
.(19)

Since
km

m
−−−−→
m→∞

2 − α and
k′

m

m
−−−−→
m→∞

2 − α + ε a.s.,

the last term in (19) becomes

σ(α − ε)

2 − α
lim

m→∞
E[ 1

m
log

Gkm

G′
k′

m

]
+

ε

2 − α
γ(α − ε).

Therefore, we obtain

γ(α) − γ(α − ε)

ε
=

σ(α) − σ(α − ε)

ε

γ(α)

σ(α)
+

1

2 − α
γ(α − ε)

+
σ(α − ε)

(2 − α)

1

ε
lim

m→∞
E[ 1

m
log

Gkm

G′
k′

m

]
.(20)

An easy computation shows that

(21) lim
ε→0

(
σ(α) − σ(α − ε)

ε

γ(α)

σ(α)
+

1

2 − α
γ(α − ε)

)
= γ(α)

1 + 2α − 2α2

(2α − 1)(α2 − α + 1)
.

Let us now turn to the last term on the right handside of (20). For all i ≥ 1, let us consider
the i-th piece which is different in Y and Y ′. We denote by mi the number of pieces which have
been seen before the i-th change. Let ai := Gkmi

−1 and bi := Gkmi
be the labels along Y of the
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vertices of the edge preceding the i-th change. Similarly, let a′
i := Gk′

mi
−1 and b′i := G′

k′

mi

be the

corresponding labels in Y ′. Using the fact that i/mi → ε a.s., we get

(22) lim
m→∞

E[ 1

m
log

Gkm

G′
k′

m

]
= ε lim

i→∞
E [1

i
log

ai

a′
i

]

Between the i-th change and the edge (ai+1, bi+1), Y and Y ′ share a common part Y i→i+1 (see
Figure 10). We set ni := n(Y i→i+1) and di := d(Y i→i+1), where n(·) and d(·) are the notations
introduced in the proof of Lemma 4.2. We then have the following induction.

ai+1

a′
i+1

=
dibi + ni(ai + bi)

di(a′
i + b′i) + nia′

i

=
ai

a′
i

bi

ai
+

ni

di

(
1 +

bi

ai

)

1 +
b′i
a′

i

+
ni

di

.

This yieldsE [1

i
log

ai

a′
i

]
=

1

i

i−1∑

j=1

(E [log

(
bj

aj
+

nj

dj

(
1 +

bj

aj

))]
−E[log

(
1 +

b′j
a′

j

+
nj

dj

)])
.

ai

bi

ai + bi

a′
i

b′i

a′
i + b′i

Y Y ′

a′
i

bi+1 a′
i+1 = di(a

′
i + b′i) + nia

′
i

b′i+1

ai+1 = dibi + ni(ai + bi)

Y i→i+1

Y i→i+1

Figure 10. The paths Y and Y ′ between the i-th and (i + 1)-th change.

Observe that bj/aj and nj/dj are independent. For all j, nj/dj has a probability distribution
νε

α which only depends on α and ε. Moreover, we know that bj/aj converges in law to να (see
Remark 3.3). It follows thatE [log

(
bj

aj
+

nj

dj

(
1 +

bj

aj

))]
−−−→
j→∞

∫ ∫
log (x + y (1 + x)) dνα(x)dνε

α(y) .

Similarly, E[log

(
1 +

b′j
a′

j

+
nj

dj

)]
−−−→
j→∞

∫ ∫
log (1 + x + y) dνα(x)dνε

α(y) .

We thus obtain E [1

i
log

ai

a′
i

]
−−−→
i→∞

∫ ∫
log

x + y(1 + x)

1 + x + y
dνα(x)dνε

α(y) .
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The probability νε
α is the distribution of n(Y 1→2)/d(Y 1→2). When ε → 0, the length of the

common part Y 1→2 goes to infinity almost surely.

Lemma 4.6. Let Y follow the probability distribution Pα. Then n(Y1 . . . Yk)/d(Y1 . . . Yk) has
almost surely a limit as k → ∞, which follows the probability distribution να.

This lemma ensures that the preceding integral goes, as ε → 0, to
∫ ∫

log
x + y(1 + x)

1 + x + y
dνα(x)dνα(y) .

Together with (20), (21) and (22), this achieves the proof. �

d′a + n′b

(d + d′)a + (n + n′)b

da + nb

da + nb
Yk

Figure 11. Labels on the path Y .

Proof of Lemma 4.6. We decompose the path Y into pieces R or RL. Recall that, under Pα, each
piece appears independently with probability α for R and 1−α for RL. To each piece, we associate
a real interval: Suppose the piece ends in Yk. Then the bounds of the corresponding interval are de-
fined as n(Y3 . . . Yk−1)/d(Y3 . . . Yk−1) and n(Y3 . . . Yk)/d(Y3 . . . Yk). Observe that the first interval
is [0, 1] with probability 1−α and [1,∞] with probability α. If n/d = n(Y3 . . . Yk−1)/d(Y3 . . . Yk−1)
and n′/d′ = n(Y3 . . . Yk)/d(Y3 . . . Yk) are the bounds of the interval associated to the j-th piece,
then the bounds of the interval associated to the (j+1)-th piece are either n′/d′ and (n+n′)/(d+d′)
with probability α, or (n + n′)/(d + d′) and n/d with probability 1 − α (see Figure 11). There-
fore, we get a decreasing sequence of Stern-Brocot intervals converging to a point following the
probability distribution να. �

5. Link between να and Furstenberg’s invariant measure

In the linear case, Furstenberg’s formula gives

1

n
log |Fn| −−−−→

n→∞
γp =

∫ (
p log

‖xA‖
‖x‖ + (1 − p) log

‖xB‖
‖x‖

)
dνf (x) ,

where A and B are the matrices given in (3) and νf is the invariant measure on the set P (R2) of
directions in the plane for the random walk that sends x to xA with probability p and to xB with
probability 1 − p. (In the above formula, x stands for any nonzero vector with direction x.)

Directions x can be parametrized using slopes x = (1, m) with m ∈ (−∞,∞]. Therefore, in this
context, νf is the probability distribution on (−∞,∞] such that, for any non-negative measurable
function g, ∫

g dνf =

∫ {
pg

(
1 +

1

m

)
+ (1 − p)g

(
1 − 1

m

)}
dνf (m) .

Observe that, in view of the particular form of the matrices A and B and the fact that νf is
invariant, Furstenberg’s formula reduces to

γp =

∫ +∞

−∞

log |m| dνf (m) +

∫ (
p log

‖(1, 1 + 1
m )‖

‖(1, m)‖ + (1 − p) log
‖(1, 1 − 1

m )‖
‖(1, m)‖

)
dνf (m)

=

∫ +∞

−∞

log |m| dνf (m) .
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(It is worth remarking that this simplification is always valid when dealing with linear recurrence
equations.)

The difficult part is to identify the invariant measure νf . This was done by Viswanath in the
case p = 1/2, and we could note that νf ( . |R+) = να for α = α(1/2) = φ−1. This observation,
together with the fact that the above equation looks very similar to our formula for γp, made us
suspect a relationship between να and νf .

We came to the following heuristics: In the tree T, all edges whose labels have opposite signs
correspond to a step which will appear at the end of a deleted pattern RLL. Therefore, we expect

νf (R−) to be equal to the frequency of deletions
1 − σ

3
=

(1 − α)2

α2 − α + 1
. Moreover, all edges whose

labels have same signs can be seen as belonging to a tree R. Therefore, we expect νf ( . |R+) to
be equal to να (as in the case p = 1/2). The invariance property of νf for the indicator function
of a Stern-Brocot interval [a, b] with 1 ≤ a < b now yields

νf ([a, b]) = p νf

([
1

b − 1
,

1

a − 1

])
+ (1 − p) νf

([ −1

a − 1
,
−1

b − 1

])
.

Observe that
[

1
b−1 , 1

a−1

]
and

[
−1
a−1 , −1

b−1

]
are also Stern-Brocot intervals, the latter lying in R−.

This equation is thus enough to get the measure of all Stern-Brocot intervals in R−. We obtain
the measure described in Figure 12.

3/1
2/13/21/12/31/21/3

0/1 1/0
−1/3−1/2−2/3−1/1−3/2−3/1

−1/0 −2/1

m+(1 − α)m−(1 − α)m−α

m+α(1 − α)

m+α

m−α2

m−α(1 − α) m−(1 − α)2

m+(1 − α)2

m− =
(1 − α)2

α2 − α + 1
m+ = 1 − m−

m+α2

m+α(1 − α)m−α(1 − α)

Figure 12. The measure νf on Stern-Brocot intervals of rank 0, 1, 2. First assign

mass m− :=
(1 − α)2

α2 − α + 1
to ] −∞, 0] and m+ :=

α

α2 − α + 1
to [0,∞]. Once να

is defined on some Stern-Brocot interval of rank r in R+, a proportion α of its
mass is given to the left (respectively right) subinterval of rank r + 1 when r is
odd (respectively even). In R−, exchange α and 1 − α.

Conversely, we easily check that this measure satisfies the invariance property.

6. Further developments and open questions

6.1. Extension to Viswanath’s setting. The sequence (tn) studied by Viswanath in [10] is
defined by t1 := t2 := 1, and

tn = ±tn−1 ± tn−2 (m ≥ 2),

where each ± sign is independent and takes value + or − with probability 1/2. A natural extension
of this setting would be to choose the signs independently both with probability p for + and 1− p
for −. This definition is equivalent to ours only in the case p = 1/2, which explains why the graph
of the Lyapunov exponent drawn on Figure 5 in [10] is different from our Figure 2. In Viswanath’s
setting, no explicit formula is known to compute the Lyapunov exponent. Can our method be
extended to this setting ?
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6.2. Random Fibonacci sequences with multiplicative coefficient. Consider the gener-
alization of the random Fibonacci sequence (Fn)n defined by Fn+1 = λFn ± Fn−1 for a fixed
parameter λ.

For special values of this parameter, namely λk = 2 cos(π/k), k ≥ 3, we hope to generalize our
method. (Observe that the present study corresponds to k = 3). We expect the reduced sequences
to be obtained by removing patterns RLk−1, which should give rise to the study of a Markov chain
of order k − 2. The correspondance between random Fibonacci sequences and continued fractions
extends to these new sequences by considering Rosen continued fractions, introduced by Rosen
in [9]. A Rosen continued fraction expansion of a real number x is a continued fraction in which
partial quotients belong to λkZ∗ (instead of Z∗

+ as in the classical case). The values λk are known
to be the only ones for which the corresponding Möbius group generated by the transformations
z 7−→ z − λk and z 7−→ 1/z acts discontinuously on H [5, 6].

6.3. Average growth rate. We announced in Remark 1.2 that we were able to give an explicit

expression for the limit of
1

n
log(E(F̃n)). Strangely enough, the similar question in the linear case

seems to be more difficult. We do not know yet whether the combinatorial methods used in [8]
can be extended to this case.

6.4. Variation properties. We could expect the formula (18) to give the value of the derivative
when p → 0 in the linear case (or when p → 1/3 in the non-linear case). Unfortunately an
indeterminate form appears when α → 1/2. Is there another way to compute this value?

On figure 2, obtained by numerical estimations of the integral, the functions p 7→ γp and p 7→ γ̃p

seem to be convex. In [11], Volkmer gives a sufficient condition for the convexity of the Lyapunov
exponent to hold. But this condition is easy to check only in the case of nonnegative matrices,
and we do not know whether it applies in our cases.
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