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Abstract: This paper is dedicated to the study of robust stability analysis and
control synthesis for discrete time uncertain switching systems under arbitrary
switching. Polytopic uncertainties are considered. We show that Lyapunov func-
tions that depend on the uncertain parameter and that take into account the
structure of the system may be used in order to reduce the conservatism related
to uncertainty problems. New LMI condition are obtained. We introduce the
switched parameter dependent Lyapunov functions, i.e. functions that are based
on a structure similar to that of the uncertain switched system. Necessary and
sufficient LMI conditions for the existence of these functions are presented. A
numerical example illustrates the conservatism of existing results. The approach
is extended to switched state feedback design or state reconstruction for uncertain
switched systems.
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1. INTRODUCTION

We call switched systems a class of hybrid systems
consisting of a family of continuous/discrete sub-
systems and a rule that orchestrates the switch-
ings between them (Liberzon and Morse, 1999).
Stability and control synthesis are two impor-
tant topics in the switched system field (DeCarlo
et al., 2000). Switched system stability can be
checked via switched Lyapunov functions, i.e. a
set of functions that are quadratic on the system
state and that switch according to active subsys-
tem (Daafouz et al., 2002; Johansson, 2002; Bran-
icky, 1998). For this approach, the stability condi-
tions may be expressed in terms of linear matrix
inequalities (LMI) (Boyd et al., 1994), which have
a notable practical interest due to the existence
of powerful numerical solvers. The stability prob-
lem is very complex when parameter uncertainty
is considered. In this case, the dynamic of each
mode is affected by uncertainty. Until now, few

results are concerned with robust stability in the
context of switched systems. In the specialized
literature (Zhai et al., 2003; Z.Ji et al., 2003a; Z.Ji
et al., 2003b) the results obtained for the non-
uncertain case are directly applied : a common
Lyapunov function is defined over the uncertainty
of a subsystem. The Lyapunov functions switch
similarly to the subsystem but they do not vary
according to the uncertain parameters. The draw-
back of such methods is the conservatism inherent
to the use of a common function over the whole
uncertainty.

In the robust control domain, conditions based on
parameter dependent Lyapunov functions (PDLF)
are proposed in order to reduce the conservatism
related to uncertainty problems (Dasgupta et al.,
1994; Feron et al., 1996). Recently, in publication
(J.Daafouz and Bernussou, 2001), these Lyapunov
functions were used to analyze the stability of
discrete systems with polytopic uncertainty. The



solution is a class of Lyapunov functions that de-
pends in a polytopic way on the uncertain parame-
ter and that can be derived from LMI conditions.

In this paper we intend to study the robust stabil-
ity and control synthesis of discrete time uncertain
switching systems under arbitrary switching. We
will consider that the uncertainty can be mod-
eled in a polytopic way. We intend to reduce
the conservatism related to uncertainty problems
using Lyapunov functions that depend on the
uncertain parameter and that take into account
the structure of the system. Two approaches will
be presented. First, we will prove that stabil-
ity analysis for switched uncertain system with
polytopic uncertainty can be addressed as the
problem of analyzing an unique equivalent matrix
polytope for which the parameter dependent Lya-
punov function approach presented in publication
(J.Daafouz and Bernussou, 2001) can be applied.
The results are very good when the conservatism
reduction is concerned. However, the method is
not obvious to apply for control synthesis. Sec-
ond, we will show that using parameter dependent
Lyapunov functions that have a structure similar
to the system leads to LMI conditions for both
stability analysis and control synthesis. A new
concept will be introduced : the switched parame-
ter dependent Lyapunov functions, i.e. functions
that depend in a polytopic way on the uncertainty
of each mode and that are switched following the
structure of the system. We will obtain a necessary
and sufficient LMI condition for the existence of
these functions. A numerical example will illus-
trate the advantage of these approaches compared
to other conditions : the proposed conditions lead
to Lyapunov functions that prove the asymptotic
stability when all the other conditions are too con-
servative to be satisfied. It will also be shown how
this functions are applied to the control synthesis
problem : a stabilizing switched state feedback is
constructed when the arbitrary switching can be
detected in real time.

2. PRELIMINARIES

In this section we recall a stability result based
on parameter dependent Lyapunov functions and
show how it can help for robust stability analysis
in the case of switched uncertain systems with
polytopic uncertainty. Consider the uncertain dis-
crete time system :

x(k + 1) =

N
∑

i=1

αi(k)Aix(k),

N
∑

i=1

αi(k) = 1, (1)

where x ∈ R
n is the state vector, k ∈ Z

+ is the dis-
crete time and the αi ≥ 0 represent the uncertain
parameters. In (J.Daafouz and Bernussou, 2001),

the stability of such a system is checked using
PDLFs of the form :

V (k) = xT (k)

N
∑

i=1

αi(k)Pix(k), Pi = PT
i > 0. (2)

A system is said poly-quadratically stable if there
exists a PDLF (2) whose difference is negative
definite (J.Daafouz and Bernussou, 2001).

Theorem 1. (J.Daafouz and Bernussou, 2001) Sys-
tem (1) is poly-quadratically stable iff there exists
symmetric positive definite matrices Si, Sj and
matrices Gi of appropriate dimension such that :

[

Gi + GT
i − Si GT

i AT
i

AiGi Sj

]

> 0 (3)

for all i = 1, . . . , N and j = 1, . . . , N . In this case,
the Lyapunov function is given with Pi = S−1

i .

Consider the uncertain switched system :

x(k + 1) = Âσ(k)(k)x(k) (4)

where
{

Âi : i ∈ I
}

with I = {1, 2, .., N}, is a

family of matrices and σ : Z+ → I is the switching
signal. Âσ(k) is the uncertain matrix :

Âσ(k) =

nσ
∑

j=1

ασj(k)Aσj ,

nσ
∑

j=1

ασj(k) = 1, ασj(k) ≥ 0

where the coefficients αij describe the polytopic
uncertainty of the ith mode of the systems, Aσj

denote the extreme points of the polytope Âσ

and nσ is the number of such points. Consider
S = {A11, . . . , A1n1

, . . . , AN1, . . . , ANnN
} the set

of all vertices defining the dynamic of system
(4) and E = {E | E ∈ S, coS 6= co(S − {E})},
E = {E1 . . . EM} , the set of extreme points of coS.
Here coS is the convex hull of S and M is the num-
ber of extreme points of S (numerical methods
for convex hull and extreme points computation
are described in (Ottmann et al., 1995; Avis and
Fukuda, 1992)).

Theorem 2. System (4) is stable if there exists
symmetric positive definite matrices Si, Sj and
matrices Gi of appropriate dimension such that :

[

Gi + GT
i − Si GT

i ET
i

EiGi Sj

]

> 0 (5)

for all i = 1, . . . , M and j = 1, . . . , M . The
parameter dependent Lyapunov function is con-
structed with Pi = S−1

i .

Proof. The proof is based on the fact that a
convex combination of convex polytopes is also a
convex polytope, in other words, on the fact that
the system (4) may be expressed on the form (1),
for which we have a stability criterion. System (4)
is equivalent to



x(k + 1) =

N
∑

i=1

ni
∑

j=1

ξi(k)αij(k)Aijx(k), (6)

ξi : Z
+ → {0, 1},

∑N
i=1 ξi(k) = 1, ∀k ∈ Z

+. Here,
the switching function σ is replaced by the para-
meters ξi; ξi = 1 when σ = i and 0 otherwise. This
representation of the system is strictly equivalent
with (4). Therefore, no additional conservatism is
introduced. Consider the notation A :

A =

N
∑

i=1

ξi(k)Âi =

N
∑

i=1

ni
∑

j=1

ξi(k)αij(k)Aij (7)

which is A is a convex combination of Aij ∈ S. As
Ep are the extreme points of coS, we can write

A =

M
∑

p=1

Λp(k)Ep, Λp ≥ 0,

M
∑

p=1

Λp(k) = 1.

Therefore A is a polytopic uncertainty similar to
that in equation (1). From equation (6), it can
be noticed that any switched uncertain system
with polytopic uncertainty (4) may be expressed
as a simple uncertain system of the form (1). By
applying Theorem 1, the proof is obvious.

Similar to publication (J.Daafouz and Bernussou,
2001), this approach can be directly applied to
the switched state feedback stabilization problem,
when the input matrix is known and constant for
all system modes. However, in the general case,
when both the dynamic and the input matrix
are switched and uncertain, the construction of
a switched state gain is not obvious.

3. SWITCHED PARAMETER DEPENDENT
LYAPUNOV FUNCTIONS

To achieve the control synthesis, the switched
parameter dependent Lyapunov function is intro-
duced. It can be used for both proving the asymp-
totic stability of switched uncertain systems and
constructing a switched state feedback when both
the dynamic and the input matrix are switched
and uncertain.

3.1 Robust stability analysis

Consider the switched uncertain system (4) and
its equivalent representation (6). Based on a struc-
ture similar to the uncertainty description, we
look for switched parameter dependent Lyapunov
functions (SPDLF) :

V (k) = xT (k)P̂σ(k)x(k), P̂σ(k) =

nσ
∑

j=1

ασj(k)Pσj

= xT (k)

N
∑

i=1

ni
∑

j=1

ξi(k)αij(k)Pij x(k) (8)

where Pij = PT
ij > 0. System (6) is asymptotically

stable if the difference of the Lyapunov function
along the solutions of (6) L = V (k + 1) − V (k)
satisfies :

L= xT (k)(ATP+A−P)x(k) < 0 (9)

where A=
N

∑

i=1

ni
∑

j=1

ξi(k)αij(k)Aij ,

P =

N
∑

i=1

ni
∑

j=1

ξi(k)αij(k)Pij ,

P+ =
N

∑

i=1

ni
∑

j=1

ξi(k + 1)αij(k + 1)Pij

=

N
∑

m=1

ni
∑

n=1

ξm(k)αmn(k)Pmn,

∀k, ∀x(k), ∀ξi and ∀αij defined in (6).

Theorem 3. A switched parameter dependent Lya-
punov function whose difference satisfy (9) can
be constructed iff there exists symmetric positive
definite matrices Sij , Smn and matrices Gij of
appropriate dimension such that :

[

Gij + GT
ij − Sij GT

ijA
T
ij

AijGij Smn

]

> 0 (10)

for all i = 1, . . . , N and j = 1, . . . , ni, m =
1, . . . , N and n = 1, . . . , nm. The switched pa-
rameter dependent Lyapunov function is con-
structed with Pij = S−1

ij .

Proof. To prove sufficiency, assume that the
condition is feasible. Then

Gij + GT
ij − Sij > 0.

Therefore Gij is non singular and as Sij is strictly
positive definite, we have :

(Sij − Gij)
T S−1

ij (Sij − Gij) ≥ 0,

which is equivalent to

GT
ijS

−1
ij Gij ≥ GT

ij + Gij − Sij .

Therefore the relation (10) implies
[

GT
ijS

−1
ij Gij GT

ijA
T
ij

AijGij Smn

]

> 0. (11)

Pre- and post- multiplying the inequality (11) by
diag(G−T

ij , S−1
mn) and its transpose gives

[

S−1
ij AT

ijS
−1
mn

S−1
mnAij S−1

mn

]

> 0 (12)

Defining Pij = S−1
ij the inequality (12) becomes

[

Pij AT
ijPmn

PmnAij Pmn

]

> 0



for all i = 1, . . . , N and j = 1, . . . , ni, m =
1, . . . , N and n = 1, . . . , nm. Repeatedly multiply-
ing by the appropriate coefficients and summing
one obtains :

[

P ATP+

P+A P+

]

> 0

From the Schur complement, this is equivalent to

ATP+A−P < 0 (13)

which implies the existence of the switched para-
meter dependent Lyapunov function (8).

To prove necessity, assume that L satisfies (9).
Then (13) is true, which implies that

Pij − AT
ijPmnAij > 0

for all i, m = 1..N, j = 1..ni, n = 1..nm.

A development similar to the one presented in
(J.Daafouz and Bernussou, 2001) allows to end
the proof.

3.2 Control Synthesis

In this subsection, the control synthesis problem
via switched state feedback is considered for the
following switching uncertain system :

x(k + 1) = Âσ(k)x(k) + B̂σ(k)u(k), (14)

where

Âσ =

naσ
∑

j=1

ασj(k)Aσj , and B̂σ =

nbσ
∑

l=1

βσl(k)Bσl,

naσ
∑

j=1

ασj(k) = 1, ασj(k) ≥ 0, (15)

nbσ
∑

l=1

βσl(k) = 1, βσl(k) ≥ 0, ∀ k ∈ Z
+

represent the uncertainty on the dynamic and
input matrix, respectively. The switching signal is
given by σ. Here ασj and βσl are the uncertain pa-
rameters while naσ and nbσ represent the number
of extreme points in the uncertainty Âσ and B̂σ,
respectively. This system can also be expressed
as :

x(k+1) =
N

∑

i=1

ξi(k)Âi(k)x(k)+
N

∑

i=1

ξi(k)B̂i(k)u(k),

(16)

The closed-loop dynamic with the switched state
feedback

u(k) =
N

∑

i=1

ξi(k)Kix(k) (17)

is described by the equation:

x(k + 1) =

N
∑

i=1

ξi(k)(Âi + B̂iKi)x(k).

Notice that the switching signal σ and the switch-
ing parameters ξi(k) are assumed to be available

in the real time. With the uncertainty description
(15), the equation becomes

x(k+1) =

N
∑

i=1

ξi(k)(

nai
∑

j=1

αij(k)Aij+

nbi
∑

l=1

βil(k)BilKi)x(k)

which is the same as :

x(k + 1) =

N
∑

i=1

nai
∑

j=1

nbi
∑

l=1

ξi(k)αij(k)βil(k)Hijlx(k)

where Hijl = Aij + BilKi.

The switched parameter dependent Lyapunov
function is given by :

V (k) = xT (k)Px(k)

with

P =

N
∑

i=1

nai
∑

j=1

nbi
∑

l=1

ξi(k)αij(k)βil(k)Pijl . (18)

The difference along the system trajectories is :

V (k + 1) − V (k) = x(k)(HTP+H−P)x(k),

where

H =

N
∑

i=1

nai
∑

j=1

nbi
∑

l=1

ξi(k)αij(k)βil(k)Hijl ,

and

P+ =

N
∑

i=1

nai
∑

j=1

nbi
∑

l=1

ξi(k + 1)αij(k + 1)βil(k + 1)Pijl

=

N
∑

m=1

nam
∑

u=1

nbm
∑

v=1

ξm(k)αmu(k)βmv(k)Pmuv .

Theorem 4. System (16) is stabilizable via the
control law (17) if there exists symmetric positive
definite matrices Sijl and Smuv, and matrices Gi

and Ri, solutions of the LMI :
[

Gi + GT
i − Sijl GT

i AT
ij + RT

i BT
il

AijGi + BilRi Smuv

]

> 0, (19)

for all i = 1, . . . , N and j = 1, . . . , nai, l =
1, . . . , nbi, m = 1, . . . , N , and u = 1, . . . , nam

and v = 1, . . . , nbm. The switched state feedback
control is given by (17) with

Ki = RiG
−1
i .

Proof. Assume the condition is feasible. By in-
troducing Ki in (19) one obtains :

[

Gi + GT
i − Sijl GT

i AT
ij + GT

i KT
i BT

il

AijGi + BilKiGi Smuv

]

> 0,

which is equivalent to
[

Gi + GT
i − Sijl GT

i HT
ijl

HijlGi Smuv

]

> 0. (20)



Similar to the proof of Theorem 3, one can show
that the inequality (20) is the same as :

[

S−1
ijl HT

ijlS
−1
muv

S−1
muvHijl S−1

muv

]

> 0 (21)

Defining Pijl = S−1
ijl , the inequality (21) can be

written as
[

Pijl HT
ijlPmuv

PmuvHijl Pmuv

]

> 0

for all i = 1, . . . , N and j = 1, . . . , nai, l =
1, . . . , nbi, m = 1, . . . , N , and u = 1, . . . , nam and
v = 1, . . . , nbm. By repeatedly multiplying by the
appropriate coefficients and summing one gets:

[

P HTP+

P+H P+

]

> 0

From the Schur complement, this is equivalent to

HTP+H−P < 0

which implies the existence of a Lyapunov func-
tion of the form (18).

Remark. By duality, the results obviously apply
to the state reconstruction problem for uncertain
switched systems with uncertain output matrix.

4. NUMERICAL EXAMPLES

Example 1. To illustrate the LMI stability con-
ditions derived in the previous sections, we will
consider a switched uncertain system with affine
uncertainty of the form :

x(k + 1) = Âσx(k) where

Âσ(k) = A0σ + ρ(k)Aσ , ρ(k) ∈ [−1, 1].

This kind of uncertainty can be expressed as a
norm bounded uncertainty

Âσ(k) = A0σ + DσF (k)Eσ, F (k) ∈ [−1, 1],

with ρ = F and Aσ = DσEσ, and as a polytopic
uncertainty

Âσ(k) = ασ1(k)Aσ1 + ασ2(k)Aσ2,

with

Aσ1 = A0σ + DσEσ and Aσ2 = A0σ − DσEσ,

ασ1(k), ασ2(k) > 0, ασ1(k)+ασ2(k) = 1, ∀k ∈ Z
+.

Such an uncertain switched system can be used
for comparing the previous LMI conditions, based
on quadratic stability (Z.Ji et al., 2003a) and on
a norm bounded uncertainty approach (Z.Ji et

al., 2003b), to the conditions of our paper. Let

A01 =













0.2 0.2 0.3 0.1 −0.5
0.8 0 −0.1 −0.3 0.3

0 −0.3 −0.4 0 0
0 0.3 0.1 0.3 0.5

−0.2 0 0 0 0.1













,

A02 =













−0.7 −0.7 0 0 0.2
0.5 0.3 0.3 −0.3 0
0.3 0.4 0.3 0.6 0.3
0.3 −0.8 0 0 0
0.1 −0.7 0.1 −0.3 0.3













,

DT
1 = [0.2 0.5 − 0.1 0.3 0.2],

DT
2 = [−0.5 0.38 0.5 0.2 0.5],

E1 = [−0.3 − 0.3 − 0.5 0.2 0.3]

E2 = [−0.2 0.1 − 0.1 − 0.05 0.7].

In this case, all the existing LMI conditions (Z.Ji
et al., 2003a; Z.Ji et al., 2003b) prove to be too
conservative and do not have any solution.

Yet, the LMI conditions (5) and (10) here pre-
sented have solutions. The existence of these so-
lutions was tested by a numerical LMI solver
(SEDUMI). Hence, a parameter dependent and a
switched parameter dependent Lyapunov function
can be constructed using conditions (5) and (10).

Example 2. We will consider the uncertain
switched system :

x(k + 1) = Âσ(k)x(k) + B̂σ(k)u(k), (22)

where

Âσ(k) = A0σ + DσFEA
σ ,

B̂σ(k) = B0σ + DσFEB
σ , F ∈ [−1, 1],

represent norm bounded uncertainties similar to
the previous example. One should remark that the
two uncertainties, Âσ and B̂σ, are varying with
the same uncertain parameter F . This choice of F

is useful when comparing with the norm bounded
uncertainty approach in publication (Z.Ji et al.,
2003b). These uncertainties can be expressed in
the polytopic form:

Âσ(k) = λσ1(k)Aσ1 + λσ2(k)Aσ2,

B̂σ(k) = λσ1(k)Bσ1 + λσ2(k)Bσ2,

with

Aσ1 = A0σ + DσEA
σ , Aσ2 = A0σ − DσEA

σ ,

Bσ1 = B0σ + DσEB
σ , Bσ2 = B0σ − DσEB

σ ,

λσ1(k), λσ2(k) > 0, λσ1(k)+λσ2(k) = 1, ∀k ∈ Z
+.

This equivalent polytopic uncertainty is a partic-
ular case of equation (15) with j = l, naσ =
nbσ = 2, and ασj = βσl = λσj . Therefore, the
LMI condition (19) becomes :

[

Gi + GT
i − Sij GT

i AT
ij + RT

i BT
ij

AijGi + BijRi Suv

]

> 0, (23)

for i, u = 1..N , j, v = 1..2, where Sij , Suv are
positive definite symmetric matrices.

We will consider that not all the Âi(k) matrices
are Hurwitz and we will apply theorem (4) in



order to construct a switched state feedback of
the form (17). For N = 2,

A01 =





−0.1 0.7 −0.2
−0.4 0.7 1

0.3 0.3 0



 , A02 =





1 0.7 0.7
0.4 0.6 0.2

1 0.7 0



 ,

B01 = [0.1 0.8 0.8]T , B02 = [0.2 0.9 0.2]T

D1 = [−0.2328 0.4340 − 0.4590]T ,

D2 = [−0.2645 0.2681 0.9316]T ,

EA
1 = [0.7461 − 0.4767 0.1131],

EA
2 = [−0.4787 0.4671 0.4731],

EB
1 = 0.8194 and EB

2 = −0.7610

The LMI condition (23) is found to be feasible and
the following stabilizing switched gains

K1 = [0.1956 − 0.8403 − 0.7902]

K2 = [−1.1285 − 1.1554 − 0.353]

are derived. One should remark that the LMIs
proposed in (Z.Ji et al., 2003a; Z.Ji et al., 2003b)
have no solution and do not allow to build a
stabilizing switched state feedback.

5. CONCLUSION

This paper was dedicated to the robust stability
analysis and control synthesis for switched uncer-
tain systems with polytopic uncertainties. Using
Lyapunov functions that are based on a structure
similar to the uncertain switched system, less con-
servative LMI conditions have been proposed. The
approach was extended to the case of control syn-
thesis via a switched state feedback. By duality,
these results obviously apply to the state recon-
struction problem for uncertain switched systems
with uncertain output matrix. In the future, one
could extend this approach to the output feedback
stabilization problem and reduce the number of
conditions through convex analysis methods.
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