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Flows !
Michel Koskas∗, Cécile Murat∗

Abstract

Some tools used in Combinatorics of Words allow the profiling of “divide and
conquer” algorithms in a number of Operational Research fields, like database man-
agement, automatic translation, image pattern recognition, flowing or shortest path
problems. . . . This paper details one of them, the maximization of a flow over a
network.

1 Introduction

Some problems make easy a “divide and conquer” approach, which usually leads to effi-
cient algorithms (even often optimal). For instance for sorting an array, we may split it in
two parts, sort the left part, then the right part and merge the two sorted parts. Some other
problems do not seem to naturally allow such an approach: for instance when searching
the shortest path between two vertices of a graph, it is not clear at all that it may be ob-
tained in such a way. Neither the image pattern recognition nor problems like automatic
translation, database management or flow problems seem to allow a natural “divide and
conquer” approach.

Actually these problems can be solved thanks to a “divide and conquer” approach.
The goal of this paper is to fully detail one of them, namely the flowing problem.

For solving a problem thanks to a “divide and conquer” algorithm, the data is usually
split in smaller parts (usually halved) whose solutions are merged together.

Let us take back the example of sorting an array. It is possible to use a quicksort, a
mergesort, a heapsort . . . The heapsort is not a “divide and conquer” algorithm, is optimal
in average and worst case but is averagely less efficient than the quicksort. The quicksort
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proceeds by choosing an element of the array (say the middle one called “pivot”), puts at
its right elements that are greater than or equal to the pivot, at its left elements that are
lower than or equal to the pivot, and sorts the left and right parts. The step of dealing with
the two parts is performed at first and then the independent computations are performed.
The mergesort consists in sorting the left and right halves of he array and then deals with
the two parts by merging two sorted sub arrays. A dichotomic search has at each step
only to deal with one half of the array and therefore does not necessitates a “deal with two
parts” step. The algorithm presented in this paper uses an algorithm to find the shortest
paths in an unweighed graph that performs several times the “deal with two parts” step
and the “merge” (or “check solutions”) part.

We use an extra data structure where the method applies. This means that the first
step of these algorithms consists in building the extra data structure and, fortunately, this
step is performed only once and may be considered as part of the data representation.
For instance when dealing with graphs for, say, the shortest path problem, the extra data
structure is computed only once and is used for any couple of vertices.

All these algorithms lie on the use of radix trees, an efficient structure for storing data
and for performing hierarchical computations on it.

The paper is organized as follows. After giving the basic definitions and notation,
we present the common knowledge about radix trees followed by some applications in
various domains. Section 4 is devoted to the study of the shortest path problem and its
refinements, which in turn leads to an efficient improvement of the well known Ford-
Fulkerson Algorithm for flows.

2 Definitions and Notation

A graphG is a triple(V, A, C) whereV is a finite set ofvertices, A is a subset ofV × V
(thearcsof the graph) andC a function fromA to R+ (thecapacities).

The setsA andC may be considered as an adjacency matrixM = (mi,j)1≤i,j≤n where
v = #(V ) and

∀i, j, mi,j =

{
0 if (i, j) 6∈ A
C((i, j)) else.

}
.

For any verticesi andj, the arc(i, j) is an outgoing arc ofi and an incoming arc ofj.
For any vertexi, we denoteOut(i) the set of its outgoing arcs andInc(i) its incoming
vertices.

The flowing problem is the following. Among the vertices ofG, one chooses a vertex
called Source (denoted byS from now on), and another one called Well (denoted byW
from now on). The goal is to find a functionϕ overA such that∀a ∈ A ϕ(a) ≤ C(a),
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and for all vertices (exceptS andW ) of G, the Kirchhoff’s laws apply, which means that∑
a∈Inc(v)

ϕ(a) =
∑

a∈Out(v)

ϕ(a).

The value of the flowϕ is ∑
a∈Out(S)

ϕ(a) =
∑

a∈Inc(W )

ϕ(a).

The problem is to find a flow maximizing this value.

The algorithm usually used to solve this problem is the well known Ford-Fulkerson
Algorithm, enhanced in the section 5.

3 Presentation of Radix Trees

Radix trees are trees allow to store data in a hierarchical way. Let us suppose for instance
that we want to store a set of words over an alphabet{a, b, c}. Then the edges are la-
beled with the letters of the alphabet (or an empty letter) and the words are obtained by
reading the path between the root of the tree and any of its leaves. For instance the set
{a, ab, aba, abc, bab, bac} may be stored as (see Figure 1) :

b.

a

a

b

a

a c

b

a

b c

.

Figure 1: The set{a, ab, aba, abc, bab, bac} stored in a radix tree

The efficiency of the radix tree structure is revealed by the computations it allows. For
instance, a set of integers may be stored as a set of words by writing them in a given basis
(and adding 0 at the left of shorter integers). Then a set of couples of integers may also
be stored the same way. Let us take an example : the setS = {(0, 1), (0, 2), (1, 3), (0, 4),-
(3, 1), (2, 2)} may be written in basis 2 as

S = {(000, 001), (000, 010), (001, 011), (000, 100), (011, 001), (010, 010)}
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00

00 01

00 01 10 11 00

01 00 11 11 00

Figure 2: The setS = {(0, 1), (0, 2), (1, 3), (0, 4), (3, 1), (2, 2)} stored in a radix tree

and, using the alphabet{00, 01, 10, 11} may be rewritten asS = {00.00.01, 00.01.00,-
00.01.11, 01.00.00, 00.10.11, 00.11.00} (the i-th digit of an element is made of the cate-
nation of thei-th digits of the corresponding couple). This store may finally be stored in
the set (see Figure 2).

These sets allow efficient operations such as intersection, union, complementation
(for set operations) and when the elements stored are integers or couples of integers one
may also perform a translation of the whole set asymptotically faster than by adding the
constant to all the elements of the set. Let us furthermore notice that the elements are
stored sorted.

It is also possible to advantageously store a graph in a radix tree, by thickening the
graph.

Definition 3.1 LetG = (V, A) be a graph whereV = {v0, . . . , vv−1}. LetG′ = (V ′, A′)
be an unweighed graph whereV ′ = {v′0, . . . , v′v′−1} is a set ofv′ = dv

2
e vertices and such

that

∀i, j ≤ v′, (v′i, v
′
j) ∈ A′ ⇔ ∃a ∈ {2i, 2i + 1}, b ∈ {2j, 2j + 1}, (va, vb) ∈ A.

Such a graphG′ is said to be a thickening ofG or equivalentlyG is a refinement ofG′.

Remark 3.2 Any equivalence relation may be used to define the thickening of a graph
(in the definition two vertices are in the same equivalence class if and only if they have
the same quotient by 2).

In other words, the vertices ofV are grouped by two and there exists an arc between
any two couples if and only if there exists an arc between an element of the first couple
and an element of the second couple. A graph may be recursively thickened as long as
the obtained graph has a number of arcsa and of verticesv verifying P ( a

s2 ) ≥ 1
2

where
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Figure 3: a Graph thickened

P (X) = 1 − 3
2
X + X2 − 1

4
X3. One may finally store a graph in a radix tree. Let us

consider for instance an unweighed graph by its adjacency matrix. The adjacency matrix
is then “summarized” as in Figure 3.

In the next sections we shall explain how this data structure may be used to profile
“divide and conquer” algorithms on a number of problems.

3.1 Database Management

A relational database is made of several relations linked by sets of primary keys and
foreign keys. A primary key of a relationT is an attribute or a set of attributes such that
T may not contain two lines whose values are equal on these attributes. Another way to
say it is that the value of a primary key identifies a single line ofT . Any relation has at
least a primary key.

A foreign key of a relationT is an attribute or a set of attributes targeting a primary
key of a relationT ′. In other words a foreign key is a recall of a primary key. A foreign
key replaces all the attributes ofT ′ for the line identified by its value. It is a cheap storage
of all the values ofT ′ (only the values of the primary key ofT ′ are stored instead of all its
attributes). For instance if a relation contains the data of a set of clients, each command
should not contain all the data of the client but only the value of the primary key of the
relation storing the clients data.
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Given a relationT , one builds the matching “expansion relation” , builds the the-
sauruses and radix trees and answer SQL queries (see below). For a full description of
this algorithm one may refer to [13]

Expansion Relations

We give a recursive definition of a expansion relation. It is a denormalized version of the
database. The foreign keys are replaced by the attributes of the targeted relations.

Definition 3.3 The expansion of a foreign key belonging to a relation is the replacement
of the attributes of this foreign key by the attributes of the targeted relation. LetT be
a relation. The related expansion relationE(T ) is the relation obtained by expanding
recursively all its foreign keys.

Building Indexes

Once the expansion tables are built, the database is made of relations no more linked
because the jointures have been formally expanded in each relation. Then one builds the
thesaurus of each attribute and store for each element of the thesaurus the set of the line
indexes it appears at. For example, let us consider the attribute in Table 1:

0 1 2 3 4 5 6 7 8 9 10
Male Female Female Male Female Male Male Female Female Male Male

Table 1: An example of simple relation

Then its thesaurus is{Female, Male} and the indexes at which Female appear (resp.
Male) is{1, 2, 4, 7, 8} (resp.{0, 3, 5, 6, 9, 10}). The radix trees associated to the words of
the thesaurus are shown in Figure 4).

Solving SQL Requests

We give briefly indications to solve SQL requests. For more details one may refer to [13].

The main part of this work is to solve thewhere clause, composed of equalities or
inequalities separated by logical operators (and, or) and joint clauses etc. This where
clause returns a radix tree, which contains the line indexes answering the clause. The
joint clause are irrelevant here because of the use of expansion relations.

An equality between an attribute and a constant is the simplest case because one has
simply to read the corresponding radix tree. An inequality may be computed by several
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1

Female

Male

0 1

0 1 0

0 1 0 1 0 1

0 1 1 0 1 0

0 1

0 1

0

0

0

0 01 1

1 0 0

Figure 4: The indexes of an attribute

readings of radix trees and the computation of an “or”. A “and” (resp. “or”) clause is
computed by performing the “and” (resp. “or”) of the corresponding radix trees.

All the other operations may be performed in a similar way.

3.2 Image Pattern Recognition

An image may be considered as a mapping from[[0, L− 1]]× [[0, H − 1]] to a finite set (of
colors),l being the width andL the height of the image. Each color appears at a set of co-
ordinates that one may store in a radix tree. For instance the picture (see figure 5) contains
three colors, black, grey and white. The black pixels are at indexesB = {(3, 0), (4, 0),-
(2, 1), (3, 1), (5, 1), (6, 1), (2, 2), (6, 2), (0, 3), (3, 3), (4, 3), (7, 3), (0, 4), (3, 4), (4, 4), (7, 4),-
(2, 5), (6, 5), (2, 6), (3, 6), (5, 6), (6, 6), (3, 7), (4, 7)}, the white ones at indexesW = {(1, 0),-
(2, 0), (5, 0), (6, 0), (0, 1), (7, 1), (0, 2), (3, 2), (4, 2), (7, 2), (2, 3), (5, 3), (2, 4), (5, 4), (0, 5),-
(3, 5), (4, 5), (7, 5), (0, 6), (7, 6), (1, 7), (2, 7), (5, 7), (6, 7)} and the grey ones atG = {(0, 0),-
(7, 0), (3, 1), (4, 1), (2, 2), (5, 2), (2, 3), (6, 3), (2, 4), (6, 4), (2, 5), (5, 5), (3, 6), (4, 6), (0, 7),-
(7, 7)}.

The set of appearance of the black pixels may be rewritten, in basis 2, asB =
{(011, 000), (100, 000), (010, 001), (011, 001), (101, 001), (110, 001), (010, 010), (110, 010),-
(000, 011), (011, 011), (100, 011), (111, 011), (000, 100), (011, 100), (100, 100), (111, 100),-
(010, 101), (110, 101), (010, 110), (011, 110), (101, 110), (110, 110), (011, 111), (100, 111)}
and the three sets may be stored in radix trees as (see figure 6):
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Figure 5: The pixels of an image

00 01 10 11

00 00 00 0001 01 01 011010 10 1011 11 11 11

11 01 10 01 10 11 00 11 10 10 00 11 00 11 01 01 00 11 00 01 10 01 10 00

Figure 6: The radix tree of the black pixels
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Such a radix tree may be translated by any vector (the computation is easy and asymp-
totically faster than the translation of a whole set stored in an array for instance). Then by
computing(B + (a, b))∩W one obtains the set of coordinates of the white pixels having
a black pixel at relative coordinates(−a,−b).

By iterating this process one finds any pattern in an image. (for more details on this
algorithm one may refer to [14]).

3.3 Automatic Translation

This subsection describes a work in progress. One of the problems arising to an automated
translation process comes from the fact that a word has usually several senses and each of
these senses has a different translation in the target language. The Prophyre tree is a tree
in which all the meanings of all the words (this tree is actually unachieved whatever the
language) in a way allowing one to compute the semantic distance between two meanings
of two words. Let a sentence be made ofn words, m1, m2, . . . , mn and letmi,j be
vertices of a graph representing thej-th meaning ofmi. Then one may build the arcs
of this graph by linkingmi,j andmi+1,k for any i, j, k with an arc whose weight is the
semantic distance between the two involved meanings. Then by adding two vertices,eb

linked to any meaning ofm1 (with a weight 0) andee linked to any meaning ofmn (with
a weight 0).

Then the problem of finding a pertinent sense to the sentence is to find a shortest path
betweeneb andee. Furthermore, if there exists several shortest paths between these two
vertices, then there exists several meaningful choices for the senses of the words of the
sentence (which allows to find automatically ambiguous sentences).

4 Shortest Path Problem

The shortest path problem is one of the oldest and more studied of the graph area. A lot
of papers have been written on this subject (see [2], [7], [9], [21] or [20] for instance).
Some algorithms span graphs with trees or use spanning trees (see [10] for instance), and
the multicast problem is also very studied (see for instance [3], [4], [12], [17], [18], [19],
[22]).

The best algorithm known up to now to solve the shortest path problem is the Dijk-
stra’s algorithm. It runs in timeO(V ln E) whereV is the number of vertices of the graph
andE the number of edges (see [5], [11] or [23]). This algorithm has been improved by
many authors since 1959.

Definition 4.1 LetG = (V, A) be an unweighted graph. LetR be an equivalence relation
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among the vertices ofG. We shall call thickening ofG the graphG′(V ′, A′) for the
relationR whereV ′ is the set of equivalence relations forR and∀V1, V2 ∈ V ′, (V1, V2) ∈
A′ ⇔ ∃v1 ∈ V1, v2 ∈ V2 such that(v1, v2) ∈ A. In such a case we shall say thatG′ is a
thickening ofG or equivalently thatG is a refinement ofG′.

Let us denote byπ the application which maps a vertexv of V onto the vertexv′ of
G′ such thatv ∈ v′. Let v1, v2 ∈ V and let us suppose that there exists an integerk and
a path fromv1 to v2 of lengthk. Then there exists a path of lengthk betweenπ(v1) and
π(v2). Indeed ifp = (v0, v1, . . . , vk) is a path inG of lengthk betweenv0 andvk then
p′ = (π(v0), π(v1), . . . , π(vk)) is a path of lengthk in G′ betweenπ(v0) andπ(vk). Then
we shall callp a refinement ofp′ or, equivalently,p′ a thickening ofp. The problem is
then to find a path of minimal length inG′ which may be refined inG.

Let G0 = G, G1, . . . , Gt a sequence of graphs such that∀i ≤ t− 1, Gi+1 is a thicken-
ing of Gi. If we call vi the number of vertices ofGi andai its number of arcs, we suppose
that∀0 ≤ i ≤ t, P ( ai

v2
i
) ≥ 1

2
. An algorithm to find the shortest path between two vertices

of G, sayd anda is the following.

ShortestPath( G[])
Input : a sequence G[] of thickenings of G0,

two vertices of G0, d and a
Output : the shortest paths between d and a.
Variables : l, th : integer
l ← 0
While no path is found between d and a Do

P [t]← all the paths of length l in G[t] between d[t]
and a[t]

th ← t
While ( th > 0 And P [th] is not empty) Do

Foreach path p in P [th] Do
refine p and if it may be refined

store its refinement in P [th− 1]
EndForEach
th ← th - 1

EndWhile
if P [0] is not empty

Then the shortest paths are found: output them
and exit

Else l← l + 1
EndIf
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EndWhile
End

In G[t] the shortest paths are computed thanks to a refinement of the BFS algorithm.
Let us detail this part.

4.1 Finding paths inG[t]

Let G = (V, A) be an unweighed graph such thatP ( a
v2 ) < 1

2
with P (X) = 1 − 3

2
X +

X2− 1
4
X3. Letd anda be two of its vertices and let us compute the shortest paths between

d anda. We suppose furthermore that the adjacency vertices of any given vertex are given
through a sorted list of vertices.

Let S ⊂ V be a nonempty subset ofV . The cost of the computation of the set
S ′ = {v′ ∈ V, ∃v ∈ S, (v, v′) ∈ A} is averagely majored by the cardinality ofS ′.
Indeed, the setS ′ may be stored in a bit vectors in which one adds the vertices linked to the
elements ofS by a bit-or. In a similar way, the setS ′′ = {v′′ ∈ V, ∃v ∈ S, (v′′, v) ∈ A}
is averagely majored by the cardinality ofS ′′ (same reason). The operation consisting
in computingS ′ (resp. S ′′) knowing S will be called an increment (resp. decrement).
Furthermore, the cost of the intersection of two sorted sets is majored by the sum of their
cardinals.

Let us consider the following algorithm, consisting in incrementing{d}, decrementing
{a} and intersect them until there exists a nonempty intersection. Then one may read the
shortest paths betweend anda.

This algorithm may be written the following way:

ShortestPath( G)
Input : a graph G, two vertices of G, d and a
Output : the shortest paths between d and a.
Variables Increments[], Decrements[], inc=0,

dec=0, Parity = 0, Paths[]
Increments[Inc] = {d}
Decrements[Dec] = {a}
While (Increments[Inc] ∩ Decrements[Dec] = ∅)

if (Parity = 0)
Inc = Inc + 1
Increments[Inc] = Increment(Increments[Inc - 1])

Else
Dec = Dec + 1
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Decrements[Dec] = Decrement(Decrements[Dec - 1])
EndIf

EndWhile
Paths[Inc] = Increments[Inc] ∩ Decrements[Dec]
For I = Inc - 1 Downto 0 Do

Paths[I] = Decrement(Paths[I + 1]) ∩ Increments[I]
EndFor
For I = Dec - 1 Downto 0 Do

Paths[Inc + Dec - I] = Increment(Paths[Inc + Dec - I - 1])
∩ Decrements[I]

EndFor
ReadPaths(Paths)
End

After this treatment, the variable Paths contains sets of vertices and a vertexv lies on
a shortest path betweend anda, i arcs away fromd (andl − i arcs away fromd wherel
is the length of the path) if and only ifv belongs toPaths[i].

The ReadPaths algorithm consists in reading the shortest paths through a deep first
journey of paths. This last algorithm may be written as:

ReadPaths( Paths[], l, Current = 0, Res[] = 0)
Input : The shortest paths given in an array of sets of

vertices, l the paths lengths
Output : the shortest paths between Paths[0] and Paths[l].
If (Current = l)

Output (Res[])
Else

Foreach vertex v in Paths[Current] Do
Res[Current] = v
Memory[Current + 1] = Paths[Current + 1]
Paths[Current + 1] = Paths[Current + 1] ∩ Increment( {v})
ReadPaths(Paths, l, Current + 1, Res[])
Paths[Current + 1] = Memory[Current + 1]

EndForeach
End

The complexity if theH algorithm is majored byO(v) wherev is the number of
vertices of the graph, because the first steps, consisting in computingPaths[] is majored
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by O(v) and the ReadPaths algorithm is also majored by the number of vertices involved
in the shortest paths,v.

Example

Let us compute all the shortest paths betweenS andWin the following graph (see figure
7).

a

S

b

c

d

e

W

Figure 7: The graphG0 itself

Then the vertices are gathered for instance two by two and one obtains the graph (see
figure 8):

By grouping again the vertices two by two one obtains (see figure 9):

and stops here becausea2

a1
≤ 1

2
.

• The first step is to look for a path of length 0, which does not exist inG0 because it
does not exist inG2.

• Now there exists a path of length 1 betweenS andW , which isS → W . This path
may not be refined inG1 because there is no path inG1 betweenS andW .

• Let us look for paths of length 2 betweenS andW in G2. There exists two such
paths,P1 = S → S → W andP2 = S → W → W .

The first of these two paths may be refined inG1 in P ′
1 = S → b→ W andP2 may

be refined inG1 in S → d→ W .

Now neither the pathP ′
1 norP ′

2 may be refined inG0.
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WS,a

b,c

d,e

Figure 8:G1, a thickening ofG0

d,e,WS,a,b,c

Figure 9:G2, a thickening ofG1
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• Let us look for paths of length 3. There exists three paths of length 3 inG2 between
S andW : P1 = S → S → S → W , P2 = S → S → W → W andP3 = S →
W → W → W .

The pathP1 may be refined inP ′
1 = S → S → b→ W .

The pathP2 may be refined in three different paths,P 1
2 = S → b → W → W ,

P 2
2 = S → b → d → W , andP 3

2 = S → S → d → W . The pathP3 may be
refined inG1 in P ′

3 = S → d→ W → W .

Now let us refine these paths inG0.

The pathP ′
1 may be refined inP ′′

1 = S → a → c → W . The pathP 1
2 may

not be refined inG0. The pathP 2
2 may be refined inS → b → d → W and in

S → b→ e→ W . The pathP 3
2 may be refined inS → a→ d→ W . The pathP ′

3

may not be refined inG0.

So one finds the shortest paths betweenS andW , which are:S → a → c → W ,
S → b→ d→ W , S → b→ e→ WandS → a→ d→ W .

It is clear that one may use this algorithm to find the paths of a given length between
two vertices of a graph.

4.2 Complexity

In [15] the author computes the complexity of the algorithm presented roughly in the
preceding section. This complexity isO(v) wherev is the number of vertices of the
graph. Since this paper is not yet published we give here the proof of this complexity in
the particular case useful in the context of flows computations, the unweighted graphs.

Let G0 = (V, A) be an unweighted graph and let us denotev its number of vertices
anda its number of arcs. We suppose in this section that the equivalence classes are sets
of two vertices (and at most a class made of a single vertex).

Lemma 4.2 Let G1 be a thickening ofG0. Then the number of vertices ofG1 is dv
2
e and

its number of arcs is averagelyaP ( a
v2 ) with P (X) = 1− 3

2
X + X2 − 1

4
X3.

Proof: The number of vertices of a thickening ofG0 in which the vertices are grouped
by two is obviouslyv′ = dv

2
e. There is no arc between two verticesv′ andw′ of G1 if and

only if there is no arc between four pairs of vertices (ifv = (v1, v2) andw = (w1, w2), the
four pairs are(vi, wj)(1≤i,j≤2), and we may suppose that the probability of any of these
pairs to be an arc does not depend on the probability of the others). The number of arcs is
hencea′ = dv

2
e2(1− (1− a

v2 )
4). Soa′ = aP ( a

v2 ) with P (X) = 1− 3
2
X + X2 − 1

4
X3.
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Remark 4.3 The ratio a
v2 increases in refinements.

Let us prove this remark. LetG be a graph andG′ be one of its refinements in which
the vertices have been gathered by two. Let us denote bya, v, a′ andv′ the number of
arcs and vertices ofG andG′.

One hasa′

v′2
= 4P ( a

s2 )
a
v2 . SinceP (x) decreases from 1 towards1

4
whenx raises from

0 to 1, the remark is proved.

Lemma 4.4 The average number of paths of lengthl ∈ N between two vertices inG0 is
N(G0, l) = 1

v
(a

v
)l.

Proof: by induction on the length of the paths. The graph containsa arcs andv
vertices. The formula is correct for paths of length 0 (the average number of paths of
length 0 between two vertices is1

v
). The average number of paths of length 1 between

two vertices is hencea
v2 . If we suppose that the average number of paths of lengthl

between two vertices is1
v
(a

v
)l then each of these paths may averagely be prolonged ina

v

different arcs and the number of paths of lengthl + 1 between two vertices is averagely
1
v
(a

v
)l+1.

Refinements

An algorithm to refine a path fromGk+1 to Gk is the following:

RefinePath(Graph Gk+1, Graph Gk, Path P )
Input: a graph Gk, a refinement of Gk, Gk+1, a path P in Gk

Output: All the refinements of P in Gk+1

If the first arc of P is refinable
Truncate P by its first arc (a, b)
Foreach refinement (c, d) of (a, b)

Answer.FirstElement =(c,d)
Answer.Catenate(Refine( Gk+1, Gk, P)

EndForEach
Put back its first arc to P

EndIf
End

Lemma 4.5 Let G be a graph containingv vertices anda arcs, andG′ be one of its
thickenings in which the vertices are gathered two by two. Letv1 andv2 be two vertices of
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G and let us suppose that there exists a pathw = (w′
0 = v′1, w

′
1, . . . , w

′
l = v′2) of lengthl

(we denote as usuallyv′1, resp.v′2, the equivalence class ofv1, resp.v2 in G′). Then there
exists averagely( 2

v
)l−1(a

v
)l paths of lengthl in G betweenv1 andv2 which are refinements

of the pathw.

Proof: The number of possible refinements ofw is 2l−1. Each of these possible
paths has a probability1

vl−1 (
a
v
)l to exist. So the number of refinements ofw is averagely

( 2
v
)l−1(a

v
)l = v

2
(2a

v2 )
l.

The most expansive operation while refining a path fromG′ to G is to check wether a
given arc exists inG. The complexity of the refinement is hence majored by this number
of checks.

Lemma 4.6 The number of checks while refining a path of lengthl from G to G′ is∑l
i=0

v
2
(2a

v2 )
i = v

2

1−( 2a
v2 )l+1

1− 2a
v2

.

Proof: when one has refined paths of lengthi − 1, one has only to extend the found
paths by one arc. The number of checks is hence the sum of the number of paths of all
the lengths from 0 tol.

Let us detail an hierarchical algorithm (H-algorithm) :

ShortestPath(Graph G[0..M ], int o, int e)
Input: a sequence of graphs, one being a thickening of the

preceding, all verifying P ( a
v2 ) ≥ 1

2
,

an origi vertex index o
an extremity vertex index e

Output: the shortest paths between vo and ve.
Variables :

l : Path’s length
l← 0
While the shortest paths qre not found Do

Find the shortest paths Pi in GM thanks to the refined BFS
Foreach shortest path P

For k = M - 1 Downto 0
P[i, k-1] = Refine(G[k+1], G[K], P[i, k])

EndFor
If there exists a path in G[0] output the paths and exit
EndIf

EndForEach
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EndWhile

Theorem 4.7 The mean complexity of the computation of the shortest path between two
vertices of a graph by using theH-algorithm isC(G) ≤ v.

Proof: The mean complexity of the refinements of paths of lengthl from a graph
made of a single vertex to the initial graphG0 is

C(l) =
∑ln v

i=0
vi

2
(2ai

v2
i
)l

≤
∑ln v

i=0
vi

2

≤
∑ln v

i=0
v0

2i+1

< v0

.

The complexity of the shortest path computation is majored by the complexity of the
computations of the refinements of paths of lengthl

5 The Flow Problem

We now present a new algorithm, which will be fully detailed in [16], for maximizing the
flow over a network.

5.1 The Ford-Fulkerson Algorithm

MaximumFlow( G)
input: a graph G, two vertices s and t
output: a flow Φ = (ϕa1 , . . . , ϕa|A|)

(0) Initialisation : ϕ(a) = 0, ∀a ∈ A
v(Φ) = 0
i=0
G0

R = G
(1) Find a shortest path from s to t in the residual graph Gi

R

(2) If there is no such path then END
(3) Else µ←a shortest path

(consisting in the fewest number of
arcs)

from s to t in Gi
R
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(4) cap( µ)= the minimum capacity of residual
capacities of µ in Gi

R

(5) v(Φ)← v(Φ)+ cap( µ)
(6) ∀a ∈ µ ∩ A, ϕ(a) ← ϕ(a) + cap(µ)
(7) ∀a ∈ (µ /∈ µ ∩ A), ϕ(a) ← ϕ(a) − cap(µ)
(8) i← i + 1
(9) Build the new residual graph Gi

R

The initial algorithm of Ford and Fulkerson, in [8], runs in pseudopolynomial time.
The implementation proposed here is due to Edmonds and Karp, [6], and runs inO(|V |2|A|)
time. There exist others implementations of the algorithm of Ford and Fulkerson, which
are detailed in the reference book [1].

Radix Trees and Shortest paths

The main step of the preceding algorithm is the step 1, which may be performed thanks
to theH-algorithm. The complexity of the Ford-Fulkerson Algorithm isO(n3) when this
step is done by the use of the Dijkstra’s algorithm, whose complexity isO(n2). the use of
theH-algorithm allows a mean complexity inO(n2).

An Example

Let us consider the following graph (see figure 10) in which we wish to optimize the flow
between the sourceS and the wellW .

The shortest paths in terms of number of arcs areP1 = S → a→ c→ W , P2 = S →
a→ d→ W , P3 = S → b→ d→ W andP4 = S → b→ e→ W .

After the pathP1 (of flow 6) is considered as a part of the flow, the residual graph is
(see figure fig:flows2):

After that pathsP2 (capacity 1),P3 (capacity 5) andP4 (capacity 3) are included in
the flow the residual graph is (see figure fig:flows3):

Since in this last residual graph the source and the well are no more connected, the
maximal flow is reached, with a full capacity of6 + 1 + 5 + 4 = 16.
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Figure 10: An optimization Problem
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Figure 11: After a first path part of the flow
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[1]

[6]
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Figure 12: The residual graph after the shortest paths are included in the flow

6 Conclusion

The flowing problem has a important applications: transportation of energy or water,
schedule of network tasks etc.. . . The algorithm presented in this paper allows one to com-
pute the optimal flow over a network in a mean time ofO(n2) while the Ford-Fulkerson
algorithm has a complexity inO(n2) wheren is the number of vertices of the graph.
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