Michel Koskas 
email: koskas@lamsade.u-dauphine.fr.
  
Shortest Paths In Unweighed Graphs

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

The shortest path computation in a graph is one of the oldest and most studied ones. Let G = (V, A, W ) be a directed strongly connected and possibly weighed graph. The general shortest path problem is usually either to compute the shortest path between a vertex d and a vertex a (a one-to-one instance), compute a shortest path between d and any vertex of V (a one-to-all instance) or to compute a shortest path between any two vertices of V (a all-to-all instance). The one-to-one instances are solved as a one-to-all instance aborted when the destination vertex is reached.

The problem is considered as solved when a single path has been found. We assume that the two following conditions are fulfilled:

1. ∀d, a ∈ V , there exists a path between d and a (the graph is strongly connected) 2. there is no cycle in G of negative weigh.

The reader may refer to the presentations of shortest path algorithms in [START_REF][END_REF] or [START_REF] Cormen | Introduction à l'algorithmique[END_REF].

The All-to-All instances

The first and simplest approach to solve an all-to-all instance is to solve v = #(V ) oneto-all instances. Knowing the complexities of the one-to-all instances algorithms, the complexity of such algorithms is O(av + v 2 ln v) for graphs having nonnegative weighs and O(v 2 a) in general cases.

When the graph is planar, Frederickson (see [START_REF] Frederickson | Fast Algorithms For Shortest Paths In Planar Graphs[END_REF]) obtained a O(v 2 ) algorithm. Edmonds and Karp (see [START_REF] Edmonds | Theoretical Improvements In Algorithmic Efficiency For Network Flow Problem[END_REF]) have shown that the general case problem may be reduced to the one when the graph has nonnegative weighs. They obtained a O(va + v 2 ln v) algorithm.

Many authors used and sophisticated the computations of the powers of the adjacency matrix A. The Floyd-Warshall algorithm computes A * and runs in O(v 3 ) time.

Johnson proposed an algorithm profiled for graphs whose connectivity is low (see [START_REF] Jhonson | Efficient Algorithms for Shortest Paths in Sparse Networks[END_REF]). Its time complexity is O(v 2 ln v + av) which is better than the preceding one when the graph is poorly connected.

Bloniarz gave an algorithm running in O(n 2 log n log * n) (see [START_REF] Bloniarz | A Shortest-Path Algorithm With Expected Time O(n 2 log n log * n)[END_REF]).

Romani (see [START_REF] Romani | Shortest Path Problem Is Not Harder Than Matrix Multiplication, Inform[END_REF]) has shown that any matrix multiplication algorithm running in O(n α ) time, when the elements of A belong to Z ∪ {∞}, may be adapted to compute the transitive closure of A in O(n α ) time.

The best complexity known up to now is the one of the Moffat and Takaoka algorithm (see [START_REF] Moffat | An All Pairs Shortest Path Algorithm With Expected Running Time O(n 2 ln n)[END_REF]), which runs in O(v 2 ln v) time.

One-to-All Instances

When the source vertex, d, is chosen, the shortest path problem is handled quite differently. The simplest algorithm is to compute the shortest path tree, rooted in d. The Bellman's equations,

1. u d = 0 2. ∀v = d, u v = min x =v (u x + w(x, v))
suggest an algorithm, proposed by Ford and known as the Bellman-Ford algorithm. Its time complexity is O(a).

Dijkstra proposed a slight change of the Bellman-Ford algorithm. His algorithm runs as follows. It keeps à jour a set S of vertices, initialized to {d} such that forall v ∈ S, the shortest path's weigh is known and stored, and the predecessor of v on this path (in S) is stored. At each step, it adds a vertex to S by sorting, by any mean, the arcs adjacent to S. The complexity of the Dijkstra's algorithm is O(a ln v) (see [START_REF] Dijkstra | A Note On Two Problems In Connection With Graphs[END_REF]) but a more relevant datastructure gives a O( a ln v ln(max(2, a v )) ) (see [START_REF] Derigs | An Efficient Dijkstra Like Labeling Method For Computing Shortest Odd/Even Paths[END_REF]). Fredman and Tarjan even obtained a O(a + v ln v) time complexity (see [START_REF] Fredman | Fibonacci Heaps And Their Uses In Improved Network Optimiztion Problems[END_REF]).

When the weighs are bounded by a constant k, the algorithm may run in O(min((v + a) ln ln k, vk + a)). For planar graphs, Mehlohrn and Schmidt obtained a O(v 1.5 ln v) algorithm (see [START_REF] Mehlhorn | A Single Source Shortest Path Algorithm For Graphs With Separators[END_REF]). Frederickson obtained a O(v √ v) algorithm (see [START_REF] Frederickson | Fast Algorithms For Shortest Paths In Planar Graphs[END_REF]).

The problem of searching paths of a given length is surprisingly difficult (NP-complete).

When the graph in unweighed, the BFS algorithm is considered as the best algorithm. It is a simple translation of the Bellman-Ford's algorithm for the unweighed case and runs in O(a) time.

In this article, we deal with unweighed graphs and propose a O(v) algorithm.

Graph Thickenings

Définition 1 Let G = (V, A) be a strongly connected graph, V its set of vertices and A its set of unweighed arcs. Let v = |V | and a = |A|. We call connectivity the ratio a v 2 .

In all the article, the sets shall be denoted with capital letters and their cardinalities with small letters. For any couple of vertices (v, w), we shall say that v is connected to w to express that (v, w) ∈ A or that v is not connected to w to express that (v, w) ∈ A.

Définition 2 Let G = (V, A) and G = (V , A ) be two graphs. We shall say that G is a thickening or a contraction of G, or, equivalently that G is a refinement of G if and only if there exists an equivalency relation over the vertices of G, R (we denote C = {c 1 , . . . , c k } its equivalence classes) and a one-to-one correspondance ϕ from V to C such that for any two vertices v i and v j of G , there exists an arc between v i and v j if and only if there

exists v i ∈ ϕ(v i ) and v j ∈ ϕ(v j ) such that (v i , v j ) ∈ A.
In other words, G is a thickening of G if and only if one can gather the vertices of G in packets, make a vertex of each of these packets and put an arc between two packets if and only if there is a vertex from the first packet linked by an arc to a vertex of the second packet.

Here is an example of thickening (see figure 1). The vertices are gathered here in packets of two, except one vertex left alone. In this example, the vertices of G are labeled 1, 2, 3, 4, 5, 6, 7. The adjacencies are (1, 2), [START_REF] Bloniarz | A Shortest-Path Algorithm With Expected Time O(n 2 log n log * n)[END_REF][START_REF] Edmonds | Theoretical Improvements In Algorithmic Efficiency For Network Flow Problem[END_REF], [START_REF] Derigs | An Efficient Dijkstra Like Labeling Method For Computing Shortest Odd/Even Paths[END_REF][START_REF] Dijkstra | A Note On Two Problems In Connection With Graphs[END_REF], (2, 7), [START_REF] Dijkstra | A Note On Two Problems In Connection With Graphs[END_REF][START_REF] Frederickson | Fast Algorithms For Shortest Paths In Planar Graphs[END_REF], [START_REF] Dijkstra | A Note On Two Problems In Connection With Graphs[END_REF][START_REF] Fredman | Fibonacci Heaps And Their Uses In Improved Network Optimiztion Problems[END_REF], (4, 2), [START_REF] Edmonds | Theoretical Improvements In Algorithmic Efficiency For Network Flow Problem[END_REF][START_REF] Fredman | New Bounds On The Complexity Of The Shortest Path Problem[END_REF], [START_REF] Frederickson | Fast Algorithms For Shortest Paths In Planar Graphs[END_REF][START_REF] Dijkstra | A Note On Two Problems In Connection With Graphs[END_REF], [START_REF] Frederickson | Fast Algorithms For Shortest Paths In Planar Graphs[END_REF][START_REF] Fredman | Fibonacci Heaps And Their Uses In Improved Network Optimiztion Problems[END_REF], [START_REF] Fredman | New Bounds On The Complexity Of The Shortest Path Problem[END_REF][START_REF] Frederickson | Fast Algorithms For Shortest Paths In Planar Graphs[END_REF], (6, 1), (7, 1), 7, 4) and [START_REF] Fredman | Fibonacci Heaps And Their Uses In Improved Network Optimiztion Problems[END_REF][START_REF] Fredman | New Bounds On The Complexity Of The Shortest Path Problem[END_REF]. The vertices are gathered as a = {1, 2}, b = {3, 4}, c = {5, 6} and d = {7}. The adjacencies among {a, b, c, d} are thus (a, a) (because of (1, 2)), (a, b) (because of (2, 3)), (a, d) (because of (2, 7)), (b, a) (because of (4, 2)), (b, c) (because of (3, 5)), (b, d) (because of (3, 7)), (c, a) (because of (6, 1)), (c, b) (because of (5, 3)), (c, c) (because of (6, 5)), (c, d) (because of (5, 7)), (d, a) (because of (7, 1)), (d, b) (because of [START_REF] Fredman | Fibonacci Heaps And Their Uses In Improved Network Optimiztion Problems[END_REF][START_REF] Edmonds | Theoretical Improvements In Algorithmic Efficiency For Network Flow Problem[END_REF]) and (d, c) (because of (7, 6)).

Mean connectivity and Probabilities

This subsection is dedicated to the computation of the average probability of two vertices of a thickening G of a graph G to be connected in function of the characteristics of G.

Gathering the vertices k by k

Let G = (V, A) be an oriented graph and let us denote

V = {v 0 , v 1 , . . . , v v-1 }. For k ≥ 2, let us set h = v k and R k be the equivalency relation whose classes are v 0 = {v 0 , . . . , v k-1 }, v 1 = {v k , . . . , v 2k-1 }, . . . , v h-1 = {v k(h-1) , v k(h-1)+1 , . . . , v v-1 }. Let G = (V , A ) where V = {v 0 , . . . , v h-1 } and A = {(v i , v j ), ∃v α ∈ v i , v β ∈ v j , (v α , v β ) ∈ A}. Property 1 Such a graph G is a thickening of G.
The proof is easy and left to the reader. Définition 3 Such a graph G shall be called a k-thickening of G. 

V is v = v k , the mean number of arcs is a = a k i=1 (-1) i+1 k i ( a v 2 ) i and the mean connectivity is α = 1 -(1 -α) k 2 .
Proof: let us compute the mean cardinalities of V and A . Since the vertices of G are gathered k by k, it is clear that #(V ) = v k . Let us now compute a = #(A ). There does not exist an arc between two given vertices v i and v j of G if and only if none of the arcs

(v α , v β ) belongs to A, for v α ∈ v i and v β ∈ v j . It follows a = v 2 k 2 (1 -(1 -a v 2 ) k 2 ) = v 2 k 2 k 2 i=1 (-1) i+1 k 2 i ( a v 2 ) i .
As an easy consequence, the connectivity of G is

α = a v 2 = k 2 k=1 (-1) i+1 k 2 i ( a v 2 ) i = 1 -(1 -α) k 2 .
2

Remark 3

The connectivity remains lower than 1.

Définition 4

Let G be a graph and G one of its thickenings as above. Let (v i , v j ) be an arc of G , v ∈ v i be a vertex of V belonging to v i and 0 ≤ n ≤ k be an integer. Then the arc (v i , v j ) shall be said to be

(v, n)-re-finable if and only if #(V ∩{(v, w), w ∈ v j }) = n. Theorem 4 Let G be a graph and G a k-thickening of G. Let (v i , v j ) be an arc of G . Let 0 ≤ n ≤ k be an integer. Then for any vertex v ∈ v i , the probability that (v i , v j ) is (v, n)-re-finable is p k n = ( k n )α n (1-α) k-n 1-(1-α) k 2 if n > 0 and p k 0 = (1-α) k -(1-α) k 2 1-(1-α) k 2
.

Proof: The probability of the event

(v i , v j ) ∈ A is 1 -(1 -α) k 2 because
this probability is the complementary probability of none of the vertices of v i to be connected to any of the vertices of v j . The probability that v is connected to exactly n vertices of v j is hence k n α n (1 -α) k-n and thus the conditional probability that v is connected to exactly n vertices of v knowing that at least a vertex of v i is connected to a vertex of v j is

p k n = ( k n )α n (1-α) k-n 1-(1-α) k 2 . If n = 0, the probability that v is connected to none of the vertices of v j is (1 -α) k - (1-α) k 2 because
there is at least a vertex of v i connected to at least a vertex of v j . Finally, the probability

p k 0 = (1-α) k -(1-α) k 2 1-(1-α) k 2 . 2
The next lemma will be useful in the complexity computation.

Lemma 5 Let G be a graph and

G a k-thickening of G. Then k n=1 np k n ≤ 1 if and only if k + (1-α) k 2 -1 α ≤ 0. The polynomial P (α) = k + (α-1) k 2 -1 α has a single root α k ∈ [0, 1]. Furthermore, 1 k+1 < α k < 1 k . Proof: k n=1 np k n ≤ 1 ⇔ k n=1 n k n α n (1 -α) k-n ≤ 1 -(1 -α) k 2 . Since n k n = k k-1 n-1 when n ≥ 1, one has: k n=1 np k n ≤ 1 ⇔ k n=1 kα k-1 n α n (1 -α) k-1-n ≤ 1 -(1 -α) k 2 ⇔ (1 -α) k 2 -1 + kα ≤ 0.
This polynomial has a root in 0, and dividing it by α does not change its sign. So

k n=1 np k n ≤ 1 ⇔ (1 -α) k 2 -1 α + k ≤ 0.
The function h k mapping (for a given k) α to (1-α) k 2 -1 α + k is increasing (one may study the numerator of the derivative function to convince himself). Since h k ( 1 k ) > 0, and h k (0) < 0, this function has a single root in [0, 1] and this root is lower than 1 k . Let us prove now that h k ( 1 k+1 ) < 0. One has

h k ( 1 k+1 ) < 0 ⇔ (1 -1 k+1 ) k 2 < 1 k+1 ⇔ k k 2 < (k + 1) k 2 -1 ⇔ k 2 log(k + 1) -k 2 log k -log(k + 1) > 0 . Let us study the function f , mapping x ≥ 1 to x 2 log(x + 1) -x 2 log x -log(x + 1). The first derivative functions of f are f (x) = 2x log(x + 1) -2x log x -1, f (x) = 2(log(x + 1) -log x -1 x+1 ) and f (x) = -2
x(x+1) 2 < 0. Thus f (x)is decreasing and its limit in +∞ is 0. So this function is positive and f is increasing. As f (1) > 0, f is an increasing function and, taking in account that f

(1) = 0, one has h k ( 1 k+1 ) < 0 for k ≥ 2.2
From now on, this root of h k in ]0, 1[ shall be denoted by α k .

Lemma 6 Let G be a graph whose connectivity α belongs to ]α k+1 , α k ] and G be one of its k-thickenings. Then the connectivity of G is α > kα.

Shortest Paths Storage and Description

In this section we describe how the shortest paths shall be output by our algorithms. They shall be stored in a Directed Acyclic Graph (dag) containing exactly the set of all the shortest paths between two given nodes. We now define the dags that shall be used from now on.

Definition

Définition 5 Let G = (V, A) be a unweighed, directed and strongly connected graph. Let d and a be two vertices of V . The (d, a)-shortest paths dag is the dag verifying the following conditions:

1. the dag has a single top vertex, d.

2. the dag has a single bot vertex, a .

3. Its height is the length of the shortest paths between d and a, say l.

4. a vertex v is present at height j if and only if there exists a shortest path between d and a, w 0 = d, w 1 , . . . , w l = a such that v = w j .

5. there is an arc between two vertices v and w in the dag if and only if there exists a shortest path w 0 = d, w 1 , . . . , w l = a such that there exists 0 ≤ j < l such that v = w j and w = w j+1 .

We shall also speak about (d, a)-dags which are dags containing all the paths between d and a of a given length.

an Example

Let us give an example. Let us consider a graph G = (V, A) such that the shortest paths between two vertices , v 2 and v 5 are

1. v 2 → v 3 → v 7 → v 4 → v 6 → v 11 → v 5 , 2. v 2 → v 3 → v 7 → v 9 → v 14 → v 11 → v 5 , 3. v 2 → v 3 → v 17 → v 4 → v 6 → v 11 → v 5 , 4. v 2 → v 5 → v 17 → v 4 → v 6 → v 11 → v 5 , 5. v 2 → v 5 → v 19 → v 21 → v 18 → v 12 → v 5 .
Then the corresponding dag shall be (see figure 2):

Theorem 7 Let G = (V, A) be an unweighed, directed, strongly connected graph and d and a be two of its vertices. Any shortest path between d and a is a path between d and a in the (d, a)-shortest paths dag and any path between d and a in the (d, a) shortest paths dag is a shortest path between d and a in G.

Proof. Let l be the length of any shortest path between d and a and w 0 = a, w 1 , . . . , w l = a be a shortest path. Then for any 0 ≤ j ≤ l, w j belongs to the (d, a) shortest path dag (condition 4). or any 0 ≤ j ≤ l -1, there exists an arc in the dag between w j and w j+1 (condition 5). So this shortest path is readable in this dag.

Conversely, let w 0 = d, w 1 , . . . , w l = a be a path in the dag. Then it is a shortest path between d and a because it is a path beween d and a and its length is minimal (condition 3). 2

The algorithm: a "Divide & Conquer" way

In this section we describe first an algorithm that shall be used in the case of hyperconnected graphs and a general one. The first of these algorithms is described in the next subsection. The second one in the following subsection.

Case of Hyperconnected graphs

Let G = (V, A) be an strongly connected, unweighed and directed graph whose connectivity α verifies α > α 2 .

Let d and a be two vertices of G. The aim of this subsection is to compute all the paths between d and a of a given length j, and the complexity of this computation. 

A Transformed BFS Algorithm

The idea is based on the BFS algorithm, transformed in order to compute a one-to-one instance instead of the classical one-to-all instance this algorithm computes. So one computes the sets of vertices one may reach by using a given number of arcs from d and the set of vertices one may come from to reach a in a given number of arcs. Once two of these sets intersect, the shortest paths computation becomes quite easy.

Définition 6 Let G = (V, A) be an strongly connected, unweighed and directed graph and v ∈ V be a vertex. For any integer i ≥ 0, the set v + i ⊂ V is the set

v + i = {w ∈ V, ∃v 0 , . . . , v i ∈ V, v 0 = v, v i = w, ∀j ∈ [1, i], (v j-1 , v j ) ∈ A, }. The set v -i is v -i = {w ∈ V, ∃v 0 , . . . , v i ∈ V, v 0 = w, v i = v, ∀j ∈ [1, i], (v j-1 , v j ) ∈ A, }.
In other words, the set v + i (resp. v -i) is the set of vertices w such that there exists a path of length exactly i between v and w (resp. w and v).

Theorem 8 Let G = (V, A) be an strongly connected, unweighed directed graph, and d and a be two vertices of V . For any non-negative integer i, There exists a path of length i between d and a if and only if ∃j ∈ [0, i], (d + j) ∩ (a -(i -j)) = ∅.

Proof: Let d and a be two vertices of V and i be a non-negative integer. If there exists a path of length i between d and a, then there exists v 0 , v 1 , . . . , v i such that v 0 = d, v i = a and ∀j ∈ [1, i], (v j-1 , v j ) ∈ A. This means that ∀j ∈ [0, i], v j ∈ (a+j)∩(d-(i-j)) = ∅. This implies that there exists j ∈ [0, i],

(d + j) ∩ (a -(i -j)) = ∅.
Conversely, if ∃j ∈ [0, i] such that (d+j)∩(a-(i-j)) = ∅. Let j 0 be such an integer j and w ∈ (d + j 0 ) ∩ (a -(i -j 0 )). This means that there exists v 0 , v 1 , . . . , v j0 such that v 0 = d, v j0 = w and ∀t ∈ [1, j 0 ], (v t-1 , v t ) ∈ A. There also exists w 0 , w 1 , . . . , w i-j0 such that w 0 = w, w i-j0 = a and ∀t ∈ [1, i -j 0 ], (w t-1 , w t ) ∈ A.

Then v 0 = d, v 1 , . . . , v j0 = w 0 , w 1 , . . . , w i-j0 = a is a path of length i between d and a.2 All this suggests the following algorithm to compute the shortest paths between two vertices. In this algorithm, given a set S of vertices, one has to compute either S + 1 or S -1. In both case, we suppose that the classes allow one to store not only the vertices but also the sets of vertices of S + 1 (or S -1) each vertex of S is linked to. For instance, if a vertex v 0 is linked to v 2 and v 3 and a vertex v 1 is linked to v 2 and v 4 , then {v 0 , v 1 } + 1 will be the set {(v 0 → {v 2 , v 3 }), (v 1 → {v 2 , v 4 })} and will be gathered as {v 2 , v 3 , v 4 }. 

Begin FromD[0] ← {d} ToA[0] ← {a} Length ← 0 even ← true p ← 0 m ← 0 While FromD[p] ∩ ToA[m] = ∅ Do if (even) p ← p + 1 FromD[p] ← (FromD[p-1] + 1) Else m ← m + 1 ToA[m] ← (ToA[m-1] -1) EndIf even ← not even Length ← Length + 1 EndWhile Res[p] ← FromD[p] ∩ ToA[m] For i = p-1 Downto 0 Do Res[i] ← FromD[i] ∩ (Res[i + 1] -1) EndFor For i = m-1 Downto 0 Do Res[p + m -i] ← ToA[i] ∩ (Res[i -1] + 1) EndFor return Res End.

Paths of a Given Length

This algorithm may be easily modified in order to compute all the paths of a given length. One obtains the following algorithm: 

Begin FromD[0] ← {d} ToA[0] ← {a} Length ← 0 even ← true p ← 0 m ← 0 While Length < L Do if (even) p ← p + 1 FromD[p] ← (FromD[p-1] + 1) Else m ← m + 1 ToA[m] ← (ToA[m-1] -1) EndIf even ← not even Length ← Length + 1 EndWhile Res[p] ← FromD[p] ∩ ToA[m] For i = p-1 Downto 0 Do Res[i] ← FromD[i] ∩ (Res[i + 1] -1) EndFor For i = m-1 Downto 0 Do Res[p + m -i] ← ToA[i] ∩ (Res[i -1] + 1)
EndFor return Res End. Let us give an example of shortest paths computation and another of paths of a given length.

An Example of Shortest Paths Computation

Let G = (V, A) be the graph represented on figure 3 and let us compute the shortest paths between 2 and 1. The connectivity of this graph is lower than 1 2 . This has been chosen to make things clearer and does not change anything in the algorithm (this is important only for the complexity which shall be studied in the next subsection). 

               
0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0

               
Let us for instance compute the (v 3 , v 2 ) shortest paths dag.

First step: incrementations and decrementations.

We obtain successively (see figure 4): Then we intersect and unite the two obtained pieces of dag, to obtain (see figure 5): The incrementations and decrementations are the computations of the dags of v 3 + 2 and v 2 -2. These dags are represented in figure 6.

{3} + 1 {2}-1
Then the intersection-union of these two dags is computed, and the result is represented figure 7

Mean Complexity of this Algorithm

Let G = (V, A) be an strongly connected unweighed and directed graph whose connectivity α verifies

α > α 2 = 4 3 - 1 3 (17 + 3 √ 33) 1 3 + 2 3(17 + 3 √ 33) 1 3 0.4563109872.
Let us compute the mean complexity to find all the paths of a given length L in G between two given vertices d and a.

Remark 11

Let us emphasize the fact that this is the mean complexity which is computed (it is, as we shall see, quite low). The problem is NP-complete for the worst case complexity.

The above algorithm (with a fixed length of paths) computes intersections, incrementations and decrementations. An incrementation consists in reading parts of the adjacency Figure 7: Intersection-union of the pieces of the preceding dags matrix (it is the computation of the set of vertices one can reach by reading an arc from a given set of vertices). The mean number of readings is, for a set of size s, s a v . The intersection costs is bounded by the size of the sets to intersect (or by the maximum of the sets sizes).

In this complexity computation, the sum of the cardinalities of the computed sets is the time complexity because one has to intersect or increment (or decrement) sets and the obtained sets are used to compute other intersections, incrementations and so on. . . The algorithm may be divided in two parts: Let us denote by C i (L) the complexity of the i-th step.

Step 1: Incrementations and decrementations

Let G = (V, A) be a graph and d and a be two of its vertices. The mean number of paths of length L between d and a is, as seen above, 1 v ( a v ) L . Let R(L) be the mean number of vertices reachable from a given vertex using exactly L arcs. If the mean number of paths between any two vertices is greater than or equal to 1, then

R(L) = v. If 1 v ( a v ) L < 1, then R(L) = v 1 v ( a v ) L = ( a v ) L . The mean cardinality of FromD[p] is its computation time. The computation time of FromD[p] is min(( a v ) p , v). If p ≤ log v log( a v )
, this time computation is ( a v ) p . Otherwise, this computation time is v.

The mean time complexity to compute ToA[m] is also min(( a v ) m , v). These sets are computed for 1 ≤ p, m ≤ L 2 . So the time complexity of this first step is

C 1(L)=    2 L 2 i=1 ( a v ) i if L 2 ≤ log v log( a v ) 2 log v log( a v ) i=1 ( a v ) i + 2( L 2 -log v log( a v ) )v if L 2 > log v log( a v )    . It follows that C 1 (L) =    2 a v ( a v ) L 2 -1 a v -1 if L ≤ 2 log v log( a v ) 2 a a-v (v -1) + Lv -2v log v log( a v ) if L > 2 log v log( a v )    and C 1 (L) =      2 a v ( a v ) L 2 -1 a v -1 if L ≤ 2 log v log( a v ) 2 a v ( a v ) log v log( a v ) -1 a v -1 + Lv -2v log v log( a v ) if L > 2 log v log( a v )     
.

Step 2: Intersections

Let E be a finite set (of cardinality e) and let A and B be two of its subsets, of cardinals a and b respectively. Then the mean cardinal of A ∩ B is ab e . The cardinal of FromD[L/ 2] and ToA[L / 2] are the same:

#(FromD[L/2]) = #(ToA[L/2]) = ( a v ) L 2 if L 2 ≤ log v log( a v ) v if L 2 > log v log( a v )
.

The cardinality of Res

[i + 1] -1 ∩ FromD[i]
is the number of vertices on a path of length L between d and a at a distance i from d.

Furthermore, #Res[L/2 - i] = #Res[L/2 + i] for i ≤ L
2 . So one has:

#(Res[i]) =      1 v ( a v ) L if L -i ≤ log v log( a v ) and i ≤ log v log( a v ) v if L -i > log v log( a v ) and i > log v log( a v ) ( a v ) min(L-i,i) otherwise     
. 

Since the cardinal of

C 2 (L) ≤ C 1 (L).
Theorem 12 Let G = (V, A) be a graph whose connectivity is α = a v 2 ≥ α 2 and L ∈ N.

The mean complexity of the above algorithm to compute all the paths of length L between two given vertices is

C(L) verifying C(L) ≤ 6L if L ≤ 2 log v log( a v ) and C(L) ≤ (L + 6)v if L > 2 log v log( a v ) .
Indeed, the complexity C(L) of this algorithm is thus

C(L) ≤      6 a v ( a v ) L 2 -1 a v -1 if L ≤ 2 log v log( a v ) 6 a v ( a v ) log v log( a v ) -1 a v -1 + Lv -2v log v log( a v ) if L > 2 log v log( a v )     
.

An unrefinable dag. 

Notice that (

a v ) log v log( a v ) = v. Then if L ≤ 2 log v log( a v ) then C(L) ≤ 6v. If L > 2 log v log( a v ) then C(L) < (L + 6)v.

The Algorithm: General Case

Case of not so hyper connected graphs

Let G = (V, A) be an unweighed directed graph whose connectivity α verifies α ≤ α 2 . Let k be the greatest integer such that α k ≥ α and let G be a k-thickening of G. Let us consider two vertices of G, d and a and compute all the shortest paths between d and a in G, thanks to G . This algorithm is a "Divide & Conquer" algorithm.

The main idea is to compute the dags of the paths between the classes of d and a in G for given lengths of paths and then use these dags to compute the dag of the shortest paths between d and a in G.

Let us begin this section with an example, the graph figure 1 and let us compute the shortest paths between the vertices 1 and 5.

The first attempt to deduce paths from 1 to 5 in G from the dag of shortest paths between that classes of 1 and 5 in G is a failure, see figure 8.

Then, by increasing the length of paths in G (the dags are not recomputed at each step but only completed), one obtains the following shortest paths dag in G (see figure 9): and v j ∈ v , the arc (u, v ) is duplicated in k copies and the j=th is replaced by (u, v j ).

When a node has no child, it has to be removed and its father checked recursively.

Let us now compute the complexity of this algorothm.

Mean Complexity

We need to separate two cases to compute the complexity of the algorithm: either the connectivity of the graph is lower than or equal to α 2 , in which case we build a thickening or its connectivity is greater than α 2 in which case the shortest paths dag is directly computed.

We now enunciate the main theorem of this paper. 

C(L) = 6 a v ( a v ) L 2 -1 a v -1 = 6 a v ( a v ) ln v 2 ln a v -1 a v -1 = 6 a v ( a v ) ln v 2 ln a v -1 a v -1 = 6 a v a v -1 √ v < 12 √ v .
Let us now suppose that the connectivity of G is α ≤ α 2 . Let k = a v and let G be a k-thickening of G. As seen before, the number of vertices of G is v = v k = v 2 a and its number of arcs is a = v 2 a (1

-(1 -a v 2 ) ( a v ) 2 ).
The complexity of the refinement of a paths dag is bounded by 1+ k j=0 jp j < 2 times its number of arcs (each arc has to be scanned and may be duplicated. Its mean number of duplications is k j=0 jp j < 1). So in this case, the complexity of the computation of the shortest paths dag in G is, with L = ln v 

Performances

This algorithm has been implemented on an average computer (pentium 2.4 gHz, 1 GB of ram), and has given the following results. The array gives the number of vertices of the graph and the ratio between the number of arcs and vertices and the average time computation for all the shortest paths between two randomly chosen vertices. This time is given in second. The biggest graph it has been tried on is a graph of 10 millions vertices and 500 millions arcs. See table 

Conclusion

The author would like to develop this work and some of its applications. What happens if the vertices are gathered in subsets of unequal cardinalities? Is such an approach pertinent in the case when the graph is weighed? Can we profile algorithms dedicated to separate forms in images, sounds in noise or automated translation?

It seems that all these problems may be solved thanks to an approach close to the one developed in this paper.
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 12 Figure 1: An example of a graph thickening (bold)
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 2 Figure 2: A Shortest Paths dag

Algorithm 9 ShortestPathsInDenseGraph

 9 (Graph G = (V, A), d, a)) In: a graph G, its set of vertices, and its adjacency matrix A two vertices d and a Out:The (d, a)-shortest paths dag. Variables: FromD[], ToA[], Res[] : dags Length, p, m : integer even : boolean

Algorithm 10 PathsOfGivenLengthInDenseGraph

 10 (Graph G = (V, A), d, a, L)) In: a graph G, its set of vertices, and its adjacency matrix A two vertices d and a The length of the wanted paths, L Out:The dag of paths between d and a of length L. Variables: FromD[], ToA[], Res[] : dags Length, p, m : integer even : boolean
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 3 Figure 3: an strongly connected, unweighed and oriented graph
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 4 Figure 4: Incrementations and decrementations in a dense graph
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 365 Figure 5: Intersection and union of the pieces of dag

Figure 6 :

 6 Figure 6: Incrementations and decrementations of a fixed length, 2 in this example

1 .

 1 the computation of FromD[p] and ToA[m] for p and m between 0 and L 2 , 2. the computation of Res[p] + 1 and Res[m] -1 and the intersections (Res[p + 1] -1) ∩ FromD[p] and (Res[m -1] + 1) ∩ ToA[m]

Figure 8 :

 8 Figure 8: too short paths in G does not give a dag in G. . .

Figure 9 :

 9 Figure 9: The shortest (1, 5) dag of G refinable in G.

Theorem 14

 14 Let G = (V, A) be a directed unweighed and strongly connected graphwhose connectivity if greater than 1.01. Let d and a be two vertices of V . The shortest paths dag computation by the algorithm explained above has an average time complexity bounded by O(v). Proof: let G = (V, A) be an unweighed, directed and strongly connected graph. Let d and a be two vertices of G. The mean length of the shortest paths between d and a is ln v ln a v . If the connectivity of the graph G is greater than α 2 , the complexity C(L) of the computation of the dag of the paths of a given length L algorithm has been computed. With L = ln v ln a v , one obtains:

  constant c. 2

  Res[i] is lower than or equal to the cardinal of FromD[i] if i ≤ L 2 and the cardinal of Res[i] is lower than or equal to the cardinal of ToA[L / 2 -i] for i ∈ [ L 2 , L]. Thus the mean complexity of this step is bounded by the complexity of the preceding one.

Table 1 :

 1 1. 0.015 0.023 0.036 0.011 0.009 0.011 0.046 10 5 0.134 0.079 0.025 0.028 0.037 0.016 0.018 10 6 0.216 0.120 0.117 0.127 0.173 0.097 0.194 10 7 0.520 0.431 0.230 0.259 0.283 0.351 0.290 Time performances, computed on an average machine, given in second

	v, a v	3	4	5	6	7	8	50
	10 4							

The algorithm

We describe in this section the algorithm allowing to find the shortest paths between two vertices, say d and a, in G knowing G . In all this section, the classes d and a belong to in G shall be denoted with d and a.

The main idea is to compute the dag of the shortest paths between d and a in G , try to refine it in G. If it is not possible, one completes the dag in G by considering paths longer by 1, tries to refine the obtained dag in G and so on.

The algorithm is then: G',d,a,d,a The algorithm to refine a dag from G to G is quite simple: the top vertex d is replaced by d, the bot vertex a is replaced by a and the arcs are checked from top to bot, each of them having one of their vertices in G and the other in G .

Let (u, v ) be such an arc. If there does not exist any arc (u, v) ∈ A such that v ∈ v , the arc is cancelled. If there exists one and one only v such that (u, v) ∈ A and v ∈ v then v is replaced by v. If there exists several v 1 , . . . , v k such that ∀1 ≤ j ≤ k, (u, v j ) ∈ A