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Abstract. Differential equations arising in fluid mechanics are usually derived from
the intrinsic properties of mechanical systems, in the form of conservation laws, and
bear symmetries, which are not generally preserved by a finite difference approxima-
tion, and lead to inaccurate numerical results. This paper deals with the analysis
of symmetry group of finite difference equations, which is based on the differential
approximation. We develop a new scheme, the related differential approximation of
which is invariant under the symmetries of the original differential equations. A com-
parison of numerical performance of this scheme, with standard ones and a higher
order one has been realized for the Burgers equation.

1. Introduction. Lie groups were introduced by Sophus Lie in 1870 in order to
study the symmetries of differential equations, yielding thus analytical solutions.
Literature provides substantial works and applications, [3], [4]. Symmetry groups
can be determined by an automatic procedure, but it often turns out to be tedious
and induces errors. A large amount of packages using symbolic manipulations of
mathematical expressions have been written. We mention here some of those works:
Schwartz [17], Vu and Carminati[14], Herod [15], Baumann [16], Cantwell [5].
In this paper we are interested in the application of the theory of Lie group to
numerical analysis.
Finite difference equations used to approximate the solutions of a differential equa-
tion generally do not respect the symmetries of the original equation, and can lead to
inaccurate numerical results. Various techniques, that enable us to build a scheme
preserving the symmetries of the original differential equation, have been studied.
One of these techniques consists in constructing an invariant scheme from a given
one by applying the method of the moving frame in [7], [8]. Another one consists in
constructing an invariant scheme with the help of the discret invariants of its sym-
metry group [9], [10], [11], [12], [13] and provides the building of symmetry-adapted
meshes, in preserving the differential equation symmetries. This technique is based
on a direct study of the symmetries of difference equations and lattices.
Yanenko [2] and Shokin [1], proposed to apply the Lie group theory to finite dif-
ference equations by means of the differential approximation. Thus, they have set
down conditions under which the differential representation of a finite difference
scheme preserves the group of continuous symmetries of the original differential
equation. They performed numerical simulations, which show that the resulting
scheme is more accurate than non-invariant ones, after a frame transformation.
The approach based on the differential approximation has been used in [6]. Ames

1



2 EMMA HOARAU, CLAIRE DAVID, PIERRE SAGAUT AND THIÊN-HIÊP LÊ

and al. [6] show that, in specific cases, the produced scheme is as accurate as higher
order numerical methods.
In this paper, we focus on the latter approach. We have developed what can be
called a ”semi-invariant scheme”, in so far as the invariance condition is weaker
than the one of the direct method, which acts on difference variables and enables
one to determine the equations of an invariant mesh. A comparison is made between
the numerical solutions of the Burgers equation for some standard schemes and the
”semi-invariant” one.
The paper is organized as follows. Definitions and invariance condition for differen-
tial equations are provided in section 2. Section 3 recalls the approach of Yanenko
and Shokin. Section 4 concentrates on classical schemes. In section 5, we present a
method that enables us to build the semi-invariant scheme.

2. Definitions and invariance condition for differential equations. A r-
parameter Lie group Gr of point transformations in the Euclidean space E(x, u)
can be written under the form:

Gr = {x∗i = φi(x, u, a); u
∗
j = ϕj(x, u, a), i = 1, . . . ,m; j = 1, . . . , n} (1)

Consider a system of lth-order differential equations:

Fλ
`
x, u, u(k1), u(k1,k2), . . . , u(k1...kl)

´
= 0, λ = 1, . . . , q (2)

Denote by u(k1...kp) the vector, the components of which are partial derivatives of

order p, namely, u
(k1...kp)
j =

∂puj

∂xk1
...∂xkp

j = 1, . . . , n and k1, . . . , kp ∈ {1, . . . , m}.

Denote by x = (x1, . . . , xm) the independent variables, u = (u1, . . . , un) the depen-
dent variables, and (xk1

. . . xkp
) a set of elements of the independent variables.

Equation (2) is a subset of the Euclidean space E
(
x, u, u(k1), . . . , u(k1...kl)

)
. In order

to take into account the derivative terms involved in the differential equation, the
action of the group Gr of transformations in the space E

(
x, u) needs to be extended

to the space of the derivatives of the dependent variables.

Denote by G̃
(l)
r a r-parameter Lie group of point transformation in the space

E
(
x, u, u(k1), . . . , u(k1...kl)

)
of the independent variables, dependent variables and

the derivative of the dependent variables with respect to the independent ones.
The lth-prolongation operator of Gr is:

eL(l)
α = ξαi (x, u)

∂

∂xi
+ ηαj (x, u)

∂

∂uj
+ σ

α,(k1)
j

∂

∂uj (k1)
+ · · · + σ

α,(k1...kl)
j

∂

∂uj(k1...kl)
, (3)

i = 1, . . . ,m; j = 1, . . . , n; α = 1, . . . , r.

ξα
i , ηα

j , σ
α,(k1)
j and σ

α,(k1...ko)
j are given by:

ξαi =
∂φi

∂aα

˛̨
˛
a=0

, ηαj =
∂ϕj

∂aα

˛̨
˛
a=0

, σ
α,(k1)
j =

Dηαj
Dxk1

−
mX

i=1

∂uj

∂xi

Dξαi
Dxk1

σ
α,(k1...ko)
j =

Dσα,(k1...ko−1)
j

Dx
ko

−
mX

i=1

∂ouj

∂xi∂xk1 . . . ∂xko−1

Dξαi
Dxko

, o = 2, . . . , l

where:
D

Dxk
=

∂

∂xk
+

nX

j=1

∂uj

∂xk

∂

∂uj

The system of lth-order differential equations is invariant under the group G̃
(l)
r if

and only if:
eL(l)
α Fλ

˛̨
˛
Fλ=0

= 0, α = 1, . . . , r; λ = 1, . . . , q (4)
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3. Lie group for the differential approximation. The finite difference scheme,
which approximates the differential system (2), can be written as:

Λλ(x, u, h, Tu) = 0, λ = 1, . . . , q (5)

where h = (h1, h2, . . . , hm) denotes the space step vector, and T = (T1, T2, . . . , Tm)
the shift-operator along the axis of the independent variables, defined by:

Ti[u](x1, x2, . . . , xi−1, xi, xi+1, . . . , xm) = u(x1, x2, . . . , xi−1, xi + hi, xi+1, . . . , xm). (6)

Definition 1. The differential equation:

Pλ
`
x, u, u(k1), . . . , u(k1...kl′

)
´

= Fλ
`
x, u, u(k1), . . . , u(k1...kl)

´

+
sX

β=1

mX

i=1

(hi)
lβRλ

i (x, u, u(k1), . . . , u
(k1...kl′λ,i

)
),

λ = 1, . . . , q; l′ = max(λ,i)l
′
λ,i (7)

is called the sth-order differential approximation of the finite difference scheme
(5). In the specific case s = 1, the above equation is called the first differential
approximation.

Equation (7) is obtained from equation (5) by applying Taylor series expansion
to the components of Tu about the point x = (x1, . . . , xm) and truncating the
expansion to a given finite order. Denote by G′

r a group of transformations in the
space E(x, u, h):

G′
r = {x∗i = φi(x, u, a); u

∗
j = ϕj(x, u, a); h

∗
i = ψi(x, u, h, a), i = 1, . . . ,m; j = 1, . . . , n} (8)

by Lα
′ the basis infinitesimal operator of G′

r:

Lα
′ = ξαi (x, u)

∂

∂xi
+ ηαj (x, u)

∂

∂uj
+ ζαi (x, u, h)

∂

∂hi
, α = 1, . . . , r (9)

where ζαi = ∂ψi
∂aα

˛̨
˛
a=0

, α = 1, . . . , r

and by G̃
(l′)
r a group of transformation in the space E(x, u, h, u(k1), . . . , u(k1...kl′ )).

The l′
th

-prolongation operator of G′

r, L̃
(l′)
α can be written as:

eL(l′)
α = Lα

′ +
nX

j=1

l′X

p=1

σ
α,(k1...kp)
j

∂

∂u
(k1...kp)
j

(10)

Theorem 1. The differential approximation (7) is invariant under the group G̃
(l′)
r

if and only if

eL(l′)
α Pλ

`
(x, u, u(k1), . . . , u(k1...kl′

)
´˛̨
˛
Pλ=0

= 0, α = 1, . . . , r; λ = 1, . . . , q (11)

or
h

eL(l)
α Fλ + eL(l′)

α

“ sX

β=1

mX

i=1

(hi)
lβRλ

i

”i˛̨
˛
Pλ=0

= 0, α = 1, . . . , r; λ = 1, . . . , q (12)

4. The specific case of the Burgers equation.

4.1. Symmetries of the Burgers equation. The Burgers equation can be writ-
ten as:

F(x, t, u, ν, ux, ut, uxx) = ut + u ux − ν uxx = 0 (13)

where ν ≥ 0 is the dynamic viscosity.
Let us denote by G a group of transformations of the Burgers equation in the space
E(x, t, u, ν) of the independent variables (x, t), the dependent variable u, and the
viscosity ν. The viscosity is taken as a symmetry variable in order to enable us to
take into account variations of the Reynolds number.
G is a set of transformations acting smoothly on the space E(x, t, u, ν).
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The six-dimensional Lie algebra of the group G is generated by the following oper-
ators:

L1 =
∂

∂x
, L2 =

∂

∂t
, L3 = x

∂

∂x
+ 2t

∂

∂t
− u

∂

∂u

L4 = xt
∂

∂x
+ t2

∂

∂t
+ (−ut+ x)

∂

∂u
, L5 = t

∂

∂x
+

∂

∂u
, L6 = −t ∂

∂t
+ u

∂

∂u
+ ν

∂

∂ν
(14)

which respectively correspond to:

• the space translation : (x, t, u, ν) 7−→ (x+ ε1, t, u, ν);
• the time translation : (x, t, u, ν) 7−→ (x, t+ ε2, u, ν);
• the dilatation : (x, t, u, ν) 7−→ (ε3x, ε23t, ε

−1
3 u, ν);

• the projective transformation : (x, t, u, ν) 7−→
“

x
1−ε4t

, t
1−ε4t

, xε4 + u(1 − ε4t), ν
”
;

• the Galilean transformation : (x, t, u, ν) 7−→ (x+ ε5 t, t, u+ ε5, ν);
• the dilatation : (x, t, u, ν) 7−→ (x, ε−1

6 t, ε6u, ε6ν).

(εi)i=1,...,6 are constants.

4.2. Symmetries of first differential approximations. Denote by h the mesh
size, τ the time step, Nx the number of mesh points, Nt the number of time steps,
and un

i , i ∈ {0, . . . , Nt}, n ∈ {0, . . . , Nx} the discrete approximation of u(ih, nτ).
In order to shorten the size of the finite difference scheme expressions, we use the
following notations introduced by Hildebrand in [18]:

δ(uni ) =
un
i+ 1

2

− un
i− 1

2

h
, µ(uni ) =

un
i+ 1

2

+ un
i− 1

2

2

δ+(uni ) =
uni+1 − uni

h
, δ−(uni ) =

uni − uni−1

h
, Eαuni = uni+α

The Burgers equation can be discretized by means of:

• the FTCS (forward-time and centered-space) scheme:

un+1
i − uni

τ
+
µδ

h

`u2

2

´n
i
− ν

δ2

h2
uni = 0

• the Lax-Wendroff scheme:

un+1
i − uni

τ
+
µδ

h

`u2

2

´n
i
− ν

δ2

h2
uni + Ani = 0

where:

Ani = − τ

2h2

h
E

1

2 uni δ
+

`u2

2

´n
i
− E−

1

2 uni δ
−

`u2

2

´n
i

i
− ν2τ

2

h δ4
h4
uni

i

+
ντ

2h3

h
E

1

2 uni δ
2(E

1

2 uni ) −E−
1

2 uni δ
2(E−

1

2 uni )
i

+
ντ

2

hµδ3
h3

`u2

2

´n
i

i

• the Crank-Nicolson scheme:

un+1
i − uni

τ
+
µδ

h

h`u2

2

´n+1

i
+

`u2

2

´n
i

i
− ν

δ2

h2
[un+1
i + uni ] = 0

The linear stability properties and the related orders of approximation are:

• the FTCS scheme: S ≤ 1
2
, CFL ≤ 1; O(τ, h2)

• the Lax-Wendroff scheme: S∗ ≤ 1
2
, CFL ≤ 1; O(τ2, h2)

• the Crank-Nicolson scheme: unconditional stability; O(τ 2, h2)

where CFL = aτ
h

, S = ντ
h2 and S∗ =

(
ν + ahCFL

2

)
τ
h2 .

Consider ui
n as a function of the time step τ , and of the mesh size h, expand it at

a given order by means of its Taylor series, and neglect the o(τα) and o(hβ) terms,
where α and β depend on the order of the schemes. This yields the differential
representation of the finite difference equation.
The following differential representations are obtained:
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• for the FTCS scheme:

ut +
1

2
(u2)x − ν uxx +

τ

2
g2 +

h2

12
(u2)xxx − νh2

12
uxxxx = 0

• for the Lax-Wendroff scheme:

ut +
1

2
(u2)x − ν uxx +

τ2

6
g3 +

h2

12
(u2)xxx − νh2

12
uxxxx = 0

• for the Crank-Nicolson scheme:

ut +
1

2
(u2)x − νuxx + τ2

`g3
6

+
1

4
(g21 + ug2)x − ν

4
(g2)xx

´
+
h2

12
(u2)xxx − νh2

12
uxxxx = 0

where g1 = −
`
u2

2

´
x

+ νuxx, g2 =
`
− g1u

´
x

+ ν
`
g1

´
xx

, g3 =
`
− g2u− g21

´
x

+ ν
`
g2

´
xx

Denote by G′ the group of transformations of a first differential approximation in
the space E(x, t, u, h, τ, ν) of the independent variables (x, t) and the dependent
variable u, the step size variables (h, τ) and the viscosity ν.

The l′
th

-prolongation of G′ can be written as:

eL′(l′)
α = ξα1

∂

∂x
+ ξα2

∂

∂t
+ ηα

∂

∂u
+

l′X

p=1

σ
α,(k1...kp)
j

∂

∂u
(k1...kp)
j

+ ζα1
∂

∂h
+ ζα2

∂

∂τ
+ θα

∂

∂ν
(15)

where l′ has been defined in definition 1.
Theorem 1 enables us to obtain the necessary and sufficient condition of invariance
of the first differential approximation P :

eL′(l′)
α P

˛̨
˛
P=0

= 0 (16)

Theorem 1 is applied to the differential representations of the above schemes.
The resolution of the determining equations of each first differential approximation
yields the 4-parameter group (see [19]):

ξα1 = a + b x, ξα2 = c+ (2b − d) t, ηα = (−b+ d) u (17)

ζα1 = b h, ζα2 = (2b− d) τ , θα = eν

The 4-dimensional Lie algebra of G′ is generated by:

L1 =
∂

∂x
, L2 =

∂

∂t
, L

′
3 = x

∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
+ h

∂

∂h
+ 2τ

∂

∂τ

L
′
4 = −t ∂

∂t
+ u

∂

∂u
− τ

∂

∂τ
+ ν

∂

∂ν
(18)

These operators are respectively related to:

• the space translation : (x, t, u, h, τ, ν) 7−→ (x+ ε1, t, u, h, τ, ν);
• the time translation : (x, t, u, h, τ, ν) 7−→ (x, t+ ε2, u, h, τ, ν);
• the dilatation : (x, t, u, h, τ, ν) 7−→ (ε3x, ε23t, ε

−1
3 u, ε3h, ε23τ, ν);

• the dilatation : (x, t, u, h, τ, ν) 7−→ (x, ε−1
4 t, ε4u, h, ε

−1
4 τ, ε4ν);

where (εi)i=1,...,4 are constants.
The above finite difference equations are preserved by the space translation, the
time translation and both dilatations.
Approximating the Burgers equation by the above finite difference equations results
in the loss of the projective and Galilean transformations.

5. The semi-invariant scheme.
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5.1. Semi-invariant scheme construction. The direct method, introduced by
Dorodnitsyn in [9], provides an exact symmetry analysis of finite difference schemes
and leads to the definition of meshes whose geometrical structure is preserved by
the entire group. The method proposed by Yanenko [2] and Shokin [1] consists of
a symmetry study of the differential approximation. Although the last method is
not fully exact, the numerical results in [1] and [6] has proved its effectiveness. This
approach gives a recevable symmetry analysis of finite difference schemes.
The scheme proposed below is associated to an uniform orthogonal mesh.
We propose to approximate the Burgers equation by the finite difference scheme:

un+1
i − uni

τ
+

1

h

`
µδ − µδ3

6

´`u2

2

´n
i
− ν

1

h2

`
δ2 − δ4

12

´
(uni ) − h

“
Ωn
i+ 1

2

δ+ − Ωn
i− 1

2

δ−
”
uni = 0 (19)

where Ωn
i = Ω(xi, tn, un

i ) is defined next so that the related differential represen-
tation is preserved by the symmetries of the Burgers equation. The scheme has
second-order accuracy in space and first-order accuracy in time. The derivatives
(u2)x and uxx are approximated by fourth order accuracy difference expressions:

`µδ
h

− µδ3

6h

´
(uni ) =

`
ux − h4

30
u5x

´n
i

+ O(h6),
` δ2
h2

− δ4

12h2

´
(uni ) =

`
uxx − h4

90
u6x

´n
i

+ O(h6) (20)

The truncation error of the difference scheme (19) can be written as:

ε =
τ

2
utt − h2

“
Ωux

”

x
+ O(τ2) + O(h4)

utt is replaced by an expression involving partial derivatives with respect to x, by
using the Burgers equation. Replacing the obtained expression in the truncation
error leads to:

ε =
“
Cux

”
x
− ντ

2

“
uuxx

”
x
− ντ

2

`u2

2

´
xxx

+
ν2τ

2
uxxxx + O(τ2) + O(h4)

where C = τ
2u2 − h2Ω.

It is convenient for the calculation of C that the truncation error is reduced to:

ε =
“
Cux

”

x
+ O(τ2) + O(h4)

The related finite difference scheme is the following first order accuracy in time
and second order accuracy in space:

un+1
i − uni

τ
+

1

h

`
µδ − µδ3

6

´`u2

2

´n
i
− ν

1

h2

`
δ2 − δ4

12

´
(uni ) − h

“
Ωn
i+ 1

2

δ+ − Ωn
i− 1

2

δ−
”
uni

+
ντ

2

“
un
i+ 1

2

µδ2

h2
(un
i+ 1

2

) − un
i− 1

2

µδ2

h2
(un
i− 1

2

)
”
− ν2τ

2

δ4

h4
uni +

ντ

2

µδ3

h3

`u2

2

´n
i

= 0 (21)

and the differential approximation can be written as:

P(x, t, u, ν, ux, ut, uxx) = ut + u ux − ν uxx + (Cux)x = 0 (22)

The von Neumann stability analysis of scheme (21) under a linearized form provides
the following necessary conditions for S, CFL and Ωτ = Ωτ :

CFL2 − 2S − 2Ωτ ≤ 0, 0 ≤ (4S)/3 − 2S2 + Ωτ ≤ 1/2 (23)

If Ω is sufficiently close to zero, these conditions become then sufficient for the
linear formulation.

5.2. Calculation of the artificial viscosity term. We now describe the method
for determining the artificial viscosity term (Cux)x, which is constructed in such
a way that the differential approximation (22) is preserved by the symmetries of
the Burgers equation. It is worth noting that the related semi-invariant scheme
(21) is not nessarily an invariant manifold with respect to the infinitesimal opera-
tor prolonged to the difference variables. That is, the semi-invariant scheme (21)
expressed with respect to the transformed difference variables may be not valid and
may produce additional terms, which will depend on group parameters. We are not
aiming at recovering full invariance for the semi-invariant scheme. We are interested
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in the invariance of equation (22) under all the symmetries. C is a function of the
variables (x, t, u, τ, h), and also depends on the partial derivatives of u with respect
to x: ux and uxx. C = C(x, t, h, τ, u, ux, uxx). The necessary and sufficient condi-
tion for the differential approximation to be an invariant of the Burgers equation
symmetry group is:

eL(2)
α (ut + u ux − ν uxx)

˛̨
˛
P=0

+ eL(3)
α ((Cux)x)

˛̨
˛
P=0

= 0 (24)

Equation (24) involves partial derivatives of the unknown C. The infinitesimal

functions of G
′

, which are coordinates of the vector field Lα are given by:

ξα1 = a + b x+ c t+ d tx, ξα2 = e+ d t2 + (2b − f) t, ζα1 = b h, (25)

ζα2 = (2b − f) τ , ηα = c+ d x+ (−b− d t+ f) u, θα = fν

The determination of C is realized for each subgroup of G
′

:

• the space translation C = C1(t, h, τ, u, ux, uxx);
• the time translation C = C2(x, h, τ, u, ux, uxx);
• the dilatation C = C3(

t
x2
, h
x
, ux, τ

x2
, ux, uxx);

• the projective transformation C = C4(h, τ, 2+tux

t
);

• the Galilean transformation C = C5(ut−x
t

, t, h, τ, u, ux, uxx);
• the dilatation C = 1

t
C6(x, h, τ

t
).

5.3. Numerical application. The numerical resolution of the Burgers equation
has been implemented for scheme (21), the standard schemes (cf. section 4.2) and
a scheme with second-order accuracy in time and fourth-order accuracy in space,
which is obtained from the semi-invariant scheme when C = 0. The solutions are
calculated in the reference frame (F1), where the mesh is uniform and orthogonal,
and in the frame (F2) resulting from the Galilean transformations (x, t, u, ν) 7−→
(x + t, t, u + 1, ν), where the orthogonality of the mesh is broken.
The artificial viscosity has the following expression:

C = −0.01t(tu − x)2(ux)2 (26)

Ω = 1
h2 ( τ

2u2 − C) is in a sufficiently small neighborhood of zero, which enables us
to have the sufficiency of conditions (23) for the linear formulation.
The problem consists in solving the following differential system:

ut + uux − νuxx = 0, x ∈ [0, 40], t ∈ [0, 20], u(x, 0) = f(x), u(0, t) = g(t), u(40, t) = h(t)

The initial and boundary conditions, f , h, and g are provided by an exact solution
of the Burgers equation:

u(x, t) = (((x − 2t)/(t + 0.1))/(1 + ν2
√
t+ 0.1 exp ((x − 2t)2/(4ν(t + 0.1))))) + 2 (27)

Figures 1, 3 and 5 show the time evolution of the L2-norm of the error for the
considered schemes, for specific values of the CFL number and the mesh Reynolds
number Reh. Figures 2, 4 and 7 display the variations, as functions of the space
variable, of the numerical solutions of the considered schemes for the specific value
t = 5. In each frame, the numerical solutions are compared to the exact one.
The error analysis of the semi-invariant scheme in the reference frame through the
features of the truncation error and the graphical representation of the norms of
the error (cf. Figures 1, 3 and 5) allows to say that the semi-invariant scheme is
dissipative and slightly dispersive.
The presence of the dissipative term (Cux)x in the differential representation of the
semi-invariant scheme and the presence of the higher order error terms involving
the even-order derivative u6x (cf. Equation (20)) show that the scheme produces
numerical damping. Particularly, the amplitudes are not correctly represented for
high frequencies, since the solution is subjected to rather rough variation during the
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first iterations. The dissipation is stronger for Reh = 2, CFL = 0.08 in the reference
frame (see Figure 4). Moreover, the presence of higher order error terms involv-
ing the odd-order derivative u5x corresponds to a phase error. The non-invariant
schemes are more altered by the change of the frame than the semi-invariant one.
Moreover, the semi-invariant scheme appears to be as accurate as the higher order
one in the frame (F2).

6. Conclusion. If, on the one hand, the differential approximation is invariant
with respect to the prolonged infinitesimal operator of the group of the continuous
equations, the related semi-invariant scheme is not, on the other hand, an invariant
manifold with respect to the group isomorphic to the group of the continuous equa-
tions. Moreover, this local analysis can not enable one to build a mesh invariant
under the group of the original equations. However, our method enables us to have
an idea of the group properties of the considered finite difference schemes. Also the
semi-invariant scheme gives better results in the transformed frame.
In the next future, we will focus on direct methods of group analysis of finite
difference schemes. Especially, we will concentrate on the approach developped
by Dorodnitsyn [9]. This non-local analysis is complex, in so far as invariance
conditions are stronger. This approach will be retained as long as its application to
model equations of aeronautics engineering is tractable.

Acknowledgment. The authors would like to thank the anonymous referees, for
their very valuable comments, and Aziz Hamdouni, for his helpful remarks.
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Figure 1. Evolution of the error L2-norm in F1, F2. Reh = 2, CFL = 0.04
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Figure 2. Space variation of the numerical and exact solutions in F1, F2. Reh = 2, CFL = 0.04
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Figure 3. Evolution of the error L2-norm in F1, F2. Reh = 2, CFL = 0.08
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Figure 4. Space variation of the numerical and exact solutions in F1, F2. Reh = 2, CFL = 0.08
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Figure 5. Evolution of the error L2-norm in F1, F2. Reh = 3, CFL = 0.08
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Figure 6. Space variation of the numerical and exact solutions in F1, F2. Reh = 3, CFL = 0.08
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