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1 Introduction

Various works have been carried out on the application
of Lie group theory to numerical analysis. Most of them
have been devoted to the building of numerical schemes,
which preserve the symmetries of the original differential
equations.
Olver [11] and Kim [9] constructed invariant finite differ-
ence equations using the concept of the moving frame.
Discretization techniques, which preserve some symme-
tries of the original equations, were studied in [1], [3], [5],
[6] and [14].
[1], [3], [5], [6] and [14] used the discrete invariants of the
Lie group of the original equation to build invariant finite
difference schemes.
Yanenko [16] and Shokin [13] have provided a Lie group
analysis applied to finite difference equations, by means of
a differential approximation and set down conditions un-
der which the differential representation of a finite differ-
ence scheme preserves the symmetry group of the original
differential equation. As the differential approximation is
a differential equation, the Lie group theory can be fully
applied to this notion.
The calculation of Lie groups of differential equations
with pencil and paper is tedious and may induce errors.
The size of related equations increases with the number
of the symmetry variables, and the order of the differ-
ential equations. A large amount of packages have been
created using software programs with symbolic manip-
ulations, such as Mathematica, MACSYMA, Maple, RE-
DUCE, AXIOM, MuPAD. Schwarz [12] wrote algorithms
for REDUCE and AXIOM computer algebra systems, Vu
and Carminati [15] worked on DESOLVE, a Maple pro-
gram, Herod [7] and Baumann [2] developed Mathematica
programs.
We hereafter describe a new symbolic package, which im-
plements the Lie group analysis methods for finite differ-

ence equations. The computations are based on the the-
ory developed by Yanenko and Shokin. The program has
been written for Mathematica and provides the symmetry
group of a differential representation for a given finite dif-
ference scheme. The method is based on the Mathematica
program of Cantwell in [4].
We presently aim at determining the symmetries lost by
the discretization and building schemes which preserve
those symmetries.
The method for the investigation of local point transfor-
mation groups is set out in section 2. The contents of
the package is detailed in section 3. Implementation for
classical numerical schemes is exposed in section 4.

2 Lie group methods

2.1 Lie group of differential equations

Consider a system of lth-order differential equations:

Fλ
�
x, u, u(k1), u(k1,k2), . . . , u(k1...kl)

�
= 0, λ = 1, . . . , q (1)

Denote by u(k1...kp) the vector, the components of which
are partial derivatives of order p, namely, u

(k1...kp)
j =

∂puj

∂xk1 ...∂xkp
j = 1, . . . , n, k1, . . . , kp ∈ {1, . . . , m}.

Denote by x = (x1, . . . , xm) the independent variables
and u = (u1, . . . , un) the dependent variables.
The group of local point transformations can be written
under the form:

Gr = {x∗i = φi(x, u, a); u∗j = ϕj(x, u, a), i = 1, . . . , m; j = 1, . . . , n}

Expand the transformations by means of a Taylor series
at the zero value of the parameter aα:

x∗i = xi + aα
∂φi

∂aα

���
a=0

+O(a2
α), α = 1, . . . , r

u∗j = uj + aα
∂ϕj

∂aα

���
a=0

+O(a2
α), α = 1, . . . , r (2)

The derivatives of φi and ϕj with respect to the parameter
aα are smooth functions, called infinitesimals of the group
Gr. Denote by ξα

i and ηα
j the infinitesimals of Gr.

In order to find the Lie group transformations of the dif-
ferential system, it is convenient to search the infinitesi-
mal operators of Gr:

Lα = ξα
i (x, u)

∂

∂xi
+ ηα

j (x, u)
∂

∂uj
, i = 1, . . . , m; (3)

j = 1, . . . , n; α = 1, . . . , r

{Lα, α = 1, . . . , r} represents the set of tangent vectors
to the manifold Gr at the neutral element a = 0 and is a
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basis of the Lie-algebra of the infinitesimal operators of
Gr.
The determination of the group transformations is re-
duced to the determination of the infinitesimal functions
ξα
i and ηα

j .
The knowledge of the Lα enables us to determine the
point transformations of the group Gr by solving the
equations:

∂x∗i
∂aα

= ξα
i (x∗, u∗),

∂u∗j
∂aα

= ηα
j (x∗, u∗), i = 1, . . . , m; (4)

j = 1, . . . , n; α = 1, . . . , r

in conjunction with the initial conditions:

x∗i
��
a=0

= xi, u∗j
��
a=0

= uj (5)

In order to take into account the derivative terms involved
in the differential equation, the Lie algebra vector field is
prolonged:

eL(l)
α = Lα + σ

α,(k1)
j

∂

∂uj
(k1)

+ · · ·+ σ
α,(k1...kl)
j

∂

∂uj
(k1...kl)

,

α = 1, . . . , r (6)

σ
α,(k1)
j and σ

α,(k1...ko)
j are given by:

σ
α,(k1)
j =

Dηα
j

Dxk1

−
mX

i=1

∂uj

∂xi

Dξα
i

Dxk1

(7)

σ
α,(k1...ko)
j =

Dσ
α,(k1...ko−1)

j

Dxko

−
mX

i=1

∂ouj

∂xi∂xk1 . . . ∂xko−1

Dξα
i

Dxko

,

o = 2, . . . , l

where: D
Dxk

=
∂

∂xk
+

nX

j=1

∂uj

∂xk

∂

∂uj

Denote by G̃
(l)
r the Lie group of point transformations in

the space E(
x, u, u(k1), u(k1,k2), . . . , u(k1...kl)

)
of the inde-

pendent variables, the dependent variables and the deriv-
atives of the dependent variables with respect to the in-
dependent ones.

Definition 2.1 Consider a subset Ω of the Euclidean
space E(

x, u, u(k1), u(k1,k2), . . . , u(k1...kl)
)

Ω = {V =
�
x, u, u(k1), . . . , u(k1...kl)

�
;Fλ

�V� = 0, λ = 1, . . . , q}

Ω is an invariant subset of the group G̃
(l)
r if all the ele-

ments of G̃
(l)
r transform any point of Ω into a point of

Ω.

Theorem 2.2 The system of lth-order differential equa-
tions is invariant under the group G̃

(l)
r if and only if:

eL(l)
α Fλ

���
Ω

= 0, α = 1, . . . , r; λ = 1, . . . , q (8)

2.2 Lie group of differential approxima-
tions

The finite difference scheme, which approximates the dif-
ferential system (1), can be written as:

Λλ(x, u, h, Tu) = 0, λ = 1, . . . , q (9)

where h = (h1, h2, . . . , hm) denotes the space step vector,
and T = (T1, T2, . . . , Tm) the shift-operator along the axis
of the independent variables, defined by:

Ti[u](x1, . . . , xi, . . . , xm) = u(x1, . . . , xi + hi, . . . , xm). (10)

Definition 2.3 The differential equation:

Pλ
�
x, u, u(k1), . . . , u(k1...kl′ )

�
= Fλ

�
x, u, u(k1), . . . , u(k1...kl)

�

+
sX

β=1

mX

i=1

(hi)
lβRλ

i (x, u, u(k1), . . . , u
(k1...kl′λ,i

)
),

λ = 1, . . . , q; l′ = max(λ,i)l
′
λ,i (11)

is called the lths -order differential approximation of the fi-
nite difference scheme (9). In the specific case s = 1, the
above equation is called the first differential approxima-
tion.

Denote by G′r a group of transformations in the space
E(x, u, h):
G′r = {x∗i = φi(x, u, a); u∗j = ϕj(x, u, a); h∗i = ψi(x, u, h, a),

i = 1, . . . , m; j = 1, . . . , n }
by Lα

′ the basis infinitesimal operator of G′r:

Lα
′ = Lα + ζα

i (x, u, h)
∂

∂hi
, α = 1, . . . , r (12)

where
ζα
i =

∂ψi

∂aα

���
a=0

, α = 1, . . . , r (13)

and by G̃
(l′)
r a group of transformation in the space

E(x, u, h, u(k1), . . . , u(k1...kl′ )).
The l′th-prolongation operator of G′r, L̃(l′)

α can be written
as:

eL(l′)
α = Lα

′ +
nX

j=1

l′X

p=1

σ
α,(k1...kp)
j

∂

∂u
(k1...kp)
j

(14)

Theorem 2.4 The differential approximation (11) is in-
variant under the group G̃

(l′)
r if and only if

eL(l′)
α Pλ

�
x, u, u(k1), . . . , u(k1...kl′ )

����
Pλ=0

= 0, (15)

α = 1, . . . , r; λ = 1, . . . , q

or
heL(l)

α Fλ + eL(l′)
α

� sX

β=1

mX

i=1

(hi)
lβRλ

i

�i���
Pλ=0

= 0, (16)

α = 1, . . . , r; λ = 1, . . . , q

Equation (17) leads to a linear overdetermined system
of partial differential equation, with respect to the in-
finitesimal functions, called the determining equations of
the Lie group of the differential approximation (11). Our
program determines the unknown infinitesimal functions.

3 Computation Methods

The program is restricted to partial differential approxi-
mations of any order involving the unknown scalar func-
tion u, the independent variables x and t, the viscosity ν
and the step size variables h and τ .

3.1 Calculation of the differential ap-
proximation

First, our program calculates the differential approxima-
tion from the knowledge of the considered finite difference
equation and the approximation error.
The discrete approximations of the dependent variable,



involved in the finite difference equation, are expanded at
a given order by means of their Taylor series. The sub-
stitution of these Taylor series expansions into the finite
difference scheme provides the Γ-form of the differential
approximation, which contains derivatives with respect to
t, x and mixed derivatives with respect to x and t. The
Γ-form does not allow to have stability informations and
does not yield the correct order of accuracy for all the
numerical schemes. That’s why we have found essential
to determine directly the Π-form of the differential ap-
proximation, which is obtained by replacing the partial
derivatives with respect to t and mixed derivatives with
respect to x and t, involved in the Γ-form, by partial
derivatives with respect to x, using the original differen-
tial equation.
The differential approximation is written under the form
of an analytic function with respect to the independent
variables, the dependent variable, the step size variables,
the viscosity and the partial derivarives of the dependent
variable. The dependent variable and its partial deriva-
tives are considered as independent variables.

3.2 Estimation of the determining equa-
tions

Consider the infinitesimal functions ξα
i , ηα

j , ζα
i and χα.

χα is the infinitesimal related to the viscosity:

χα =
∂π

∂aα

���
a=0

, α = 1, . . . , r (17)

where the viscosity transforms as follows:

ν∗ = π(x, u, ν, h, a)

The remaining infinitesimals of the prolongation operator
of the considered symmetry group are generated accord-
ing to the formulae (8).
The invariance condition of Theorem 2.2 provides a par-
tial differential equation involving the unknown infinites-
imal functions and products of the partial derivatives of
the dependent variables.
Equation (17) is solved as an algebraic equation with re-
spect to the partial derivatives of the dependent variables,
handled as independent variables. Denote by w the vec-
tor, the components of which are these variables. Since
the whole equation holds for all the w components, each
coefficient in front of the products of the w components
has to be zero. This leads to a linear overdetermined
system of partial differential equation, with respect to
the infinitesimal functions, called the determining equa-
tions of the Lie group of the differential system (11). The
overdetermined system is simplified by eliminating the
redundancies. This step of the calculation requires the
intervention of the user. The resolution of these equa-
tions yields explicitly the expression of ξα

i , ηα
j , ζα

i , χα,
α = 1, . . . , r, i = 1, . . . , m, j = 1, . . . , n.

3.3 Solving the determining equations

The techniques used to solve the determining equations
come from [4]. The unknown infinitesimal functions are
expanded by means of a power series expression with

respect to the symmetry variables x, t, u, ν, h, τ .
The polynomial expressions are substituted into the de-
termining equations. Solving the determining equations
amounts to finding the solutions of an algebraic equation.
Those latter techniques enable us to find in most cases the
exact expression of the infinitesimals, when the power se-
ries is truncated, i.e. when the sought infinitesimals does
not contain transcendental functions (like exp, cos, sin,
ln, . . . ).

3.4 Determination of the symmetry
group

The last part of the program provides the infinitesimal
function expression, the Lie algebra infinitesimal opera-
tors, and the corresponding Lie group transformations.

4 Examples

Consider the Burgers equation:

ut +
1

2
(u2)x − νuxx = 0 (18)

This equation admits the 6-parameter symmetry group:

∗ L1 =
∂

∂x
, space translation

∗ L2 =
∂

∂t
, time translation

∗ L3 = x
∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
, dilatation

∗ L4 = xt
∂

∂x
+ t2

∂

∂t
+ (−ut + x)

∂

∂u
,

projective transformation

∗ L5 = t
∂

∂x
+

∂

∂u
, Galilean transformation

∗ L6 = −t
∂

∂t
+ u

∂

∂u
+ ν

∂

∂ν
, dilatation

Equation (18) can be discretized by means of the finite
difference schemes:

∗ the FTCS (forward-time and centered-space)
scheme:

∆0(un
i )

τ
+

µδ

h

�u2

2

�n
i
− ν

δ2

h2
(un

i ) = 0

∗ the Lax-Wendroff scheme:
∆0(un

i )

τ
+

µδ

h

�u2

2

�n
i
− ν

δ2

h2
(un

i ) + An
i = 0

where:

An
i = − τ

2h2

h
un

i+ 1
2
∆1

�u2

2

�n
i
− un

i− 1
2
∆−1

�u2

2

�n
i

i

+
ντ

2

hµδ3

h3

�u2

2

�n
i

i
− ν2τ

2

h δ4

h4
un

i

i

∗ the Crank-Nicolson scheme:
∆0(un

i )

τ
+

µδ

h

��u2

2

�n+1

i
+
�u2

2

�n
i

�
− νδ2

2h2
(un+1

i + un
i ) = 0



The symbols µ, δ, ∆1, ∆−1 and ∆0, introduced above,
are defined by:

δ(un
i ) = un

i+ 1
2
− un

i− 1
2

µ(un
i ) =

un
i+ 1

2
+ un

i− 1
2

2
∆1(un

i ) = un
i+1 − un

i

∆−1(un
i ) = un

i − un
i−1

∆0(un
i ) = un+1

i − un
i

The first part of the program provides the differential
representation of the schemes:

∗ FTCS

ut +
1

2
(u2)x − ν uxx +

τ

2
g2 +

h2

12
(u2)xxx − νh2

12
uxxxx = 0

∗ Lax-Wendroff

ut +
1

2
(u2)x − ν uxx +

τ2

6
g3 +

h2

12
(u2)xxx − νh2

12
uxxxx = 0

∗ Crank-Nicolson

ut +
1

2
(u2)x − νuxx + τ2

�g3

6
+

1

4
(g2

1 + ug2)x − ν

4
(g2)xx

�

+h2
�1

6

�u2

2

�
xxx

− ν

12
uxxxx

�
= 0

where g1 = −�u2

2

�
x

+ νuxx, g2 =
� − g1u

�
x

+ ν
�
g1

�
xx

,

g3 =
�− g2u− g2

1

�
x

+ ν
�
g2

�
xx

The next steps of the computation of the symmetry group
have been realized for the above schemes, but only the
FTCS scheme is illustrated here.
The prolonged infinitesimal operator is calculated by
means of formula (14) and (8) with respect to the in-
finitesimal functions ξα

i , ηα
j , ζα

i and χα. The vector, the
components of which are the derivatives of the dependent
variable, treated as independent variables, can be written
as:

w = (wt, w2t, w3t, w4t, wx, wxt, wx2t, wx3t,

w2x, w2xt, w2x2t, w3x, w3xt, w4x)

The differential representation becomes:

wt +
1

2
u wx− ν w2x +

τ

2

�
gw
2

�

+ h2
�1
6

u w3x− 1

12
ν w4x +

1

2
w2x wx

�
= 0

where gw
2 = u2 w2x− 2ν u w3x + ν2 w4x− 4ν w2x wx + 2u wx2.

The next step provides the determining equations, which
are linear partial differential equations with respect to
the unknown infinitesimal functions. Some of them yield
informations, which need to be entered by the user:

ξα
1 = ξα

1 (x, t), ξα
2 = ξα

2 (t), ηα
1 = fη(x, t) + u gη(x, t),

ζα
1 = ζα

1 (x, t, u, h, τ), ζα
2 = ζα

2 (x, t, u, h, τ),

χα = χα(x, t, u, h, τ, ν)

Then the infinitesimal functions are expanded by means
of multivariables polynomial expressions:

ξα
1 =

θX

i=0

θ−iX

j=0

aijxiyj ,

ξα
2 =

θX

i=0

bit
i,

ηα
1 =

θX

i=0

θ−iX

j=0

cijxiyj + u
θX

i=0

θ−iX

j=0

dijxiyj ,

ζα
1 =

X

(i,j,k,l,m)∈Σ1

eijklmxiyjukhlτm,

ζα
2 =

X

(i,j,k,l,m)∈Σ1

fijklmxiyjukhlτm,

χα =
X

(i,j,k,l,m,n)∈Σ2

gijklmnxiyjukhlτmνn.

where

Σ1 = {(i, j, k, l, m) : i = 0, . . . , θ, j = 0, . . . , θ − i,

k = 0, . . . , θ − i− j,

l = 0, . . . , θ − i− j − k,

m = 0, . . . , θ − i− j − k − l},

Σ2 = {(i, j, k, l, m, n) : i = 0, . . . , θ, j = 0, . . . , θ − i,

k = 0, . . . , θ − i− j,

l = 0, . . . , θ − i− j − k,

m = 0, . . . , θ − i− j − k − l,

n = 0, . . . , θ − i− j − k − l−m}
The part performing the resolution of the algebraic deter-
mining equations gives the 4-parameter symmetry group
represented by:

ξα
1 = a0 + a10 x, ξα

1 = b0 + (2a10 − g1)t,

ηα
1 = (g1 − a10)u, ζα

1 = a10h,

ζα
2 = (2a10 − g1)h, χα = g1ν

The related 4-dimensional Lie algebra is generated by:

L′1 =
∂

∂x
, (a0 = 1, b0 = 0, a10 = 0, g1 = 0)

L′2 =
∂

∂t
, (a0 = 0, b0 = 1, a10 = 0, g1 = 0)

L′3 = x
∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
+ h

∂

∂h
+ 2τ

∂

∂τ
,

(a0 = 0, b0 = 0, a10 = 1, g1 = 0)

L′4 = x
∂

∂x
+ u

∂

∂u
+ h

∂

∂h
+ 2ν

∂

∂ν
,

(a0 = 0, b0 = 0, a10 = 0, g1 = 1)

The space and time translations preserve the differential
representation of the FTCS scheme.
We recall that (L3, L6) are the vectors of the basis of the
Lie algebra Ad of the Burgers equation dilatation group.
(L′3, L

′
4) represent the vectors of the basis of the

Lie algebra A′d of the differential approximation di-
latation group. A′d can be expressed as a direct
sum of the Lie algebra Aα,β spanned by the vec-
tors (Lα = x

∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
, Lβ = x

∂

∂x
+ u

∂

∂u
+ 2ν

∂

∂ν
)

and the Lie algebra Ah,τ spanned by the vectors
(L′α = h

∂

∂h
+ 2τ

∂

∂τ
, L′β = h

∂

∂h
).

It is natural that if the independent and dependent
variables are dilated then the step size variables undergo
the same transformation.



Lα and Lβ are elements of the span of the set{L3, L6}.
So A′d can be represented as the direct sum of Ad

and Ah,τ . The FTCS scheme is invariant under the
dilatation group, the Lie algebra of which can be written
as Ad ⊕Ah,τ .
The discretization by the FTCS scheme brings about the
lost of the Galilean transformation and the projective
transformation. The computation for the other schemes
shows that all the finite difference schemes admit the
same symmetry group.

Scheme differential approximation order Time(s)

FTCS 4 495.3

Lax-Wendroff 6 993.9

Crank-Nicolson 6 978.1

Table 1: Characteristics

Table 1 shows the influence of the order of the differential
approximation on the time of the calculation. Increasing
the order of the differential approximation yields sharply
improves the calculation time.
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