
HAL Id: hal-00116718
https://hal.science/hal-00116718v1

Preprint submitted on 27 Nov 2006 (v1), last revised 20 Feb 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relativistic calculations of pionic and kaonic atoms
hyperfine structure

Martino Trassinelli, Paul Indelicato

To cite this version:
Martino Trassinelli, Paul Indelicato. Relativistic calculations of pionic and kaonic atoms hyperfine
structure. 2006. �hal-00116718v1�

https://hal.science/hal-00116718v1
https://hal.archives-ouvertes.fr


ha
l-

00
11

67
18

, v
er

si
on

 1
 -

 2
7 

N
ov

 2
00

6

Relativistic calculations of pionic and kaonic atoms hyperfine structure
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In this article we present a new perturbation method for hydrogen-like systems with a spinless
orbiting particle.We apply the perturbation theory to an exact linearized version of the Klein-
Gordon equation obtained by a rescaling of the mass and the energy of the system. For this reason,
the relativistic corrections are automatically included. The predictions obtained are compared and
tested against an other perturbation approach that uses the Feshbach-Villars formalism and with a
self-consistent calculation. We use this new perturbation method to calculate the hyperfine structure
of pionic and kaonic atoms providing an additional term in the calculation of the energy transition
of these systems. Such a correction is required for a recent measurement of the pion mass.

PACS numbers: 03.65.Pm, 31.15.-p, 31.15.Md, 32.30.Rj, 36.10.Gv

I. INTRODUCTION

In the last few years transition energies in pionic [1]
and kaonic atoms [2] have been measured with an un-
precedented precision. The spectroscopy of pionic and
kaonic hydrogen allows to study the strong interaction
at low energies [3, 4, 5] by measuring the energy and
natural width of the ground level with a precision of few
meV [6, 7, 8]. Besides, light pionic atoms can addition-
ally be used to define new low-energy X-ray standards [9]
and to evaluate the pion mass using high accuracy X-ray
spectroscopy [10, 11, 12, 13]. Similar endeavour are in
progress with kaonic atoms [2]

Strong interaction and mass measurements require pre-
cise calculations of the pure electromagnetic contribution
of the atomic energy levels. To reach a precision of a
few parts per million (ppm), Quantum Electrodynamics
(QED) and relativistic corrections have to be calculated
accurately. For spinless particles, the Klein-Gordon (KG)
equation has to be used to take into account the relativis-
tic effects. Additional contributions as hyperfine struc-
ture (HFS) and recoil corrections have to be calculated
using perturbation methods. Due to the non-linearity of
the KG equation, the usual perturbation theory cannot
be directly applied as in the case of the Schrödinger and
Dirac equations, and other techniques have to be used.
In this paper we present a new perturbation method for
the KG equation. One way to do perturbative calcula-
tions in the KG equation is to use the Feshbach-Villars
formalism, which transforms the second order KG equa-
tion into two first order differential equations [14, 15].
An other way is to extract the energy correction manip-
ulating the KG equation with and without perturbation
operator [16, 17]. Here we use an alternative method
that uses as the starting point an exact linearization of
the KG equation obtained via an energy rescaling. All
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methods provide similar results taking into account the
relativistic effects to all the orders. We test the valid-
ity of such methods comparing their predictions for the
vacuum polarization with a self-consistent calculation.

Using the formalism presented here, we then calcu-
late the hyperfine structure in pionic and kaonic atoms
considering the perturbation term due to the interaction
between the pion or kaon orbital magnetic moment with
the magnetic momentum of the nucleus. In particular,
we calculate the HFS energy splitting for pionic nitrogen,
which has been used for a recent measurement of the pion
mass aiming at an accuracy of few ppm [10, 11, 13, 18],
and for kaonic nitrogen that has been proposed for the
kaon mass measurement [2].

This article is organized as follows. In Sec. II we will
develop the perturbation method starting from the Klein-
Gordon equation. In Sec. III, we calculate and compare
the vacuum polarization and nuclear finite size contribu-
tions using different methods. Section IV is dedicated
to the calculation of the hyperfine structure term and
includes numerical results for some pionic and kaonic
atoms.

II. CALCULATION OF THE ENERGY

CORRECTION

The relativistic dynamic of a spinless particle is de-
scribed by the Klein-Gordon equation. The electromag-
netic interaction between a negatively charged spin-0 par-
ticle with a charge equal to q = −e and the nucleus can
be taken into account introducing the nuclear quadrivec-
tor portential Aν in the KG equation via the minimal
coupling pν → pν − qAν [19]. In particular, in the case of
a central Coulomb potential (V0(r),0), the KG equation
for a particle with a mass µ is:

µ2c2Ψ(0)(x) =

{

1

c2
[ih̄∂t + eV0(r)]

2
+ h̄2∇2

}

Ψ(0)(x),

(1)
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where h̄ is the Planck constant, c the velocity of the
light and the scalar wavefunction Ψ(0)(x) depends on the
quadrivector coordinate x = (ct, r). The perturbation
correction can be deduced introducing an additional op-
erator W in the zeroth order equation (Eq. (1)):

{

1

c2
[E + eV0(r)]

2 + h̄2∇2 − µ2c2 − W (r)

}

ϕnl(r) = 0,

(2)
where we used

Ψ(x) = exp(−iEnlt/h̄) ϕnl(r) (3)

for the exact solution of the perturbed equation. W (r)
is in general non-linear. In the case of a correction V1 to
the Coulomb potential V0, we have:

W (r) = − 1

c2

(

2e2V0(r)V1(r) + 2eE V1(r)
)

, (4)

where E is the total energy of the system (sum of the
mass and binding energy). If we consider the interaction
with the nuclear magnetic field as a perturbation, we
have:

W (r) = ih̄e
[

2Ai(r)∂
i + [∂i, A

i(r)]
]

− e2Ai(r)Ai(r). (5)

To solve Eq. (2) using perturbation methods, we can ap-
ply a variable change to obtain an equation linear in the
energy. For this purpose, we consider the new variables
Er, the relativistic energy, and µr the relativistic reduced
mass [20]:











Er =
E2 − µ2c4

2µrc2
,

µr =
E

c2
.

(6)

With this new set of variables, Eq. (1) becomes:

[

Enl
r (0) + eV0(r) +

e2V 2
0 (r)

2µrc2
+

h̄2∇2

2µr

]

ϕnl
(0)(r) = 0, (7)

where ϕnl
(0)(r) is the solution of the KG equation without

perturbation. Similarly, Eq. (2) becomes:

[

Enl
r + eV0(r) +

e2V 2
0 (r)

2µrc2
+

h̄2∇2

2µr
− W (r)

2µr

]

ϕnl(r) = 0.

(8)
This equation can be written in the usual form for

perturbation expansion:

[H0(r) + W(r)] ϕnl(r) = Enl
r ϕnl(r), (9)

where

H0(r) = − h̄2∇2

2µr
− e2V 2(r)

2µrc2
− eV0(r), (10)

is the zeroth order Hamiltonian with solution:

H0 ϕnl
(0) = Enl

r (0) ϕnl
(0), (11)

and

W(r) =
W (r)

2µr
(12)

is the perturbation operator.
The first correction term to the energy can be calcu-

lated from the KG equation solutions with the perturba-
tion term (Eq. (9)) and without (Eq. (11)). Eigenvalues
and eigenfunctions of Eq. (9) can be written as a function
of the solutions of Eq. (11): Enl

r = Enl
r (0) + Enl

r (1) + · · ·
and ϕnl = ϕnl

(0) + ϕnl
(1) + · · · , where Enl

r (1) and ϕnl
(1) are

the corrections due to W (r).
The first order energy correction Enl

r (1) can easily

be calculated by multiplying Eq. (9) with (ϕnl
(0))

∗ and

Eq. (11) with (ϕnl)∗. Integrating the two equations over
the space coordinates and subtracting one to the other,
we obtain:

Enl
r (1) =

∫

V
(ϕnl

(0))
∗(r)W(r)ϕnl(r)d3r

∫

V (ϕnl
(0))

∗(r)ϕnl
(0)(r)d

3r

=

∫

V (ϕnl
(0))

∗(r)
W (r)

2µr
ϕnl

(0)(r)d
3r

∫

V (ϕnl
(0))

∗(r)ϕnl
(0)(r)d

3r
, (13)

or, with a more synthetic notation,

Enl
r (1) = 〈nl|W|nl〉 =

〈nl|W |nl〉
2µr

. (14)

We can now calculate the correction to the energy E =
E(0) + E(1) + · · · . Using Eq. (6) we obtain:

Enl
(1) =

c2〈W 〉

Enl
(0)

(

1 +
µ2c4

Enl
(0)

) . (15)

The zeroth order energy includes the mass energy of the
orbiting particle and its binding energy: E(0) = µc2 +
E(0). In the limit c → ∞, Eq. (15) reproduces the non-
relativistic perturbation theory correction

Enl
(1) = 〈nl|W|nl〉 =

〈nl|W |nl〉
2µr

, (16)

as we will see in a particular case in Sec. IV.
This results can be compared to the Feshbach-Villars

perturbation formalism [14, 15] or perturbation theory
for quadratic equations [16, 17] that predict a first energy
correction similar to Eq. (13):

Enl
FV (1) =

c2〈W 〉

2Enl
(0)

(

1 +
〈eV0〉
Enl

(0)

) . (17)

Both equations. (15) and (17) include relativistic cor-
rections but have a different form. If we make a develop-
ment in Zα of the denominator of the two equations we
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obtain

Enl
(1) =

c2〈W 〉
E(0)

{

1 − (Zα)2

2n2
+ O[(Zα)4]

}

, (18)

and

Enl
FV (1) =

c2〈W 〉
E(0)

{

1 − 2
(Zα)2

2n2
+ O[(Zα)4]

}

, (19)

where we used the virial theorem in the relativistic ap-
proximation:

〈eV0〉 = − (Zα)2

n2
+ O[(Zα)4] (20)

The two expressions differ already in order of (Zα)2

with a term proportional to (Zα)2/n2. Such a differ-
ence comes from the different approach of the perturba-
tion methods and cannot be explained from the formulas
above. However, the two perturbation techniques can be
compared to each other and with a self-consistent calcu-
lation, where all order perturbation terms are included.
The most probable is that this difference is canceled out
by higher order terms. Equation (15) is very suitable
for implementation in our code, as it does not require
evaluation of new quantities. As an example we take the
perturbation due to the vacuum polarization which will
be calculated in the next section using both formalisms.

III. THE VACUUM POLARIZATION AND

NUCLEAR FINITE SIZE CORRECTIONS

In this section we calculate the energy correction due to
the vacuum polarization and the finite size of the nucleus
in several pionic atoms with different atomic number Z
to compare the perturbative results with a self-consistent
calculation. This calculation has been performed us-
ing the multi-configuration Dirac-Fock (MCDF) code de-
veloped by one of the author (P.I.) and J.-P. Desclaux
[21, 22, 23, 24] that has been modified to include spin-0
particles case, even in the presence of electrons [25]. In
this code, the vacuum polarization and the finite size of
the nucleus can be taken into account self-consistently
introducing a correction V1(r) of the Coulomb potential
into the Klein-Gordon equation, and solving it numeri-
cally to find the eigenvalues and eigenfunctions [23, 25].

In the perturbation method, the vacuum polarization
and nuclear finite size energy corrections are obtained
by adding a perturbation V1 to the Coulomb potential
in Eq. (1) and deriving the corresponding perturbation
operator W . Considering only the first order correction,
we have:

W (r) = − 1

c2

(

2e2V0(r)V1(r) + 2eE V1(r)
)

. (21)

Equation (15) becomes:

E(0) = −2

e〈V1〉 +
〈e2V0V1〉

E(0)

1 +
µ2c4

E2
(0)

. (22)

In our case, V1 consist in two independent contribution:
V1(r) = δVV P (r) + δVFS(r) with δVV P (r) is due to the
vacuum polarization and δVFS(r) to the nuclear finite
size.

For the vacuum polarization contribution, we use the
well known expression [26, 27]:

δVV P (r) = −Zα

r

2α

3π

∫ ∞

1

e−2merζ

(

1 +
1

2ζ2

)

√

ζ2 − 1

ζ2
dζ.

(23)
For the nuclear finite size we use the model with a

sphere of radius R with constant charge density for r ≤
R:

δVFS(r) =











Zα

2R

[

(

r

R

)2

+
2R

r
− 3

]

for r ≤ R,

0 for r > R.

(24)

We consider here only the first order correction for the
vacuum polarization and nuclear finite size. Mixed ef-
fects of vacuum polarization and finite size and vacuum
polarization have not been taken into account in the per-
turbation method. For this reason, we restrict our study
to a few orbitals with a characteristic radius rn much
larger than the mean square radius 〈r2

N 〉1/2 of the nu-
cleus charge distribution. In particular we studied the
orbital 5g, 7i and 9l, where we chose the highest quan-
tum number ℓ to minimize the effect of the finite size of
the nucleus.

We compare in addition these relativistic calculations
to the non-relativistic ones, obtained using the clas-
sical perturbation theory to the Schrödinger equation
(Eq. (16)). Nuclear masses and radii and pion mass value
are obtained from Refs. [28, 29, 30].

The results are presented in Tables I, II and III and
Figs. 1 and 2. As expected, there is a noticeable differ-
ence between the non-relativistic and relativistic pertur-
bation predictions. The values provided by the linerized
and non-linerized KG equation perturbation approaches
are very close to the self-consistent prediction. These dif-
ferences can be compared with estimated error consider-
ing the second order non-relativistic perturbation correc-
tion and the numerical calculation accuracy represented
in the error bars.

As we can observe in Fig. 2, non-relativistic and rela-
tivistic approaches differ significantly for high values of
Z. In contrast, the relativistic prediction of the linear
equation and quadratic equation perturbations are very
close as expected from Eqs. (18) and (19). For levels like
5g and 7i we can observe a consistent systematic devi-
ation from the all-order treatment that can be justified
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TABLE I: Calculation of the vacuum polarization and nuclear finite size contributions for 5g level in pionic atoms with different
values of Z. The third and fourth columns are obtained solving the KG equation numerically with and without the correction of
the Coulomb potential. In the fifth column contains the energy correction values using the self-consistent method. In the sixth,
seventh and eight columns, the same correction via perturbation method using non-relativistic equation, the method presented
here (Eq. 15) and other relativistic methods (Eq. 17). The errors are estimated considering the second order non-relativistic
perturbation correction and the numerical calculation accuracy. All the energies are in eV.

Self-consistent method Perturbation methods
Z A KG point-like KG with Difference Non-relativistic This Other Estimated

VP and FS equation work methods error
1 1 -66.01929 -66.01929 0.00000 0.00000 0.00000 0.00000 -0.00002
6 12 -2696.58773 -2696.58905 -0.00132 -0.00131 -0.00131 -0.00131 0.00821
10 20 -7527.81474 -7527.86693 -0.05219 -0.05215 -0.05218 -0.05217 0.01297
14 27 -14783.52908 -14783.92736 -0.39828 -0.39788 -0.39821 -0.39817 0.01692
18 40 -24483.09997 -24484.63739 -1.53742 -1.53515 -1.53703 -1.53676 0.01975
24 52 -43566.94797 -43573.12527 -6.17730 -6.16341 -6.17516 -6.17323 0.02668
30 64 -68117.95088 -68134.47802 -16.52714 -16.47570 -16.52050 -16.51240 0.01577
36 84 -98158.34020 -98193.39920 -35.05900 -34.91720 -35.04450 -35.01980 -0.00167
54 132 -221127.11088 -221289.10783 -161.99695 -160.82100 -161.97300 -161.71700 -0.17107
68 166 -350944.01571 -351304.29187 -360.27616 -356.59200 -360.38800 -359.48800 -0.49383
70 174 -371943.45060 -372340.62147 -397.17087 -392.92800 -397.32700 -396.27500 -0.55850
82 208 -510802.11815 -511470.97918 -668.86103 -659.79900 -669.55100 -667.12400 -1.05531
92 238 -643443.65188 -644410.68941 -967.03753 -951.32600 -968.57900 -964.16800 -1.63385

TABLE II: Same as Table I for the 7i level.

Self-consistent method Perturbation methods
Z A KG point-like KG with Difference Non-relativistic This Other Estimated

VP and FS equation work methods error
1 1 -129.39786 -129.39786 0.00000 0.00000 0.00000 0.00000 0.00003
6 12 -5285.39072 -5285.48550 -0.09478 -0.09473 -0.09477 -0.09476 0.01612
10 20 -14755.12768 -14756.50027 -1.37259 -1.37100 -1.37206 -1.37191 0.02581
14 27 -28978.06835 -28984.33004 -6.26169 -6.25008 -6.25822 -6.25691 0.03640
18 40 -47993.31445 -48010.91916 -17.60471 -17.55820 -17.59240 -17.58630 0.05187
24 52 -85411.59441 -85464.00965 -52.41524 -52.21100 -52.37440 -52.34230 0.09682
30 64 -133560.98902 -133676.58146 -115.59244 -114.98000 -115.50400 -115.39400 0.18443
36 84 -192493.76030 -192707.78300 -214.02270 -212.55600 -213.88200 -213.58800 0.33220
54 132 -433934.66658 -434710.47673 -775.81015 -766.15500 -775.92900 -773.53500 1.32185
70 174 -730499.27884 -732187.04239 -1687.76355 -1656.16000 -1689.98000 -1681.27000 3.15465
82 208 -1003988.59321 -1006661.60628 -2673.01307 -2608.55000 -2679.91000 -2661.03000 5.34115
92 238 -1265627.98781 -1269342.57978 -3714.59197 -3605.80000 -3728.14000 -3695.20000 7.73467

TABLE III: Same as Table I for the 9l level.

Self-consistent method Perturbation methods
Z A KG point-like KG with Difference Non-relativistic This Other Estimated

VP and FS equation work methods error
1 1 -39.93759 -39.93759 0.00000 0.00000 0.00000 0.00000 0.00001
6 12 -1631.26018 -1631.26019 -0.00001 -0.00001 -0.00001 -0.00001 0.00497
10 20 -4553.79390 -4553.79548 -0.00158 -0.00158 -0.00158 -0.00158 0.00785
14 27 -8942.85561 -8942.87772 -0.02211 -0.02210 -0.02212 -0.02211 0.01027
18 40 -14810.03338 -14810.15802 -0.12464 -0.12451 -0.12462 -0.12461 0.01220
24 52 -26353.00196 -26353.71952 -0.71756 -0.71648 -0.71748 -0.71735 0.01459
30 64 -41201.50547 -41203.92789 -2.42242 -2.41731 -2.42206 -2.42134 0.01644
36 84 -59368.00967 -59374.06286 -6.05319 -6.03645 -6.05212 -6.04954 0.01794
54 132 -133708.75011 -133746.21596 -37.46585 -37.27810 -37.46190 -37.42610 0.03660
70 174 -224834.43411 -224940.55071 -106.11660 -105.33700 -106.13200 -105.96132 0.10296
82 208 -308686.03304 -308878.57298 -192.53994 -190.75600 -192.63300 -192.20900 0.22746
92 238 -388739.34149 -389031.55931 -292.21782 -288.99100 -292.44900 -291.64000 0.38309
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FIG. 1: Comparison between self-consistent and perturba-
tion calculation for different pionic atoms. The error bars of
the values are estimated considering the second order non-
relativistic perturbation correction and the numerical calcu-
lation error.

by the existence of a non-negligible contribution of the
nuclear charge distribution radius, and higher-order vac-
uum polarization contribution. The large contribution
of the neglected higher order perturbation terms (rep-
resented by error bars in the figures) doesn’t allow us
to draw any clear cut conclusion: both predictions do
not differ by more than two standard deviations from
the all-order calculation. We can only suppose that this
systematic deviation between the two relativistic pertur-
bation methods will be canceled by the contribution of
the higher order perturbation terms not considered here.

IV. THE HYPERFINE STRUCTURE IN PIONIC

AND KAONIC ATOMS

The hyperfine structure in pionic and kaonic atoms
arises from the interaction between the nuclear magnetic
moment and the orbital magnetic moment of the particle
that can be taken into account by introducing a new term
in the KG equation.

This term is obtained from the multipole development
of the nuclear electromagnetic field [31, 32, 33]. Non-
relativistic calculations for the pionic atom hyperfine
structure can be found in Ref. [34, 35, 36]. Other theoret-
ical predictions for HFS including relativistic corrections
can be found only for spin- 1

2 nucleus [37, 38]. Contrary to
these methods, our technique is not restricted to this case
and it can be used for an arbitrary value of the nucleus
spin including automatically the relativistic effects.
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FIG. 2: Ratio between self-consistent and perturbation cal-
culation as a function of the atomic number Z. Top: 5g level,
middle: 7i level, bottom; 9h level. The error bars of the val-
ues are estimated considering the second order non-relativistic
perturbation correction and the numerical calculation error.
Values in the right of the vertical line are considerably affected
from the nuclear finite size effects (rn/ < r2

N >1/2≥ 5%). For
these cases, vacuum polarization and finite size mixed contri-
bution, not considered here, could influence significantly the
results.
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A. Calculation of the operator

The expression for W (r) in the HFS case is derived
using the multipole development of the vector potential
A(r) in the Coulomb gauge [32]. We neglect here the
effect due to the the spatial distribution of the nuclear
magnetic moment in the nucleus [39] (Bohr-Weisskopf
effect), while effect due to the charge distribution (Bohr-
Rosenthal effect) are included.

The hyperfine structure due to the magnetic dipole
interaction is obtained by taking into account the first
magnetic multipole term. Using the Coulomb gauge [31,
32] we have:

A(r) = −i
µ0

4π

√
2r−2

C
11 ◦ M

1. (25)

where the symbol “◦” indicates here the general scalar
product between tensor operators. M

1 operates only on
the nuclear part |ImI〉 and C

11 on the pion part |nlm〉
of the wave function. Using this expression, we can de-
compose the perturbation term W (r) as:

W (r) = W1(r) + W2(r), (26)

where

W1(r) = +ih̄e
[

2Ai(r)∂
i + [∂i, A

i(r)]
]

, (27)

is the linear part and

W2(r) = −e2Ai(r)Ai(r), (28)

is the quadratic part.
We study first the operator W1. We note that

[∂i, A
i(r)] = −~∇ · A(r) = 0 since we are using the

Coulomb gauge. In this case we have:

W1(r) = +2ih̄eAi(r)∂
i = −2ih̄eA(r) · ~∇ =

− eµ0h̄

√
2

2π
r−2(C11 · ~∇) ◦ M

1. (29)

Using the properties of the spherical tensor [32, 40], we
can show that:

C
11
q · ~∇ = −r−1

√
2

Lq, (30)

where Lq is the dimensionless angular momentum oper-
ator in spherical coordinates. The perturbation operator
can be written as a scalar product in spherical coordinate
of the operator T

1 acting on the pion wavefunction, and
the nuclear operator M

1:

W1(r) =
eµ0h̄

2π
r−3(L ◦ M

1) = T
1 ◦ M

1 (31)

with

T 1
q =

eµ0h̄

2π
r−3Lq. (32)

The expected value of the operator W1 can be evalu-
ated applying the scalar product properties in spherical
coordinates [40, 41]:

〈n′l′IF ′m′
F |W1|nlIFmF 〉 = (−1)l+I+F δFF ′δmF m′

F
δII′×

{

F I l′

1 l I

}

〈n′l′‖T 1‖nl〉〈I‖M1‖I〉, (33)

where
{ a b c

d e f

}

represents a Wigner 6-j symbol. The

reduced operator 〈n′l′‖T 1‖nl〉 is calculated from the ma-
trix elements 〈n′l′m′|T 1

q |nlm〉 by a particular choice of
the quantum numbers m and q applying the Wigner-
Eckart theorem:

〈n′l′‖T 1‖nl〉 = δl0
(−1)l−1

(

l 1 l
−1 0 1

) 〈n′l′1|T 1
0 |nl1〉 =

= δl0

√
l
√

l + 1
√

2l + 1
eµ0h̄

2π
〈n′l′1|r−3Lz|nl1〉 =

= δl0δll′
√

l
√

l + 1
√

2l + 1
eµ0h̄

2π
〈n′l|r−3|nl〉, (34)

where
( a b c

d e f

)

indicates the Wigner 3-j symbol.

The nuclear operator can be related to the magnetic
moment on the nucleus by 〈II|M1

0 |II〉 = µIµN [32, 33]
where µI is the nuclear dipole momentum in units of the
nuclear magneton µN = eh̄/2mpc:

〈I‖M1‖I〉 =
µIµN

(

I 1 I
−I 0 I

) . (35)

Considering Eq. (32), the total expression for W1(r)
becomes:

〈n′l′IF ′m′
F |W1|nlIFmF 〉 =

= δFF ′δmF m′

F
δll′µIµN×

eµ0h̄

2π

F (F + 1) − I(I + 1) − l(l + 1))

2I
〈n′l|r−3|nl〉. (36)

which, as expected, is equal to zero for l = 0 (then I =
F ).

To find the final expression of the HFS energy shift,
we have to evaluate the contribution of the operator
W2(r) = −e2Ai(r)Ai(r) in the 〈W 〉 diagonal terms. Us-
ing Eq. (25), we have:

〈nlIFmF |W2|nlIFmF 〉 = +2
(eµ0

4π

)2

×

〈nlIFmF |(r−2
C

11 ◦ M
1) · (r−2

C
11 ◦ M

1)|nlIFmF 〉.
(37)

We are in presence of three independent scalar products:
two scalar products between the tensor C

11 and the vec-
tor M

1, and the scalar product between the vectorial op-
erators C

11 ◦ M
1. The “·” scalar product in W2 can be
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decomposed using the properties of the reduced matrix
elements of a generic operator product XK , of rank K,
between non-commutating tensor operators Uk and V k

of rank k. For our case, this scalar product corresponds
to a tensor product with K = 0, and k = 1:

X0 = U1 · V 1 = (r−2
C

11 ◦ M
1) · (r−2

C
11 ◦ M

1), (38)

U1 = V 1 = (r−2
C

11 ◦ M
1). (39)

We have [40]:

〈nlIF ||X0||nlIF 〉 =
∑

F ′

{

1 1 0
F F F ′

}

×

〈nlIF ||U1||nlIF ′〉〈nlIF ′||V 1||nlIF 〉. (40)

V
1 and U

1 are scalar products between commuta-
tive tensor operators, and their reduced matrix element
〈F ′||V ||F 〉 can be calculated applying again the Wigner-
Eckart theorem for the component q = 0:

〈nlIF ′||V 1||nlIF 〉 =
〈nlIF ′F ′|V 1

0 |nlIFF 〉
(

F ′ 1 F
−F ′ 0 F

) . (41)

where [42]:

V 1
0 = U1

0 = r−2(C11 ◦ M
1)0 = r−2

∑

q

(−1)q q√
2
C1

q M1
−q,

(42)
which can be written as:

V 1
0 = U1

0 = G1 · M1 =
∑

q

(−1)qG1
qM

1
−q, (43)

where

G1
q =

q√
2
C1

q . (44)

Using again the tensor operator properties, it is possible
to decompose the V0 and U0 matrix elements:

〈nlIF ′F ′|V0|nlIFF 〉 = r−2(−1)l+I+F δFF ′δmF m′

F
×

{

F I l
1 l I

}

〈nl||r−2G1||nl〉〈I||M1||I〉. (45)

The reduced matrix element 〈||r−2G1||〉 is the same for
any choice of q and in particular q = 0. It is thus equal
to zero due to its expression and to the properties of the
spherical harmonics and of the 3j-symbols. This result
implies that the reduced matrix elements of U1 and V 1

are always equal to zero. As a consequence, the diagonal
elements 〈Ai(r)Ai(r)〉 = 0 for any wavefunction, i.e., W2

does not contribute to the HFS energy shift.

We can now write the final expression for the HFS
energy correction:

EnlF
(1) =

µIµNeµ0h̄

2πµ

(

1 +
Enl
0

µc2

)[

1 +

(

1 +
E0

µc2

)−2
]×

[

F (F + 1) − I(I + 1) − l(l + 1)

2I

]

〈nl|r−3|nl〉. (46)

This formula is obtained by a perturbation approach
of the KG equation. For this reason, all the relativistic
effects are automatically included in Eq. (46). In the
non-relativistic limit c → ∞ we find the usual expression
of the HFS for the Schödinger equation [43]

B. Numerical results and behaviors

We present here some calculations for a selection of
pionic and kaonic atom transitions. The first part is
dedicated to the 5 → 4 transitions in pionic nitrogen,
essential to deduce a pion mass value from a recent mea-
surement of the 5g → 4f transition in pionic nitrogen
[10, 11, 12, 13, 18] and for the proposed kaon mass mea-
surement [2]. In the second part we will study the de-
pendence of the HFS splitting against Z to observe the
role of the relativistic corrections.

1. Calculation of the energy levels of pionic and kaonic

nitrogen

The precise measurement of 5g → 4f transition in pi-
onic nitrogen and the related QED predictions allow for
the precise measurement of the pion mass. In the same
way, the transition 8k → 7i in kaonic nitrogen can be
used for a precise mass measurement of the kaon[2]. For
this transitions, strong interaction effects between meson
and nucleus are negligible, and the level energies are di-
rectly dependent to the reduced mass of the atom. The
nuclear spin of the nitrogen isotope 14N is equal to one
leading to the presence of several HFS sublevels. The
observed transition is a combination of several different
transitions between these sublevels, causing a shift that
has to be taken into account to extract the pion mass
from the experimental values. Transition probabilities
between HFS sublevels can easily be calculated using the
non-relativistic formula [27, 43] (the role of the relativis-
tic effects is here negligible), if one neglect the HFS con-
tribution to the transition energy:

AnlIF→n′ l′IF ′ =

(2F + 1)(2F ′ + 1)

2I + 1

{

l′ F ′ I
F l 1

}2

Anl→n′l′ , (47)
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TABLE IV: Energy (in eV) contribution for the selected levels
in pionic nitrogen. The first error take into account neglected
next order QED corrections. The second is due to the accu-
racy of the pion mass (±2.5 ppm).

5g-4f 5f-4d
Coulomb 4054.1180 4054.7189
Finite size 0.0000 0.0000
Self Energy -0.0001 -0.0003
Vac. Pol. (Uehling) 1.2485 2.9470
Vac. Pol. Wichman-Kroll -0.0007 -0.0010
Vac. Pol. Loop after Loop 0.0008 0.0038
Vac. Pol. Källén-Sabry 0.0116 0.0225
Relativistic Recoil 0.0028 0.0028
HFS Shift -0.0008 -0.0023
Total 4055.3801 4057.6914
Error ±0.0011 ±0.0011
Error due to the pion mass ±0.010 ±0.010

TABLE V: Hyperfine transition energies and transition rate
in pionic nitrogen.

Transition F-F’ Trans. rate (s−1) Trans. E (eV) Shift (eV)

5f → 4d 4-3 4.57 × 1013 4057.68762 -0.00605
3-2 3.16 × 1013 4057.69708 0.00341
3-3 2.98 × 1013 4057.68457 -0.00910
2-1 2.13 × 1013 4057.70313 0.00946
2-2 2.25 × 1013 4057.69479 0.00112
2-3 0.01 × 1013 4057.68229 -0.01138

5g → 4f 5-4 7.13 × 1013 4055.37793 -0.00304
4-3 5.47 × 1013 4055.38210 0.00113
4-4 5.27 × 1013 4055.37616 -0.00481
3-2 4.17 × 1013 4055.38514 0.00417
3-3 0.36 × 1013 4055.38068 -0.00029
3-4 0.01 × 1013 4055.37474 -0.00623

where

Anl→n′l′ =
4(Enl − En′ l−1)

3

3m2c4h̄

α

(Zα)2
l

2l + 1
(Rn′ l−1

nl )2,

(48)
with

Rn′l′

nl =
1

a2
0

∫ ∞

0

ϕ∗
nl(r)ϕn′l′(r)r

3dr, (49)

where a0 = h̄/(µcZα) is the Bohr radius.
For these calculations, presented in Tables IV and

IVB 1 we used the nitrogen nuclear mass value from
Ref. [28]. The Coulomb term in the Table includes
the non-relativistic recoil correction using the reduced
mass on the KG equation. The pion and nucleus charge
distribution contribution are also included. The pion
charge distribution radius contribution is included fol-
lowing [25, 44]. For the pion charge distribution ra-
dius we take rpion = 0.672 ± 0.08 [30]. For the nuclei

we take values from Ref. [29]. The leading QED cor-
rections, vacuum polarization, contribution is calculated

FIG. 3: Diagrams relative to the unevaluated QED contri-
butions: second order recoil correction (top), and vacuum
polarization and self-energy mixed diagrams (bottom). Their
effects are estimated using the available formulas for spin- 1

2

particles.

self-consistently, thus taking into account the loop-after-
loop contribution to all orders, at the Uehling approxima-
tion. This is obtained by including the Uehling potential
into the KG equation [23]. Other Higher-order vacuum
polarization contribution are calculated as perturbation
to the KG equations: Wichman-Kroll and Källén-Sabry

[45, 46]. The self-energy is calculated using the expres-
sion in Ref. [47] and it includes the recoil correction. The
Relativistic recoil term has been evaluated adapting the
formulas from Refs. [38, 48] (more details can be found
in Ref. [13]). The calculations presented here do not take
into account second order recoil effects (Fig. 3 top), or
higher QED corrections as vacuum polarization and self-
energy mixed diagrams (Fig. 3 botton). The contribution
from these terms has been estimated using the formula
for a spin- 1

2 particle with a mass equal to the pion’s.
For the 5 → 4 pionic nitrogen transitions, vacuum po-
larization and self-energy mixed diagrams contribute in
the order of 1 meV for the diagram with the vacuum
polarization loop in the nuclear photon line [49] (Fig. 3
bottom-left), and 0.0006 meV for the diagram with the
vacuum polarization loop inside the self-energy loop [50]
(Fig. 3 bottom-right). The second order recoil contribu-
tions are in the order of 0.04 meV [51] (Fig. 3 top). The
largest contribution comes from the unevaluated diagram
with the vacuum polarization loop in the nuclear photon
line [49].

Assuming a statistical population distribution of the
HFS sublevels, we can use Eq. (47) to calculate the mean
value of the transitions using the results in Table IVB 1.
Comparing this calculation with the one without the
HFS, we obtain a value for the HFS shift. For transi-
tions 5g → 4f and 5f → 4d we obtain shifts of 0.8 and
2.2 meV, respectively. These values correspond to a cor-
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TABLE VI: Energy (in eV) contribution for the selected levels
in kaonic nitrogen. The first error take into account neglected
next order QED corrections. The second is due to the accu-
racy of the kaon mass (±32 ppm).

8k-7i 8i-7h
Coulomb 2968.4565 2968.5237
Finite size 0.0000 0.0000
Self Energy 0.0000 0.0000
Vac. Pol. (Uehling) 1.1678 1.8769
Vac. Pol. Wichman-Kroll -0.0007 -0.0008
Vac. Pol.two-loop Uehling 0.0007 0.0016
Vac. Pol. Källén-Sabry 0.0111 0.0152
Relativistic Recoil 0.0025 0.0025
HFS Shift -0.0006 -0.0008
Total 2969.6374 2970.4182
Error 0.0005 0.0005
Error due to the kaon mass 0.096 0.096

TABLE VII: Hyperfine transition energies and transition rate
in kaonic nitrogen.

Transition F-F’ Trans. rate (s−1) Trans. E (eV) Shift (eV)
8i → 7h 7-6 1.19 × 1013 2970.41691 -0.00216

6-5 1.00 × 1013 2970.41956 0.00050
6-6 0.98 × 1013 2970.41453 -0.00453
5-4 0.84 × 1013 2970.42172 0.00265
5-5 0.03 × 1013 2970.41753 -0.00154
5-6 0.00 × 1013 2970.41250 -0.00656

8k → 7i 8-7 1.54 × 1013 2969.63649 -0.00149
7-6 1.33 × 1013 2969.63827 0.00029
7-7 1.31 × 1013 2969.63472 -0.00326
6-5 1.15 × 1013 2969.63976 0.00178
6-6 0.03 × 1013 2969.63673 -0.00126
6-7 0.00 × 1013 2969.63318 -0.00480

rection to the pion mass between 0.2 and 0.6 ppm.

The transition energies for the 8 → 7 transitions in
kaonic nitrogen are presented in Tables VI and IVB 1.
As for the pionic nitrogen, the error contribution due
to the QED correction not considered is dominated by
the unevaluated diagram with the vacuum polarization
loop in the nuclear photon line [49], the associated cor-
rection is estimated in the order of 0.5 meV. For 8k → 7i
and 8i → 7h transitions we have a HFS shift of 0.6 and
0.8 meV, respectively, which correspond to a correction
of the kaon mass between 0.2 and 0.3 ppm.

As a general note, we remark that if we assume a sta-
tistical distribution of the initial state sublevels popula-
tions, transitions nl → n′s with a s orbital as final state
have an average HFS shift equal to zero due to an ex-
act cancellation between the weighted excited sublevels
energy shifts as seen from Eq. (47).

TABLE VIII: HFS separation of the F=1/2 and F=3/2 levels
for the 9p orbital for pionic atoms with spin 1

2
nucleus

Element Z 9p energy (eV) HFS splitting (eV)
H 1 0.0000 0.0001
3He 2 -174.8370 -0.0009
13C 6 -1633.4017 0.0060
15N 7 -2226.8125 -0.0039
19F 9 -3689.4351 0.0767
31P 15 -10286.6344 0.1544
57Fe 26 -31023.6282 0.0642
77Se 34 -53146.2137 0.8284
89Y 39 -69987.0032 -0.3139
107Ag 47 -101681.1985 -0.4257
129Xe 54 -134178.0092 -4.1177
183W 74 -250634.4239 1.2562
202Pb 82 -306731.5682 7.8151

2. General behavior of the hyperfine structure correction

over Z

For the non-relativistic case, the HFS splitting normal-
ized to the binding energy and to the nuclear magnetic
moment, depends linearly on Zα. Any deviation from
this linear dependence in the Klein-Gordon HFS can be
attributed only to relativistic effects.

To study the behavior of the normalized HFS splitting
(E9p

F=3/2 − E9p
F=3/2)/(E0µI) for the relativistic case, we

calculated the HFS for a selected choice of pionic atoms
with a stable nucleus of spin 1/2. The orbital 9p has
been chosen to minimize the effect of the finite nuclear
size and strong interaction shifts, particularly for high
values of Z. The results are summarized in Table IVB 2.
For these calculations we used the nuclear mass values
from Ref. [28], the nuclear radii from Refs. [29, 52] and
the nuclear magnetic moments from Ref. [53].

For higher Z values a non-linear dependence on Zα
appears as we can see in Fig. IVB 2. This non-linearity
originates in the two different parts of Eq. (46): the non-
trivial dependency on E0 in the denominator and the ex-
pectation value 〈nl|r−3|nl〉.

V. CONCLUSIONS

We have presented here a new perturbation method
for the Klein-Gordon equation in bound systems, that
is very easy to implement in computer codes. We ap-
ply this new method to calculate the HFS of pionic and
kaonic atoms using the formalism presented in this pa-
per. The precise evaluation of the specific case of pionic
and kaonic nitrogen is particularly important for the new
measurement of the pion and kaon mass. The small error
on the theoretical predictions, of the order of 1 meV for
the 5 → 4 transition, corresponds to a systematic error
of ≈ 0.34 ppm for the pion mass evaluation, considerably
smaller than the error of previous theoretical predictions
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FIG. 4: Value of relative splitting (E9p
F=3/2

−E9p
F=3/2

)/(E0µI)

for pionic atoms with different values of Z. Nuclear masses,
radii and magnetic moments values have been obtained from
Refs. [28, 29, 52, 53].

[54].
The perturbation method for the Klein-Gordon equa-

tion has been used for the calculation of the HFS of pi-
onic atoms, but it can be applied to different types of

perturbation. For mesonic atoms with high Z, the nu-
clear quadrupole moment may not be negligible. The
effect of such moments can be easily evaluated using the
same perturbation method. In this case, HFS due to
the quadrupole moment can be predicted using the next
multipole in the development of the electric potential of
the nucleus to evaluate the correspondent perturbation
operator. In the same way, strong interaction effects can
be taken into account introducing the optical potential
[36, 55] as perturbation. These two applications are very
important for the calculation of the atomic levels in heavy
pionic ions, where the relativistic effects, automatically
taken into account by the KG equation, are not negligi-
ble.
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