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An extensive comparison of 0-1 linear programs
for the daily satellite mission planning

Virginie Gabrel∗

Résumé
Dans ce papier, nous comparons plusieurs programmes linéaires en variables 0-1

pour résoudre le problème de la planification quotidienne des prises de vue à réaliser
par un système d’observation de la Terre par satellite. Plusieurs heuristiques ont déjà
été proposées pour résoudre ce problème combinatoire difficile. Afin d’évaluer la
qualité des solutions approchées trouvées, il est utile de formuler le problème sous la
forme d’un programme linéaire en variables 0-1. En effet, les valeurs des solutions
optimales des relaxations continues fournissent des bornes supérieures de la valeur
du problème. Dans ce papier, nous considérons deux modèles et nous expliquons
pourquoi l’un des deux fournit nécessairement une meilleure borne. Notre démons-
tration se base sur les représentations du polytope de stable pour les graphes parfaits.
Puis, nous calculons ces bornes sur des instances réalistes. Des améliorations encore
possibles sont suggérées.

Mots-clefs :Optimisation combinatoire, polytope du stable, planification de missions
spatiales, graphe de cocomparabilité

Abstract

In this paper, we compare several 0-1 linear programs for solving the satellite
mission planning problem. Several heuristics have already been used to solve this
difficult combinatorial problem. In order to assess the quality of the obtained approx-
imate solutions, some 0-1 linear formulations have been proposed. Indeed, optimal
solution values of linear relaxations provide upper bounds of the optimal solution
value. In this paper, we consider two models and explain why one of both systemat-
ically compute lower upper bounds. Our explanation is based on stable set polytope
formulations for perfect graphs. Then, we propose new upper bounds for some big
size benchmark instances. Some improvement are also suggested.

Key words : Combinatorial optimization, stable set polytope, satellite mission plan-
ning, cocomparability graph
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1 Introduction

The mission planning problem of a low earth orbit satellite is the problem of choosing
a set of photographs to be taken by the satellite during a planning horizon in order to
satisfy a maximal part of the requested images. The mission planning problem of SPOT5
satellite has been the subject of numerous studies ([2], [3], [8], [4], [9]). Different approx-
imate methods ([2], [8]) have been proposed and applied to the set of instances proposed
in [3]. To assess the quality of the obtained approximate solutions, we need to compute
tight upper bounds : in [2], the planning problem is formulated like a 0-1 linear program
; we have proposed in [4] another 0-1 linear formulation, using decomposition and flow
formulation. In [9], a specific algorithm is proposed to compute very good upper bounds.
In this paper, we explain why our 0-1 linear formulation presents a much smaller inte-
grality gap than the formulation proposed in [2]. We compute upper bounds for all the
instances proposed in [3]. These bounds are greater than those found in [9] but our results
can easily be strengthened with some additional improvements.

2 Different formulations for the daily satellite mission plan-
ning problem

2.1 The daily satellite mission planning problem

The SPOT satellite constitutes a family of Earth observation satellites, which are de-
velopped by the CNES (french Centre National d’Etudes Spatiales). SPOT5 has been
launched in 2002. It is equipped with three viewing instruments (front, middle and rear)
which can take two types of images : the mono image need one of the three instruments
and the stereo image need the front and the rear instruments. The daily satellite mission
planning problem of the SPOT5 satellite consists in deciding each day which image will
be taken the next day in order to satisfy a maximal number of clients. The problem can
be described as follows:

• The set of candidate images is known.

• A weight is associated with each image.

• The starting time and the completion time for taking each image is known.

• On an instrument, the main constraints concern the non-overlapping and the respect
of a minimal transition time between two successive images.

• The total number of images is limited (due to limitation of the on-board recording
capacity).
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• Some images cannot be taken simutaneously on different instruments (it is due to
limitation of the instantaneous data flow through the satellite telemetry).

Each day, a set of images to be taken must be chosen in order to maximize the sum of
the weights of selected images and to satisfy all constraints.

2.2 The "natural" model

In [2], a 0-1 linear program is proposed to modelize the daily mission planning problem
of SPOT5. The model is quite natural: each imagei (i = 1, . . . , n) that can be taken by
an instrumentc (with c ∈ {1, 2, 3}) is represented in the model by a 0-1 variablexc

i .

The proposed linear program, denoted S5N, is:

(S5N)




max
∑

(i,c)∈S

wix
c
i

∑
c:(i,c)∈S

xc
i ≤ 1 ∀i ∈ M (1N)

x1
i − x3

i = 0 ∀i ∈ T (2N)
xc

i + xc
j ≤ 1 ∀{(i, c), (j, c)} ∈ Ω (3N)∑

(i,c)∈Λk

xc
i ≤ δk k = 1, . . . , K (4N)

∑
(i,c)∈S

zc
i x

c
i ≤ z (5N)

xc
i ∈ {0, 1} ∀(i, c) ∈ S

where

• S denotes the set of all feasible couples(i, c), andwi the weight of the imagei,

• linear inequalities(1N) correspond to the fact that each mono imagei (M denotes
the mono set) must be taken by at most one camera,

• linear equalities(2N) correspond to the fact that each stereo imagei (T denotes the
stereo set) must either be simultaneously taken by the front camera (numbered by
1) and the rear one (numbered by 3) or not be taken.

• linear inequalities(3N) correspond to constraints induced by non-overlapping and
minimal transition time between two images taken on a same instrument, whereΩ
denotes the set of two couples{(i, c), (j, c)} linked by these constraints.

• constraints(4N) correspond to the constraints induced by limitation between several
instruments, whereΛk denotes the set of two or three couples linked by constraint
k andδk equals to| Λk | −1,
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• constraint(5N) corresponds the limitation on recording capacity wherezc
i is the

memory size necessary for recording on board imagei taken by camerac andz the
total memory size available.

The optimal solution value of the linear relaxation ofS5N, denotedv(S5N), is an obvious
upper bound forv(S5N). But, as shown in section 4, the integrality gap betweenS5N and
S5N is huge. Thus, we propose another strengthened 0-1 linear formulation.

2.3 The flow formulation

In [4], we propose another model based on a decomposition of the initial problem into
three sub-problems, one per camera. Sub-problem on camerac (c = 1, 2, 3) concerns
the choice of images to be taken by camerac considering only constraints related to non-
overlapping and respect of a minimal transition time between two successive photographs.
We denoteSc the set of images that can be taken by camerac and we define two binary
relations onSc × Sc.

Definition 1 For (i, j) ∈ Sc × Sc, (i, j) belongs to the incompatibility relation, denoted
Ic, if and only if i and j cannot be taken together because they use the camera c at the
same moment or the transition time between the two shots is not sufficient.

Let us remark that constraints3N in S5N describe the incompatibility relation on each set
Sc.

Definition 2 For (i, j) ∈ Sc × Sc, (i, j) belongs to the enchainability relation, denoted
Ec, if and only if j is taken after i with the instrument c.

The incompatibility relation is symmetric while the enchainability relation is clearly anti-
symmetric. Moreover, the enchainability relation is not necessarily transitive (it depends
on satellite capacities).

Considering the enchainability relation, the sub-problem of choosing a set of images
to be taken by an instrumentc can be represented by a directed graph, namely the en-
chainability graph denotedGc

E = (V c, Ec), defined as follows:

• V c represents the setSc (with | Sc |= nc) of images that can be taken by camerac
(with the following convention: a couple(i, c) is represented by vertex numbered
by i in V c), plus two fictitious vertices numbered by0 andnc + 1 respectively the
root and the anti-root ofGc

E ,

• each vertexi in V c is associated with the weightwi of imagei (w0 andwnc+1 are
equal to 0),
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• Ec represents the enchainability relation defined onSc × Sc, plus arcs(0, i) and
(i, nc + 1) for all i = 1, . . . , nc, and(0, nc + 1).

It appears thatGc
E is circuit-free since any arbitrary circuit(i1, i2, . . . , iq, i1) in Gc

E leads
to the following contradiction:i1 is taken beforeik andik is taken beforei1.

Any feasible sequence of images taken on camerac can be represented by vertices
belonging to a pathµ[0, nc + 1] = {i1 = 0, i2, . . . , iq = nc + 1} from 0 to nc + 1 in
Gc

E . Respectively, any pathµ from 0 to nc + 1 in Gc
E represents a sequence of images

taken on camerac. This sequence respects all the constraints related to non-overlapping
and respect of a minimal transition time between images if and only ifEc is transitive,
otherwise some of these binary constraints may be violated. Indeed, ifEc is transitive,
all verticesij and ij+k belonging toµ, with k a strictly positive integer, are such that
(ij, ij+k) ∈ Ec. Otherwise, it may exist some verticesij andij+k belonging toµ (with
k ≥ 2) such that(ij, ij+k) /∈ Ec. Consequently, associated constraintsxc

ij
+ xc

ij+k
≤ 1

are not respected by the sequence of images corresponding toµ. In fact, the part of3N

constraints excluded fromGc
E are represented by arcs not inEc but belonging to the tran-

sitivity closure ofGc
E , denotedĜc

E = (V c, Êc) (obviouslyÊc = Ec whenGc
E is transitive).

So, the daily mission planning problem can be rewritten in terms of paths from0 to
nc + 1 in Gc

E , with c = 1, 2, 3, using the classical vertex-arc formulation as follows:

(S5VA)




max
n∑

i=1

3∑
c=1

wi

∑
j∈ΓGc

E (i)

ϕc
ij

3∑
c=1

∑
j∈ΓGc

E (i)

ϕc
ij ≤ 1 ∀i ∈ M (1VA)

∑
j∈Γ

G1
E
(i)

ϕ1
ij −

∑
j∈Γ

G3
E
(i)

ϕ3
ij = 0 ∀i ∈ T (2VA)

Acϕc = bc ∀c = 1, 2, 3 (3VA)

∑
j∈ΓGc

E (i) ϕc
ij +

∑
k∈ΓGc

E (jk) ϕc
jk ≤ 1 ∀(i, j) ∈ Êc \ Ec (3+

VA)∑
(i,c)∈Λk

∑
l∈ΓGc

E (i)

ϕc
il ≤ δk ∀k = 1, . . . , K (4VA)

3∑
c=1

n∑
i=1

zc
i

∑
j∈ΓGc

E (i)

ϕc
ij ≤ z (5VA)

ϕc
ij ∈ {0, 1} ∀(i, j) ∈ Ec ∀c = 1, 2, 3.
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where each binary variableϕc
ij is associated with arc(i, j) ∈ Ec, ΓGc

E (i) is the set of
nodes adjacent toi in Gc

E , Ac is the vertex-arc incidence matrix ofGc
E , bc is annc + 2

vector with all coefficients equal to 0 except the first equals to 1 and the last equals to−1.

S5VA is defined fromS5N by replacing variablesxc
i by

∑
j∈ΓGc

E (i) ϕc
ij in all integer

linear program excepted for3N constraints corresponding to arcs inEc. Constraints3N

corresponding to arcs inEc are translated in terms of paths with constraints3VA.

The optimal solution value of the linear relaxation ofS5VA, denotedv(S5VA), is an
upper bound forv(S5VA) equals tov(S5N). In the next section, we show thatv(S5VA) ≤
v(S5N).

3 Models comparison

In [8], the daily mission planning problem is seen as a knapsack problem with a huge
number of additional logic constraints on variables. In order to compareS5VA andS5N, we
prefer to consider this problem as a maximum weighted stable set problem with additional
linear constraints. Indeed, on each camerac, a set of images that can be taken together
can be represented by a stable set in a graph, namely the incompatibility graph, denoted
Gc

I = (Xc, Ic), defined as follows:

• Xc represents the setSc (with | Sc |= nc) of images that can be taken by camerac
(with the same convention: a couple(i, c) is represented by vertex numbered byi
in Xc),

• each vertexi in Xc is associated with the weightwi of imagei

• Ic represents the incompatibility relation defined onSc × Sc.

Any set of images that can be taken on camerac corresponds to a set of vertices
belonging to a stable set inGc

I . Respectively, any stable set inGc
I represents a set of

images that can be taken on camerac. In the following section, we recall some well-
known results about stable set polytope formulations.

3.1 About the stable set polytope

Let us consider the stable set problem in an arbitrary graphG = (V,E). The stable set
polytope, usually denotedSTAB(G) can be written that way:

STAB(G) = conv(xS ∈ {0, 1}|V | : S ⊆ V is a stable set inG).
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wherexS is the incidence vector ofS.

The stable set polytope and its LP-relaxation has been the subject of numerous studies
(see i.e [6]).
Theedge constraintsof the form

xi + xj ≤ 1 ∀(ij) ∈ E

are facet-defining inequalities ofSTAB(G). And we have:

STAB(G) = conv(x ∈ {0, 1}|V | : x satisfies all edge constraints)

In general cases, theedge polytopedefined as follows

ESTAB(G) = {x ∈ R
|V |
+ : x ≤ 1 and satisfies all edge constraints}

is not equal to the stable set polytope (except for bipartite graphs, see i.e [6]). In other
words, all edge constraints are not sufficient to describe the stable set polytope, additional
facet-defining inequalities must be introduced.
Obviously,maximal clique constraintsof that form

∑
i∈Q

xi ≤ 1, with Q ⊆ V

whereQ is a maximal clique inG, generalize edge constraints. Theclique polytope(also
called fractional stable set polytope) is defined as follows

QSTAB(G) = {x ∈ R
|V |
+ : x satisfies all maximal clique constraints}

For arbitrary graph, we haveSTAB(G) ⊆ QSTAB(G) ⊆ ESTAB(G). But, if G is a per-
fect graph, it appears thatSTAB(G) = QSTAB(G).

3.2 Stable set polytope and daily mission planning problem formula-
tions

For a givenc, constraintsxc
i + xc

j ≤ 1 ∀(i, j) ∈ Ic are edge constraints onGc
I = (Xc, Ic)

and, the polytopeconv{xc ∈ {0, 1}nc
: xc

i + xc
j ≤ 1 ∀(i, j) ∈ Ic} defines the stable set

polytopeSTAB(Gc
I). Consequently, inS5N, this stable set polytope is replaced by the

corresponding edge polytopeESTAB(Gc
I) = {xc ∈ [0, 1]n

c
: xc

i +xc
j ≤ 1 ∀{(i, j)} ∈ Ic}

which does not correspond toSTAB(Gc
I) since there is no reason forGc

I to be a bipartite
graph. This difference between the two polytopes partially explains the huge integrality
gap betweenS5N andS5N. In fact, the difference betweenS5N andS5VA is related to
STAB(Gc

I) formulations.
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Theorem 1 v(S5VA) ≤ v(S5N).

Proof 1 Let us first suppose the transitivity of the enchainability relation. In this case,
any stable set in Gc

I corresponds to a path from 0 to nc + 1 in Gc
E and conversely. In

fact, Gc
E can be easily deduced from Gc

I as follows: define the complementary graph of
Gc

I , replace each edge between i and j by an arc from i to j if image i is taken before
image j, and by an arc from j to i otherwise. The obtained directed graph is exactly Gc

E .
Let us remark that a graph such that its complementary graph has a transitive orientation
is a well-known perfect graph, namely cocomparability graph. In [1], it is shown that
stable set polytope in cocomparability graph can be exactly described by the path-based
formulation. Consequently, the polytope Φ = {ϕc

ij ∈ [0, 1]|E
c| : Acϕc = bc} is equal to

STAB(Gc
I) for all c = {1, 2, 3}, and included in the edge polytope ESTAB(Gc

I). Thus,
v(S5VA) ≤ v(S5N).

In the non transitivity case, any path from 0 to nc + 1 in Gc
E corresponds to a stable

set in a subgraph G̃c
I of Gc

I . G̃c
I is obtained from Gc

I by removing all edges (i, j) such
that either (i, j) or (j, i) belongs to Êc \ Ec. G̃c

I is a cocomparability graph and the
polytope Φ corresponds to the stable set polytope of STAB(G̃c

I) which is included in
ESTAB(G̃c

I). Since STAB(Gc
I) = STAB(Gc

I \ G̃c
I) ∩ STAB(G̃c

I) and, in S5N, STAB(G̃c
I)

is replaced by ESTAB(G̃c
I) while, in S5VA, STAB(G̃c

I) is exactly described by Φ, we have
v(S5VA) ≤ v(S5N).

We computev(S5N) andv(S5VA) on a set of realistic benchmark instances. Results
are presented in the following section.

4 Experimentations and results

Experiments are carried out on a set of realistics instances described in [3]. There exists
two classes of instances:

• the first class includes small size instances without recording capacity constraint,

• the second class includes bigger size instances with recording capacity constraint.

For the first class instances, optimal solution values are known. For the second class in-
stances, approximate solutions have been determining using tabu search (for details see
[8]) and, for some of them, optimality has been proved in [9].

Each instance is only described by a list of all binary and ternary constraints. So, when
two imagesi andj are not linked by a constraint, we do not know ifi is taken beforej
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Instance number of v(S5N) v(S5N) v(S5VA) v(S5N)−v(S5N)

v(S5N)
% v(S5VA)−v(S5N)

v(S5VA)
%

images
54 67 70 83 71 15 1
42 190 108067 190567 108067 43 0
28 230 56053 221090 67053 74 16
5 309 114 315 151 63 24

404 100 49 96 49 48 0
408 200 3082 5188 3094 40 0.3
412 300 16102 31323 23580 48 31
503 143 9096 12637 9601 28 5
505 240 13100 22236 15803 41 17
507 311 15137 27361 25278 44 40
509 348 19125 36394 25684 47 25

Figure 1: Integrality gaps for small size SPOT5 instances

Instance number of v̂(S5N) v(S5N) v(S5VA) v(S5N)−v(S5N)

v(S5N)
% v(S5VA)−v(S5N)

v(S5VA)
%

images
1401 488 176056 300000 188370 41 6
1403 665 176140 300149 188467 41 6
1405 855 176179 300207 188551 41 6
1502 209 61158 64160 64155 4 4
1504 605 124243 191279 139585 35 11
1506 940 168247 276863 183978 39 8

Figure 2: Integrality gaps for big size SPOT5 instances

or j beforei. Thus, we are not able to defineGc
E from the instance description. Conse-

quently, we propose to constructGc
E with the polynomial time algorithm presented in [5]

for determining a transitive orientation of a comparability graph. When this algorithm is
applied on an arbitrary graph, it defines a circuit-free orientation of edges. Thus, applied
to the complementary graph ofGc

I , this algorithm defines a circuit-free directed graph
(transitive whenGc

I is a cocomparability graph) that can be used instead ofGc
E .

For each instance, we compute with Cplex 8.0 the optimal solution value ofS5N and
S5VA. The following tables 1 and 2 present the obtained results.

Upper bounds provided byS5VA are logically closer to the optimal solution value of
S5N than those provided byS5N. Let us remark thatGc

I is a cocomparability graph only
for instances 54, 42, 1502 and, in these cases,v(S5VA) is very close to optimal solution
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value. Moreover, upper bounds provided byS5VA are more interesting for difficult big
size instances with one knapsack constraint5N.

Some improvements would be possible with another instance description. First of all,
the algorithm we use to define an orientation of the complementary graph ofGc

I remains
to select in an arbitrary way a cocomparability sub-graph ofGc

I ; it is obvious thatS5VA

would be strengthened if it is based on the real enchainability graphGc
E .

Moreover,S5VA can be strengthened in rewriting contraints4N . These constraints are
due to the limitation of the instantaneous data flow through the satellite telemetry. A much
better formulation is to write cumulative constraints of that type: at each time, the sum of
the data flows used by images must be lower or equal to a certain limit.

5 Conclusion

The daily satellite mission planning problem can be seen as a stable set problem with ad-
ditional linear constraints. In this paper, we compare linear relaxations of two 0-1 linear
formulations. In the first one, stable set polytope is represented by edge polytope while,
in the second one, stable set polytope is exactly described. The theorical difference be-
tween these two formulations are also illustrated by numerical experiments on benchmark
instances. It is shown that the 0-1 linear programming is of real interest for modeling and
solving satellite mission planning.
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