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Given a vertex-weighted graph G = (V, E; w), w(v) ≥ 0 for any v ∈ V , we consider a weighted version of the coloring problem which consists in finding a partition S = (S 1 , . . . , S k ) of the vertex set V of G into stable sets and minimizing k i=1 w(S i ) where the weight of S is defined as max{w(v) : v ∈ S}. In this paper, we keep on with the investigation of the complexity and the approximability of this problem by mainly answering one of the questions raised by D. J.

Introduction

A k-coloring of G = (V, E) is a partition S = (S 1 , . . . , S k ) of the vertex set V of G into stable sets S i . In the usual coloring problem, the objective is to determine a vertex coloring minimizing k. A natural generalization of this problem is obtained by assigning a strictly positive integer weight w(v) for any vertex v ∈ V , and defining the weight of stable set S of G as w(S) = max{w(v) : v ∈ S}. Then, the objective is to determine a vertex coloring S = (S 1 , . . . , S p ) of G minimizing the quantity p i=1 w(S i ). This problem has several applications. For instance in [START_REF] Guan | A Coloring Problem for Weighted Graphs[END_REF] this problem is motivated by a problem of transmission of real-time messages in a metropolitan network or a problem related to dynamic storage allocation. It is interesting to notice that in these two applications, graphs of a special kind are used: the interval graphs. Others examples of applications in different contexts can be found in [START_REF] Boudhar | Scheduling on a batch machine with job compatibilities. Special issue ORBEL-14: Emerging challenges in operations research (Mons[END_REF][START_REF] Finke | Batch Processing With Interval Graph Compatibilities Between Tasks[END_REF].

In this paper, we continue the investigation of the complexity and the approximability of the Weighted Coloring problem by mainly answering one of the questions raised by Guan and Zhu [START_REF] Guan | A Coloring Problem for Weighted Graphs[END_REF].

Given an instance I = (G, w), W denotes the set of different weights used in the instance, i.e., W = {w(v) : v ∈ V }, opt(I) denotes the weight of an optimal weighted coloring of I and χ(I) denotes the minimum number of colors used among the optimal weighted colorings of I. As indicated in [START_REF] De Werra | Weighted node coloring: when stable sets are expensive[END_REF][START_REF] Guan | A Coloring Problem for Weighted Graphs[END_REF], this number may be very high, even in trees, although it is always bounded above by ∆(G)+1. Moreover, we can obtain a bound related to the quantities χ(G) and |W | where χ(G) is the chromatic number of G and |W | is the number of different weights used in I. Precisely, in [START_REF] De Werra | Weighted node coloring: when stable sets are expensive[END_REF] it is proved that we have χ(I) ≤ 1 + |W |(χ(G) -1) and that this bound is tight for any q = χ(G) and r = |W | for a family of instances I q,r where the graphs are chordal.

Let's recall some standard definitions about some class of graphs, see [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF] for more details. A graph G is chordal iff any cycle C of G of length at least 4 has a chord. There are several characterizations of chordal graphs; one of them uses the notion of perfect elimination order (peo. in short) of G = (V, E). An order v 1 , . . . , v n of the vertex set V is a peo. if the neighborhood of v i in the subgraph induced by {v 1 , . . . , v i } is a clique; a graph is chordal iff it has a peo. When a graph G has a peo., we can easily find an optimal coloring of G by applying the greedy algorithm (take recursively a vertex not colored yet and color it with the smallest color) following the peo. of the vertices.

A graph G = (V, E) is a split graph iff one can partition V into V 1 , V 2 such that V 1 is
a stable and V 2 is a clique (there may be some edges linking V 1 to V 2 ). A split graph is in particular a chordal graph since it has a peo. A graph is a k-tree iff G has a peo. v 1 , . . . , v n such that v 1 , . . . , v k is a clique and the neighborhood of v i in the subgraph induced by {v 1 , . . . , v i } has a size k for i > k (a 1-tree is also called a tree

). A graph G is a partial k-tree if G is a partial graph of a k-tree. A graph G is a comparability graph iff G has a direct orientation -→ G = (V, E) such that -→ G is acyclic (there is no circuit) and -→ G is transitive (that is if (x, y) ∈ E and (y, z) ∈ E, then (x, z) ∈ E). A direct acyclic
transitive orientation of G is also called a poset. As previously, we can prove that the coloring problem is polynomial in posets. A graph G is a co-comparability graph iff the complement of G is a comparability graph. A graph G = (V, E) is an interval graph if it is the intersection graph of a family of open intervals. For graph-theoretical terms not defined here, the reader is referred to [START_REF] Berge | Graphs and Hypergraphs[END_REF]. This paper is organized as follows. In Sect. 2, we answer a question raised in [START_REF] Guan | A Coloring Problem for Weighted Graphs[END_REF] by proving that Weighted Coloring is (strongly) NP-hard in interval graphs. In Sect. 3, we deal with polynomial approximation of Weighted Coloring, providing mainly approximation algorithms for graphs colorable with a few number of colors and for partial k-trees.

Interval graphs

The interval graphs are a kind of graphs very used in practice, in particular when dealing with scheduling problems. A well known characterization of interval graphs is the following: G is an interval graph iff G is a chordal graph and G is a co-comparability graph. Although the coloring problem is polynomial in interval graphs (since an interval graph is a chordal graph), in [START_REF] De Werra | Weighted node coloring: when stable sets are expensive[END_REF], it is proved that the Weighted Coloring problem is strongly NPhard in split graphs and thus strongly NP-hard in chordal graphs, since the split graphs is a subclass of chordal graphs. Moreover, it is shown in [START_REF] Finke | Batch Processing With Interval Graph Compatibilities Between Tasks[END_REF] that the Weighted Coloring problem is polynomial in complements of interval graphs. In this section, we prove that the Weighted Coloring problem is strongly NP-hard in interval graphs.

Theorem 1 Weighted Coloring is strongly NP-hard in interval graphs. Moreover, the problem of finding χ(G, w) is also NP-hard in interval graphs.

Proof. We reduce the Circular Arc Coloring problem to our problem. A circular arc graph is the intersection graph of arcs of a circle. Garey et al. [START_REF] Garey | The complexity of coloring circular arcs and chords[END_REF] proved that the Circular Arc Coloring problem, i.e., the problem of finding a minimum size coloring in circular arc graphs, is NP-complete. Let G be the intersection graph of the n-tuple of circular arcs A = (A j ) j∈{1,••• ,n} , and let k ∈ {1, • • • , n}. Assume, wlog., that the intervals A j are open. We transform this instance of Circular Arc Coloring in an instance I = (G , w) of Weighted Coloring as follows. Let a be any point on the circle, and J 0 = {j : a ∈ A j }. For simplicity, assume wlog. that point a belongs to some arcs and that J 0 = {1, • • • , j 0 }, for some j 0 ≥ 1. For any j ≤ j 0 , we split interval A j = (c j , d j ) in A j = (c j , a) and A j = (a, d j ). For j > j 0 , we define A j = A j . Set A be the (n + j 0 )-tuple of intervals (A j ) j∈{1,••• ,n} and (A j ) j≤j0 . Let G be the intersection graphs of A . We set the weights w of G in the following way:

w(v j ) = w(v j ) = 2k(j 0 + 1 -j) if j ≤ j 0 and w(v j ) = 1 for j > j 0 . The description of instance I = (G , w ) of Weighted Coloring is now complete. Note that {v j , j ≤ j 0 } is a clique in G. We can suppose k ≥ j 0 (otherwise G is trivially not k-colorable). We claim that χ(G) ≤ k if and only if opt(G ) ≤ kj 0 (j 0 + 1) + k -j 0 = B. Suppose that S = (S 1 , • • • , S k ) is a coloring of G. Then, set S = (S 1 , • • • , S k ) where S i = S i \ {v j : j ≤ j 0 } ∪ {v j , v j : v j ∈ S i , j ≤ j 0 }. One can easily see that S is a coloring of G . Furthermore, we have opt(G ) ≤ w(S ) = 2k j0 j=1 j + (k -j 0 ) = B. Reciprocally, let S = (S 1 , • • • , S l ) be a coloring of G with opt(I ) = w(S ) ≤ B. Assume that w(S i ) ≥ w(S j ) for any j ≥ i. Note that {v 1 , v 1 } ∈ S 1 , otherwise opt(I ) = w(S ) ≥ 2kj 0 + 2kj 0 + 2k j0-2 j=1 j = kj 0 (j 0 + 1) + 2kj 0 > B.
With an analogous argument, we can show that {v j , v j } ∈ S j for any j ≤ j 0 . Consequently, w(S ) = kj 0 (j 0 + 1) + (lj 0 ), and then l ≤ k.

Set S i = S i \ {v i , v i } ∪ v i for i ≤ j 0 and S i = S i for i > j 0 . S = (S 1 ; • • • , S l ) is a l-coloring of G, and χ(G) ≤ l ≤ k.
The NP-hardness of computing χ(I ) follows easily from the previous proof. Indeed, if G is not k-colorable, then obviously χ(I ) > k. Otherwise, let S be an optimal coloring. Since χ(G) ≤ k iff opt(I ) ≤ B, w(S ) ≤ B and, as we have seen above, w(S ) = kj 0 (j 0 + 1)

+ |S | -j 0 = B + |S | -k. Hence, χ(I ) ≤ |S | ≤ k.
Using Theorem 1 and the characterization of interval graphs, we deduce that the Weighted Coloring problem is strongly NP-hard in co-comparability graphs.

Approximation results

k-colorable graphs

We study in this section, the approximability of the Weighted Coloring problem in natural classes of graphs colorable with a few number of colors. We first focus ourselves on subfamilies of k-colorable graphs where the minimum coloring problem is polynomial. Our objective is to prove the following theorem.

Theorem 2 Let G be a class of k-colorable graphs, where a k-coloring is computable in polynomial time. Then, in any G ∈ G, Weighted Coloring is approximable within ratio k 3 /(3k 2 -3k + 1).

Proof. Consider some graph G = (V, E) ∈ G of order n, and assume that any

v i ∈ V has weight w i = w(v i ). Suppose that w 1 ≥ w 2 ≥ • • • ≥ w n . Consider an optimal weighted coloring S * = (S * 1 , • • • , S * l ), with w(S * 1 ) ≥ • • • ≥ w(S * l ) and denote by i * k , the index of the heaviest vertex in color S * k (hence, w(S * k ) = w i * k ), by V i the set of vertices {v 1 , • • • , v i } (hence, V n = V ) and by G[V ] the subgraph of G induced by V ⊆ V .
We compute several colorings of G and choose as final solution the best one among the colorings computed. We first compute a k-coloring S 0 of G. Clearly:

w S 0 ≤ kw 1 = kw (S * 1 ) (3.1)
Then, for j = 2, • • • , n + 1, we do the following:

• if G[V j-1 ] is bipartite then: -consider the best weighted 2-coloring (S j 1 , S j 2 ) among the 2-colorings of G[V j-1 ] (S j
2 may be empty);

-color the remaining vertices v j , • • • , v n with k colors (S j 3 , S j 4 , • • • , S j k+2 ), thus obtaining a coloring S j = (S j 1 , S j 2 , • • • , S j k+2 ) of G.
Note that the first step is easily polynomially computable (merge optimally the unique 2-colorings of any connected component).

Consider now the iterations where j = i * 2 and j = i * 3 . For j = i * 2 , V j-1 is an independent set; hence, S j 1 = V j-1 . We get in this case:

w(S j ) ≤ w 1 + kw j = w (S * 1 ) + kw (S * 2 ) (3.2)
On the other hand, for

j = i * 3 , G[V j-1 ] is bipartite; hence, w(S j 1 ) + w(S j 2 ) ≤ w(S * 1 ) + w(S *
2 ). In this case:

w(S j ) ≤ w (S * 1 ) + w (S * 2 ) + kw (S * 3 ) (3.3)
Recall that the algorithm returns the best coloring among those computed. Note also that if the number l of colors in S * is smaller than 2, then this algorithm computes an optimal coloring. Combination of equations (3.1), (3.2) and (3.3) with coefficients (k -1) 2 /k 3 , k(k -1)/k 3 and k 2 /k 3 = 1/k, respectively, concludes that the output coloring S is such that: w(S) ≤ (k 3 /(3k 2 -3k + 1))w(S * ) and the result follows.

Note that this improves a (4 -3/k)-approximation algorithm given in [START_REF] Pemmaraju | Approximation algorithms for the max-coloring[END_REF] (see the note on related works at the end of the paper), for k ≤ 10.

Corollary 1 Weighted

Coloring is approximable within ratio 27/19 < 1.42 in polynomially 3-colorable graphs.

It is well known that the coloring problem is polynomial in planar triangle-free graphs ( [START_REF] Grotzsch | Ein dreifarbensatz fur dreikreisfreie netze auf der kugel[END_REF]) and that the chromatic number in these graphs is bounded by 3. Moreover, it is proved in [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation[END_REF] that on the one hand the Weighted Coloring problem is strongly NP-hard and, on the other hand, the Weighted Coloring problem cannot be approximated with performance ratio better than 7 6ε for any ε > 0 unless P =NP, in the planar triangle-free graphs, even if the maximum degree is bounded by 4. Using Theorem 2, we obtain: Corollary 2 Weighted Coloring is 27/19-approximable in planar triangle-free graphs.

As another corollary of Theorem 2, Weighted Coloring is approximable within ratio 64/37 in polynomially 4-colorable graphs. On the other hand, note that minimum coloring is not (4/3ε)-approximable in planar graphs, that these graphs are polynomially 4-colorable and that the Weighted Coloring problem is a generalization of the coloring problem. Putting all this together, we obtain: Theorem 3 Weighted Coloring is approximable within ratio 64/37 < 1.73 in planar graphs, but it is not (4/3ε)-approximable in these graphs.

Note that the result of Theorem 2 can be applied also to line graphs of bipartite graphs of degree at most ∆. A weighted coloring on I = (L(G), w) where L(G) is the line graph of G can be viewed as a weighted edge-coloring on (G, w). In fact, in [START_REF] De Werra | Weighted node coloring: when stable sets are expensive[END_REF], it is shown that the Weighted Coloring problem is strongly NP-complete in line graphs of regular bipartite graphs of degree ∆ and that the Weighted Coloring problem is not ( 2 ∆ 2 ∆ -1ε) approximable unless P=NP, for any ∆ ≥ 3. Besides, the NP-completeness also holds for the line graphs of complete bipartite graphs. More recently, in [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation[END_REF] this lower bound is tightened up to 7 6 when ∆ = 3. Furthermore, it is proved that this bound is the best possible since in [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation[END_REF] is also provided a 7/6-approximation algorithm. Now, we generalize the technique used in Theorem 2 to get an approximation algorithm in line graphs of bipartite graphs of degree at most ∆, for any fixed ∆ ≥ 3, since using König's theorem ( [START_REF] König | Über graphen und iher anwendung auf determinantentheorie und mengenlehre[END_REF]) we know that the coloring problem is polynomial in linegraphs of bipartite graphs. More precisely, we can show the following theorem: Theorem 4 For any ∆ ≥ 3, Weighted Coloring in line graphs of bipartite graphs of maximum degree at most ∆ is approximable within approximation ratio ρ ∆ , where ρ 1 = ρ 2 = 1 and:

ρ ∆ = ∆ ∆ j=1 ∆-1 l=j (1 -ρ l /∆)
Proof. Let ρ 1 = ρ 2 = 1 and ρ j be a ratio guaranteed by some polynomial algorithm for 3 ≤ j ≤ ∆ -1 on line graphs of bipartite graphs of maximum degree at most j. Then, on an instance I = (G, w) where G = L(H) and H is a bipartite graph of maximum degree ∆. Let us consider an optimal solution S * = (S * 1 , • • • , S * l ). We have l ≥ ∆ by construction. As previously, set i * k the index of the heaviest vertex of S * k . Then, as in the proof of Theorem 2, we can compute three colorings of value at most ∆w(S * 1 ), w(S * 1 ) + ∆w(S * 2 ) and w(S * 1 ) + w(S * 2 ) + ∆w(S * 3 ), respectively. Moreover, for any

k ∈ {4, • • • , ∆}, consider the graph G[V i * k -1 ] induced by the vertices V i * k -1 = {v 1 , • • • , v i * k -1 }.
This graph is a line graph of a bipartite graph of maximum degree at most k -1 (since it is k -1 colorable). Hence, by applying our approximation algorithm with ratio ρ k-1 on

I i * k -1 = (G[V i * k -1 ], w), we can get a coloring of I i * k -1 of value at most ρ k-1 opt(I i * k -1 ) ≤ ρ k-1 k-1 j=1 w(S * j ) and then, a coloring of I of value at most ρ k-1 k-1 j=1 w(S * j ) + ∆ × w(S * k ).
If we take the best coloring S among all these colorings, we get:

w(S) ≤ ∆ × w(S * 1 ) w(S) ≤ ρ 1 w(S * 1 ) + ∆ × w(S * 2 ) • • • w(S) ≤ ρ ∆-1 ∆-1 m=1 w(S * m ) + ∆ × w(S * ∆ ) Let β = ∆ j=1 ∆-1 l=j (1 -ρ l /∆) (note that by convention ∆-1 l=∆ (1 -ρ l /∆) = 1)
. Then, take the convex combination of these ∆ inequalities with coefficients α 1 , • • • , α ∆ , where

α i = ∆-1 l=i (1-ρ l /∆) β . We have α i ∈ [0, 1], α ∆ = 1 β and ∆ i=1 α i = 1.
We get w(S) ≤ ρ ∆ ( ∆ m=1 w(S * m )) ≤ ρ ∆ w(S * ) where ρ ∆ = ∆/β. Indeed, the contribution of weight w(S * i ) in the convex combination is Note that this improves a (4 -3/∆)-approximation algorithm given in [START_REF] Pemmaraju | Approximation algorithms for the max-coloring[END_REF] (see the note on related works at the end of the paper), for ∆ ≤ 1025.

∆α i + ∆ j=i+1 α j × ρ j-1 . If we denote A i = ∆ j=i+1 α j × ρ j-1 ,

then we can easily prove that

A i = ∆(α ∆ -α i ).
We end this section by improving the lower bound obtained in [START_REF] De Werra | Weighted node coloring: when stable sets are expensive[END_REF] for the Weighted Coloring problem in line graphs of regular bipartite graphs of degree ∆.

Theorem 5 For any ∆ ≥ 3, ε > 0, the Weighted Coloring problem is not (1+ 2 ∆ -2 ∆+1 -ε) approximable unless P=NP, in line graphs of regular bipartite graphs of degree ∆.

Proof. For simplicity, we consider the edge model, i.e., we study the Weighted Edge-Coloring problem in regular bipartite graphs of degree ∆. We prove the following result by induction: it is NP-complete to distinguish between opt(I) ≤ ∆(∆+1) 2 and opt(I) ≥

∆(∆+1)+2 2
in regular bipartite graphs of degree ∆, where the weights used are in W = {1, . . . , ∆} and there exists at least one vertex of degree ∆ whose incident edges have different weights (i.e. are weighted by 1, 2, ... , and ∆).

For ∆ = 3 the result is proved in [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation[END_REF]. Assume that the result holds for ∆ = k -1 and let us prove the result for ∆ = k.

Let I = (G, w) be an instance with ∆ = k -1 (in other words, G = (L, R; E) is a regular bipartite graphs of degree k -1). We construct an instance I = (G , w ) of the case ∆ = k as follows: we duplicate G as G 1 = (L 1 , R 1 ; E 1 ) and G 2 = (L 2 , R 2 ; E 2 ) and we add two matchings M 1 and M 2 between G 1 and G 2 such that M i links the vertices of L i to the vertices of R 3-i . The weights of the edges of G are assigned as follows: if 

e ∈ E 1 ∪ E 2 , then w (e) = w(e); if e ∈ M 1 ∪ M 2 ,
) ≥ ∆ + ∆ + ∆ -2 i=1 i > ∆ (∆ +1) 2
since in I there are ∆ edges e 1 , . . . , e ∆ with w (e i ) = i adjacent to the same vertex. Thus, the restriction of this solution to G 1 is an edge coloring verifying opt(I) ≤ opt(I ) -∆ .

Partial k-Trees

A k-tree is a graph that can be reduced to a clique of size k by deleting iteratively some vertices the neighborhood of which is a clique of size k. A partial k-tree is a subgraph of a k-tree. There are several characterizations of partial k-trees. One of them is the following: G is a partial k-tree iff G is a subgraph of a chordal graph G with a clique number equal to k + 1 (i.e., ω(G ) = k + 1). k-trees are (polynomially) k + 1-colorable, and we can get a ρ k+1 -approximation, but we can improve this result.

Let us define the List Coloring problem, where we want to answer the following question: given a graph G = (V, E) with, for any v ∈ V , a set L(v) of admissible colors, does there exist a (proper) coloring of G with colors from L(V ) = ∪ v∈V L(v) such that any vertex v is colored with a color from L(v)? The complexity of List Coloring has been studied in [START_REF] Kratochvíl | Algorithmic complexity of list colorings[END_REF][START_REF] Jansen | Generalized coloring for tree-like graphs[END_REF].

Theorem 6 If G is a class of t-colorable graphs (where t is a constant) where List Coloring is polynomial, then Weighted Coloring admits a P T AS in G.

Proof. Let G such a class of graphs, a graph G ∈ G and ε > 0. Let k = (t -1)(1 + 1 ε ) . Consider the following algorithm. For any k ≤ k:

• consider any k -tuple (x 1 , • • • , x k ) ∈ W k ; • find a k -coloring (S 1 , • • • , S k ) of G such that w(S i ) ≤ x i , i = 1, • • • , k , if such a
coloring exists;

• output the best coloring among those found in the previous step.

To achieve the second step, we use the fact that List Coloring is polynomial in G. Indeed, given 

(x 1 , • • • , x k ) ∈ W k ,
(S i ) ≤ x i , i = 1, • • • , k .
We claim that the solution computed by this algorithm is 1 + ε-approximate, for any ε > 0.

Indeed, consider an optimal solution S

* = (S * 1 , • • • , S * l ), with w(S * 1 ) ≥ • • • ≥ w(S * l ). If l ≤ k, then we found, by our exhaustive search, a coloring (S 1 , • • • , S l ) such that w(S i ) ≤ w(S * i ) for all i, hence an optimal solution. If l > k, then consider the k-tuple (w 1 , • • • , w k ) where w i = w(S * i ) for i ≤ k + 1 -t and w i = w(S * k+1-t ) for i ≥ k + 1 -t. If we consider the k -t colors S * i , i = 1, • • • , k - t, and any t-coloring S j , j = k + 1 -t, • • • , k of the remaining vertices (the graph is polynomially t-colorable), then w(S j ) ≤ w(S * k+1-t ) for j = k + 1 -t, • • • , k.
So, the algorithm finds a coloring for this particular tuple (w 1 , • • • , w k ). Consequently, the solution S given by the algorithm is such that:

w(S) w(S * ) ≤ k+1-t i=1 w(S * i ) + (t -1)w(S * k+1-t ) l i=1 w(S * i ) ≤ 1 + (t -1)w(S * k+1-t ) k+1-t i=1 w(S * i ) ≤ 1 + t -1 k + 1 -t ≤ 1 + ε
Since we use less than |W k+1 | ≤ n k+1 times the algorithm for List Coloring as a subroutine, our algorithm is polynomial, hence we get the expected result.

Since List Coloring is polynomial in partial k-trees ( [START_REF] Jansen | Generalized coloring for tree-like graphs[END_REF]), then we have the following corollary:

Corollary 3 Weighted Coloring admits a P T AS in partial k-trees (hence, in particular, in trees).

Although we have proposed an approximation scheme in partial k-trees, the complexity of the Weighted Coloring problem remains open for these graphs.

We now focus ourselves on the case where the input graph is a chain, or a collection of chains. Guan and Zhu proposed in [START_REF] Guan | A Coloring Problem for Weighted Graphs[END_REF] a polynomial time algorithm with complexity O(n 4 ) to solve (optimally) Weighted Coloring in chains (as a particular case of a more general result). We can improve this result in the following way: Proof. Consider a graph G which is a set of k disjoint chains C 1 , • • • , C k . Note that ∆(G) ≤ 2 hence any optimal Weighted Coloring has at most 3 colors. As we have seen previously, the best 2-coloring is easily computable (in O(n)). To compute an optimal 3coloring, we compute, for any w ∈ W , the smallest number n w ≤ w for which there exists a 3-coloring (S 1 , S 2 , S 3 ) with w(S 1 ) = w max , w(S 2 ) ≤ w and w(S 3 ) ≤ n w (n w = ∞ if such a coloring does not exist). Remark first that every vertex v with weight w(v) > w must receive color 1. Consider now two consecutive such vertices v i , v j in a chain C l . If there exists an odd number of vertices between v i and v j , we can color these vertices with colors 1 and 2. Otherwise, one must use 3 colors, and one can do it by coloring with color 3 only the lightest vertex v ij between v i and v j . Hence, n w is the heaviest among these vertices v ij . Given w ∈ W , we can find n w (and the corresponding coloring) in O(n), hence the result follows.

2 . 2 , 2 . 2 .

 2222 then w (e) = ∆ .It is clear that the instance I = (G , w ) verifies the required hypothesis. We claim that opt(I)≤ ∆(∆+1) 2 iff opt(I ) ≤ ∆ (∆ +1)If opt(I) ≤ ∆(∆+1) then by duplicating this edge coloring to G i and by adding a new color to M 1 ∪M 2 , we obtain an edge coloring of G and opt(I ) ≤ opt(I)+∆ ≤ ∆ (∆ +1) Conversely, assume that opt(I ) ≤ ∆ (∆ +1) Then the edges of M 1 ∪ M 2 have the same color. Otherwise, opt(I

Theorem 7

 7 Weighted Coloring is polynomially solvable in O(n|W |) ≤ O(n 2 ) in chains.

  The following table gives the approximate value of ratio ρ ∆ for some ∆.

	∆	4	5	10	50	100	200	400	700 1000
	ρ ∆	1.61 1.75	2.16	2.97	3.25	3.51	3.73 3.89	3.99

  we can define an instance of List Coloring on G: v i can be colored with color S j for all j ∈ {1, • • • , k } such that w(v i ) ≤ x j . One can easily see that a coloring is valid for this instance of List Coloring, if and only if this coloring is such that w

Note on related works

During the time between submission and the current version, we have learnt that some results obtained here also appear in papers [14,15]. In these papers, the authors deal with the same problem that they call maximum coloring. In [14], the authors proved that this problem is NP-complete in interval graphs and gave constant polynomial approximation. However, the proof used for the NP-completeness is completely different. In [15], the authors proposed a PTAS for the case of trees. Moreover, they also provide a (4 -3/k)-approximation algorithm in hereditary classes of k-colorable graphs where the usual coloring problem is polynomial. In particular, this gives a (4 -3/∆)-approximation algorithm for line graphs of bipartite graphs with maximum degree ∆.