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Weighted coloring on planar, bipartite and split
graphs: complexity and approximation

M. Demange†, B. Escoffier‡, J. Monnot‡, V. Th. Paschos‡, D. de Werra∗

Abstract

We study complexity and approximation of MIN WEIGHTED NODE COLORING

in planar, bipartite and split graphs. We show that this problem is NP-complete in
planar graphs, even if they are triangle-free and their maximum degree is bounded
above by 4. Then, we prove that MIN WEIGHTED NODE COLORING is NP-complete
in P8-free bipartite graphs, but polynomial for P5-free bipartite graphs. We next
focus ourselves on approximability in general bipartite graphs and improve earlier
approximation results by giving approximation ratios matching inapproximability
bounds. We next deal with MIN WEIGHTED EDGE COLORING in bipartite graphs.
We show that this problem remains strongly NP-complete, even in the case where the
input-graph is both cubic and planar. Furthermore, we provide an inapproximability
bound of 7/6 − ε, for any ε > 0 and we give an approximation algorithm with the
same ratio. Finally, we show that MIN WEIGHTED NODE COLORING in split graphs
can be solved by a polynomial time approximation scheme.

Key words : Graph coloring; ; weighted node coloring; weighted edge coloring;
approximability; NP-completeness; planar graphs; bipartite graphs; split graphs.

1 Introduction

We give in this paper some complexity results as well as some improved approximation
results for MIN WEIGHTED NODE COLORING, originally studied in Guan and Zhu [8]
and more recently in [4]. A k-coloring of G = (V,E) is a partition S = (S1, . . . , Sk)
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Weighted coloring on planar, bipartite and split graphs: complexity and approximation

of the node set V of G into stable sets Si. In this case, the objective is to determine
a node coloring minimizing k. A natural generalization of this problem is obtained by
assigning a strictly positive integer weight w(v) for any node v ∈ V , and defining the
weight of stable set S of G as w(S) = max{w(v) : v ∈ S}. Then, the objective is to
determine S = (S1, . . . , Sk) a node coloring of G minimizing the quantity

∑k
i=1 w(Si).

This problem is easily shown NP-hard; it suffices to consider w(v) = 1, ∀v ∈ V and
MIN WEIGHTED NODE COLORING becomes the classical node coloring problem. Other
versions of weighted colorings have been studied in Hassin and Monnot [9].

Consider an instance I of an NP-hard optimization problem Π and a polynomial time
algorithm A computing feasible solutions for Π. Denote by mA(I, S) the value of a Π-
solution S computed by A on I and by opt(I), the value of an optimal Π-solution for I .
The quality of A is expressed by the ratio (called approximation ratio in what follows)
ρA(I) = mA(I, S)/opt(I), and the quantity ρA = inf{r : ρA(I) < r, I instance of Π}. A
very favorable situation for polynomial approximation occurs when an algorithm achieves
ratios bounded above by 1 + ε, for any ε > 0. We call such algorithms polynomial time
approximation schemes. The complexity of such schemes may be polynomial or exponen-
tial in 1/ε (they are always polynomial in the sizes of the instances). A polynomial time
approximation scheme with complexity polynomial also in 1/ε is called fully polynomial
time approximation scheme.

This paper extends results on MIN WEIGHTED NODE COLORING, the study of which
has started in [4]. We first deal with planar graphs and we show that, for this family, the
problem studied is NP-complete, even if we restrict to triangle-free planar graphs with
node-degree not exceeding 4.

We then deal with particular families of bipartite graphs. The NP-completeness of
MIN WEIGHTED NODE COLORING has been established in [4] for general bipartite graphs.
We show here that this remains true even if we restrict to planar bipartite graphs or to P21-
free bipartite graphs (for definitions of graph-theoretical notions used in this paper, the
interested reader is referred to Berge [1]).

It is interesting to observe that these results are obtained as corollaries of a kind of
generic reduction from the precoloring extension problem shown to be NP-complete
in Bodlaender et al. [2], Hujter and Tuza [11, 12], Kratochvil [14]. Then, we slightly
improve the last result to P8-free bipartite graphs and show that the problem becomes
polynomial in P5-free bipartite graphs. Observe that in [4], we have proved that MIN

WEIGHTED NODE COLORING is polynomial for P4-free graphs and NP-complete for P5-
free graphs.

Then, we focus ourselves on approximability of MIN WEIGHTED NODE COLORING in
(general) bipartite graphs. As proved in [4], this problem is approximable in such graphs
within approximation ratio 4/3; in the same paper a lower bound of 8/7−ε, for any ε > 0,
was also provided. Here we improve the approximation ratio of [4] by matching the 8/7-
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lower bound of [4] with a same upper bound; in other words, we show here that MIN

WEIGHTED NODE COLORING in bipartite graphs is approximable within approximation
ratio bounded above by 8/7.

We next deal with MIN WEIGHTED EDGE COLORING in bipartite graphs. In this
problem we consider an edge-weighted graph G and try to determine a partition of the
edges of G into matchings in such a way that the sum of the weights of these matchings is
minimum (analogously to the node-model, the weight of a matching is the maximum of
the weights of its edges). In [4], it is shown that MIN WEIGHTED EDGE COLORING is NP-
complete for cubic bipartite graphs. Here, we slightly strengthen this result showing that
this problem remains strongly NP-complete, even in cubic and planar bipartite graphs.
Furthermore, we strengthen the inapproximability bound provided in [4], by reducing it
from 8/7 − ε to 7/6 − ε, for any ε > 0. Also, we match it with an upper bound of the
same value, improving so the 5/3-approximation ratio provided in [4].

Finally, we deal with approximation of MIN WEIGHTED NODE COLORING in split
graphs. As proved in [4], MIN WEIGHTED NODE COLORING is strongly NP-complete in
such graphs, even if the nodes of the input graph receive only one of two distinct weights.
It followed that this problem cannot be solved by fully polynomial time approximation
schemes, but no approximation study was addressed there. In this paper we show that
MIN WEIGHTED NODE COLORING in split graphs can be solved by a polynomial time
approximation scheme.

In the remainder of the paper, we shall assume that for any weighted node or edge
coloring S = (S1, . . . , S�) considered, we will have w(S1) � . . . � w(S�).

2 Weighted node coloring in triangle-free planar graphs

The node coloring problem in planar graphs has been shown NP-complete by Garey and
Johnson [6], even if the maximum degree does not exceed 4. On the other hand, this
problem becomes easy in triangle-free planar graphs (see Grotzsch [7]). Here, we show
that the weighted node coloring problem is NP-complete in triangle-free planar graphs
with maximum degree 4 by using a reduction from 3-SAT PLANAR, proved to be NP-
complete in Lichtenstein [15]. This problem is defined as follows: Given a collection
C = (C1, . . . , Cm) of clauses over the set X = {x1, . . . , xn} of boolean variables such
that each clause Cj has at most three literals (and at least two), is there a truth assignment
f satisfying C ? Moreover, the bipartite graph BP = (L,R; E) is planar where |L| = n,
|R| = m and [xi, cj] ∈ E iff the variable xi (or xi) appears in the clause Cj .

Theorem 2.1 MIN WEIGHTED NODE COLORING is NP-complete in triangle-free planar
graphs with maximum degree 4.
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Proof : Let BP = (L,R; E) be the bipartite graph representing an instance (X, C) of
3-SAT PLANAR where L = {x1, . . . , xn}, R = {c1, . . . , cm}. We construct an instance
I = (G,w) of MIN WEIGHTED NODE COLORING by using two gadgets:

• The gadgets clause F (Cj) are given in Figure 1 for clause Cj of size 3 and in Figure
2 for clause Cj of size 2. The nodes ck

j are those that will be linked to the rest of the
graph.
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Figure 1: Graph F (Cj) representing a clause Cj of size 3.
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Figure 2: Graph F (Cj) representing a clause Cj of size 2.

• The gadgets variable H(xi) is given in Figure 3 for variable xi. Assume that xi

appears p1 times positively and p2 times negatively in (X, C), then in H(xi) there
are 2p = 2(p1 + p2) special nodes xk

i , x
k
i , k = 1, . . . , p. These nodes form a path

which meets node xk
i , xk

i alternatively.

• The weights of nodes which are not given in Figures 1, 2 and 3 are 1.
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Figure 3: Graph H(xi) representing variable xi

• These gadgets are linked together by the following process. If variable xi appears
positively (resp. negatively) in clause Cj , we link one of the variables xk

i (resp. xk
i ),

with a different k for each Cj , to one of the three nodes ck
j of gadget F (Cj). This

can be done in a way which preserves the planarity of the graph.

Indeed, for each node v of degree δ(v) in the planar graph BP , let’s call e1
v, · · · , e

δ(v)
v

the endpoints on v of the edges adjacent to v considered in a circular order. Then,
for each edge in BP which joins node xi in endpoint ek

xi
to node Cj in endpoint el

cj
,

we put an edge from xk
i (if xi appears negatively in Cj , xk

i otherwise) to cl
j .

Observe that G is triangle-free and planar with maximum degree 4. Moreover, we
assume that G is not bipartite (otherwise, we add a disjoint cycle Γ with |Γ| = 7 and
∀v ∈ V (Γ), w(v) = 1).

It is then not difficult to check that (X, C) is satisfiable iff opt(I) � 6.

Let g be a truth assignment satisfying (X, C). We set S′
1 = {v : w(v) = 3} and

S ′
2 = {v : w(v) = 2} ∪ {xk

i : g(xi) = 1} ∪ {xk
i : g(xi) = 0}. Since g satis-

fies the formula, we can color at least one node ck
j with color 2 and then easily extend

(S ′
1, S

′
2) to a coloring S = (S1, S2, S3) of G with S′

i ⊆ Si for i = 1, 2. We have
w(S1) = 3, w(S2) = 2, w(S3) = 1 and then val(S) � 6.

Conversely, let S = (S1, . . . , S�) be a coloring of G with val(S) � 6. Assume w(S1) �
. . . � w(S�). We have � � 3 since G is not bipartite and w(S1) = 3. We deduce
w(S2) < 3 (otherwise val(S) � 3 + 3 + 1). Moreover, since each node of weight
2 is adjacent to a node of weight 3, we have W (S2) = 2. For the same reasons as
previously, we deduce � = 3 and W (S3) = 1. We claim that for any j = 1, . . . , m,
S2 ∩ {c1

j , c
2
j , c

3
j} �= ∅ where c1

j , c
2
j , c

3
j are the nodes of F (Cj) (with may be c3

j = ∅).
Otherwise, we must have {c1

j , c
2
j , c

3
j} ⊆ S3 but in this case, we cannot colored F (Cj) with

3 colors. Thus, setting g(xi) = 1 iff xk
i ∈ S2, we deduce that g is a truth assignment

satisfying (X, C). �
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3 Weighted node coloring in bipartite graphs

3.1 Complexity results

The NP-completeness of MIN WEIGHTED NODE COLORING in bipartite graphs has been
proved in Demange et al. [4]. Here, we show that some more restrictive versions are also
NP-complete, namely bipartite planar graphs and P21-free bipartite graphs, i.e. bipartite
graphs which do not contain induced chains of length 21 or more. We use a generic
reduction from the precoloring extension node coloring problem (in short PREXT NODE

COLORING). Then, using another reduction we improve this result to P8-free bipartite
graphs. This latter problem can be described as follows. Given a positive integer k, a
graph G = (V,E) and k pairwise disjoint subsets V1, . . . , Vk of V , we want to decide if
there exists a node coloring S = (S1, . . . , Sk) of G such that Vi ⊆ Si, for all i = 1, . . . , k.
Moreover, we restrict us to some class of graphs G: we assume that G is closed when we
add a pending edge with a new node (i.e., if G = (V,E) ∈ G and x ∈ V , y /∈ V , then
G + [x, y] ∈ G).

Theorem 3.1 Let G be a class of graphs which is closed when we add a pending edge
with a new node. If PREXT NODE COLORING is NP-complete for graphs in G, then MIN

WEIGHTED NODE COLORING is NP-complete for graphs in G.

Proof : Let G be such a class of graphs. We shall reduce PREXT NODE COLORING in
G graphs to weighted node coloring in G graphs. Let G = (V,E) ∈ G and k pairwise
disjoint subsets V1, . . . , Vk of V . We build instance I = (G′, w) of weighted node coloring
using several gadgets Ti, for i = 1, . . . , k. The construction of Ti is given by induction as
follows:

• T1 is simply a root v1 with weight w(v1) = 2k−1.

• Given T1, . . . , Ti−1, Ti is a tree with a root vi of weight w(vi) = 2k−i that we link
to tree Tp via edge [vi, vp] for each p = 1, . . . , i − 1.

Figure 4 illustrates the gadgets T1, T2, T3. Now, I = (G′, w) where G′ = (V ′, E ′) is
constructed in the following way:

• G′ contains G.

• For all i = 1, . . . , k, we replace each node v ∈ Vi by a copy of the gadget Ti where
we identify v with root vi.

• For all v ∈ V \ (∪k
i=1Vi) we set w(v) = 1.
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Figure 4: Gadgets for T1, T2 and T3.

Note that, by hypothesis, G′ ∈ G. We prove that the precoloring of G (given by
V1, . . . , Vk) can be extended to a proper node coloring of G using at most k colors iff
opt(I) � 2k − 1.

Let S = (S1, . . . , , Sk) with Vi ⊆ Si be a node coloring of G. We get S ′ = (S ′
1, . . . , , S

′
k)

where each stable S ′
i is given by S′

i = (Si \Vi)∪{v : ∃j � k, v ∈ Tj and w(v) = 2k−i}.
It is easy to check that S ′ is a coloring of G′ and opt(I) � val(S ′) =

∑k
i=1 2k−i = 2k −1.

Conversely, let S ′ = (S ′
1, . . . , S

′
�) with w(S ′

1) � . . . � w(S ′
�) be a weighted node coloring

of G′ with cost val(S ′) � 2k − 1. First, we prove by induction that V ′
i = {v : ∃p �

k, v ∈ Tp, w(v) = 2k−i} is a subset of S ′
i, for all i � k. For i = 1, the result is true since

otherwise we have w(S ′
1) = w(S ′

2) = 2k−1 and then, val(S ′) � w(S ′
1) + w(S ′

2) = 2k.
Now, assume that V ′

j ⊆ S ′
j for j < i and let us prove that V ′

i = {v : ∃p � k, v ∈
Tp, w(v) = 2k−i} ⊆ S ′

i. By construction of gadget Tj, j � i, each node v of weight
2k−i is adjacent to a node of weight 2k−p for all p < i. Thus, v /∈ S′

p. Now, if V ′
i � S ′

i,
then w(S ′

i) = w(S ′
i+1) = 2k−i and we deduce val(S ′) � w(S ′

1) + . . . + w(S ′
i+1) =∑i

j=1 2k−j + 2k−i = 2k, which is a contradiction. Since V ′
i �= ∅ for i � k, we deduce

� � k. Consequently, � = k, since ∀v ∈ V ′, w(v) � 1. Now, getting S = (S1, . . . , Sk)
where Si = (S ′

i \ V ′
i ) ∪ Vi for each i = 1, . . . , k, we obtain a node coloring of G. �

Using the results of Kratochvil [14] on the NP-completeness of PREXT NODE COL-
ORING in bipartite planar graphs and P13-free bipartite graphs, we deduce:

Corollary 3.2 In bipartite planar graphs, MIN WEIGHTED NODE COLORING is strongly
NP-complete and it is not 8

7
− ε-approximable for all ε > 0 unless P=NP.

Proof : PREXT NODE COLORING with k = 3 has been proved NP-complete in [14]
for bipartite planar graphs. Since these graphs are closed when we add an pending edge
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with a new node, the result follows. Moreover, from the proof of Theorem 3.1 with k = 3,
we deduce that it is NP-complete to distinguish whenever opt(I) � 7 and opt(I) � 8. �

Corollary 3.3 In P21-free bipartite graphs, MIN WEIGHTED NODE COLORING is strongly
NP-complete and it is not 32

31
− ε-approximable for all ε > 0 unless P=NP.

Proof : PREXT NODE COLORING with k = 5 has been proved NP-complete in [14] for
P13-free bipartite graphs. When, we add gadgets Ti with i � 5, G′ becomes P21-free
bipartite graphs. Moreover, from the proof of Theorem 3.1 with k = 5, we deduce that it
is NP-complete to distinguish whenever opt(I) � 31 and opt(I) � 32. �

In Hujter and Tuza [12], it is shown that PREXT NODE COLORING is NP-complete
in P6-free bipartite chordal graphs for unbounded k (a bipartite graph is chordal if the
induced cycles of length at least 5 have a chord). Unfortunately, we cannot use this result
in Theorem 3.1 since the resulting graph has an induced chain with arbitrarily large length.
However, we can adapt their reduction to our problem.

Theorem 3.4 MIN WEIGHTED NODE COLORING is NP-complete in P8-free bipartite
graphs.

Proof : We shall reduce 3-SAT-3, proved to be NP-complete in Papadimitriou [17], to our
problem. Given a collection C = (C1, . . . , Cm) of clauses over the set X = {x1, . . . , xn}
of boolean variables such that each clause Cj has at most three literals and each variable
appears 2 times positively and one time negatively, we construct an instance I = (BP,w)
in the following way:

• We start from BP1 = (L1, R1; E1), a complete bipartite graph Kn,m where L1 =
{x1, . . . , xn} and R1 = {c1, . . . , cm}. Moreover, each node of BP1 has weight 1.

• There is also another bipartite graph BP2 isomorphic to K2n,2n where a perfect
matching has been deleted. More formally, BP2 = (L2, R2; E2) where L2 =
{l1, . . . , l2n}, R2 = {r1, . . . , r2n} and [li, rj] ∈ E2 iff i �= j. Finally, w(li) =
w(ri) = 22n−i for i = 1, . . . , 2n. Indeed, sets {l2i−1, r2i−1} and {l2i, r2i} will
correspond to variable xi and xi respectively.

• Between BP1 and BP2, there is a set E3 of edges. [xi, rj] /∈ E3 iff j = 2i − 1 or
j = 2i and [li, cj] /∈ E3 iff i = 2k − 1 and xk is in Cj or i = 2k and xk is in Cj .

Figure 5 illustrates the construction of the complement of BP with the clause cm =
x1 ∨ x2 ∨ xn.

Let us show that BP is P8-free. We represent in Figure 6 the possible subgraphs on
BP1 (configuration A1, A2 and A3) and on BP2 (configuration B1 to B9) induced by a
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...
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Figure 5: Complement of graph BP with the clause cm = x1 ∨ x2 ∨ xn

A1 A2

. . .

A3 B1 B2 B3 B4 B5 B6 B7 B8

. . .

B9

Figure 6: Subgraphs on BP1 and BP2 induced by a chain

chain on BP . In configurations A3 and B9, the number of nodes is arbitrary. Note that
the upper line may correspond either to L1 or R1 for the left part (and L2 or R2 for the
right part). Now we look at the possible ways to link a configuration Ai to a configuration
Bj to obtain a chain of length (at least) 8.

• If we choose A1, we easily see that it’s impossible.

• If we choose A2, the only way to have a chain of length at least 8 is to choose B8

and link a node of A2 to a node of B8. In this case, we can see that the upper line
corresponds to R1 (left part) and L2 (right part), and that there is a clause which
contains a variable and its negation.

• If we choose A3, the only possibility to have a chain of length at least 8 is to choose
B9. But in this case, the chain simply alternates a node of R1 and a node of L2.
Then, at least one node of L2 is not linked to at least 3 nodes of R1, i.e. a literal
appears in at least 3 clauses.

We claim that (X, C) is satisfiable iff opt(I) � 22n − 1.

Let g be a truth assignment satisfying (X, C). We build inductively the colors. S0 = ∅
and for i = 1, . . . , n, S2i−1 = {l2i−1, r2i−1} ∪ {cj : cj /∈ Sp, p < 2i − 1, g(xi) =
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1 and xi is in Cj}, S2i = {l2i, r2i} ∪ {cj : cj /∈ Sp, p < 2i, g(xi) = 0 and xi is in Cj}.
Finally, if g(xi) = 1 then we add xi to S2i; otherwise, we add xi to S2i−1. We can easily
see that S = (S1, . . . , S2n) is a node coloring of BP with val(S) = 22n − 1.

Conversely, let S = (S1, . . . , S�) be a node coloring of BP with val(S) = 22n − 1.
An inductive proof on i shows that {li, ri} ⊆ Si (otherwise, we have val(S) � 22n);
consequently, � = 2n. Thus, setting g(xi) = 1 if xi ∈ S2i and g(xi) = 0 if xi ∈ S2i−1, we
obtain a truth assignment satisfying (X, C). �

3.2 Polynomial result

We now prove that MIN WEIGHTED NODE COLORING is polynomial for P5-free bipartite
graphs, i.e., without induced chain on 5 nodes. Notice that in general P5-free graphs,
the weighted node coloring problem is NP-complete since on the one hand, the split
graphs are P5-free and on the other hand, we have proved in Demange et al. [4] that
the weighted node coloring problem is NP-complete for split graphs. There are several
characterizations of P5-free bipartite graphs, see for example, Hammer et al. [10], Chung
et al. [3] and Hujter and Tuza [11]. In particular, BP is a P5-free bipartite graph iff
BP is bipartite and each connected component of BP is 2K2-free, i.e., its complement is
C4-free.

Lemma 3.5 In P5-free bipartite graph, any optimal weighted node coloring uses at most
3 colors.

Proof : Let BP = (L,R; E) be a P5-free bipartite graph with connected components
BP1, . . . , BPp. Assume the reverse and let us consider an optimal solution S∗ = (S∗

1 , . . . , S
∗
� )

with � � 4 and w(S∗
1) � . . . � w(S∗

� ). Observe that, without loss of generality, we can
assume that there exist a connected component BPk0 colored with � colors and any con-
nected component BPi using j colors is colored with colors 1, . . . , j. Moreover, we also
suppose that in any connected component BPj , each node colored with color i � 2 is
adjacent to nodes with colors 1, . . . , i − 1 (by applying greedy rule on S∗).

We claim that there exist 1 � i < j � � such that S∗
k ∩L �= ∅ and S∗

k ∩R �= ∅ for k = i, j.

Otherwise, since � � 4, we must have S∗
i0

⊆ L (resp., S∗
i0

⊆ R) and S∗
j0

⊆ L (resp.,
S∗

j0
⊆ R) for some i0 < j0. In this case, by merging S∗

i0
with S∗

j0
, we obtain a better node

coloring that S∗, which is a contradiction.

So, consider connected component BPk0 and let lj ∈ S∗
j ∩ L and rj ∈ S∗

j ∩ L two
nodes of BPk0 . From this claim, we deduce there exist 2 other nodes li, ri of BPk0 such
that li ∈ S∗

i ∩ L, ri ∈ S∗
i ∩ L and [li, rj] ∈ E, [lj, ri] ∈ E. Since BP is bipartite, these 2

edges are independents which is a contradiction with characterization of P5-free bipartite
graphs. �
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Let BP1, . . . , BPp be the connected components of BP where BPi = (Li, Ri; Ei).
Let S∗ = (S∗

1 , S
∗
2 , S

∗
3) (with maybe some S∗

i = ∅) be an optimal solution with w(S∗
1) �

w(S∗
2) � w(S∗

3) and denote by S∗
i = (S∗,i

1 , S∗,i
2 , S∗,i

3 ) the restriction of S∗ to the subgraph
BPi. Remark that we may assume w(S∗,i

1 ) � w(S∗,i
2 ) � w(S∗,i

3 ) (otherwise, we can flip
the color without increasing the weight). Moreover, we have:

Lemma 3.6 We can always assume that one of these situations occurs, for any i =
1, . . . , p:

(i) S∗,i
1 = Li (resp., S∗,i

1 = Ri), S∗,i
2 = Ri (resp., S∗,i

2 = Li) and S∗,i
3 = ∅.

(ii) S∗,i
1 ∩ Li �= ∅ and S∗,i

1 ∩ Ri �= ∅, S∗,i
2 ⊂ Ri (resp., S∗,i

2 ⊂ Li) and S∗,i
3 ⊂ Li (resp.,

S∗,i
3 ⊂ Ri).

Proof : Let BP = (L,R; E) be a P5-free bipartite graph with connected components
BP1, . . . , BPp. Assume that S∗,i

1 ∩ Li = ∅ or S∗,i
1 ∩ Ri = ∅. In this case, it is clear that

we are in the first item (i) (since we have assumed w(S∗,i
1 ) � w(S∗,i

2 ) � w(S∗,i
3 )). Now,

suppose S∗,i
1 ∩Li �= ∅ and S∗,i

1 ∩Ri �= ∅; from the proof of Lemma 3.5, the result follows.
�

The algorithm computing an optimal solution is described by the following way:

P5-FREEBIPARTITECOLOR

1 For all k1, k2 ∈ {w(v) : v ∈ V }, k1 � k2, do

1.1 For all connected component BPi = (Li, Ri; Ei), i = 1, . . . , p, do

1.1.1 If Li∪Ri \ (L′
i∪R′

i) is an independent set where L′
i = {v ∈ Li : w(v) �

k1} and R′
i = {v ∈ Ri : w(v) � k2} then set Sk1,k2

2,i = L′
i, Sk1,k2

3,i = R′
i

and Sk1,k2

1,i = Li ∪ Ri \ (L′
i ∪ R′

i);

1.1.2 Otherwise, if Li ∪ Ri \ (L′
i ∪ R′

i) is an independent set where L′
i = {v ∈

Li : w(v) � k2} and R′
i = {v ∈ Ri : w(v) � k1} then set Sk1,k2

2,i = R′
i,

Sk1,k2

3,i = L′
i and Sk1,k2

1,i = Li ∪ Ri \ (L′
i ∪ R′

i);

1.1.3 Otherwise go to step 1;

1.1.4 Set Sk1,k2

j = ∪p
i=1S

k1,k2

j,i for j = 1, 2, 3 and Sk1,k2 = (Sk1,k2

1 , Sk1,k2

2 , Sk1,k2

3 )

(with maybe Sk1,k2

1 = ∅);

2 Output S = argmin{val(Sk1,k2) : k2 � k1};
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This algorithm has a complexity O(n|w|2) where |w| = |{w(v) : v ∈ V }|. By
applying a dichotomy technic on k2, we can improve it to O(n|w|log|w|). Note that this
algorithm also computes the best node 2-coloring among the colorings using at most 2
colors (when k1 = wmax).

Theorem 3.7 MIN WEIGHTED NODE COLORING is polynomial in P5-free bipartite graphs.

Proof : Let S∗ = (S∗
1 , S

∗
2 , S

∗
3) (with may be S∗

1 = ∅) be an optimal solution satisfying
Lemmas 3.5 and 3.6. We assume w(S∗

2) � w(S∗
3) and if S∗ is a node 3-coloring, then we

have w(S∗
1) = wmax; otherwise w(S∗

1) = 0. Let k1 = w(S∗
2) and k2 = w(S∗

3); consider
the step of algorithm corresponding to k1, k2. If S∗ is a node 2-coloring, then the result is
true. So, assume S∗

1 �= ∅; by construction, P5-FREEBIPARTITECOLOR find an feasible
solution Sk1,k2 with w(Sk1,k2

1 ) � wmax, w(Sk1,k2

2 ) � k1 and w(Sk1,k2

3 ) � k2. Thus, we
deduce the expected result. �

3.3 Approximation

In Demange et al. [4], a 4
3
-approximation is given for MIN WEIGHTED NODE COLORING

and it is proved that a (8
7
−ε)-approximation is not possible, for any ε > 0, unless P=NP,

even if we consider arbitrarily large values of opt(I). Using Corollary 3.2, we deduce
that this lower bound also holds if we consider bipartite planar graphs. Here, we give a
8
7
-approximation in bipartite graphs.

BIPARTITECOLOR

1 Sort the nodes of BP in non-increasing weight order (i.e., w(v1) � . . . � w(vn));

2 For i = 1 to n do

2.1 Set Vi = {v1, . . . , vi};

2.2 Compute S∗
i = (Si

1, S
i
2) (Si

2 may be empty) an optimal weighted node coloring
in BP [Vi] among the colorings using at most two colors;

2.3 Define node coloring S i = (Si
1, S

i
2, L \ Vi, R \ Vi) (L \ Vi or/and R \ Vi may

be empty);

3 Output S = argmin{val(S i) : i = 1, . . . , n};
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The step 2.2 consists of computing the (unique) 2-coloration (S∗
1,j, S

∗
2,j) (with w(S∗

1,j) �
w(S∗

2,j)) of each connected component BPj, j = 1 . . . p of BP [Vi] (with S∗
2,j = ∅ if

BPj is an isolated node). Then it merges the most expensive sets, i.e. it computes
Si

1 = ∪p
j=1S

∗
i,j for i = 1, 2. It is easy to observe that S∗

i = (Si
1, S

i
2) is the best weighted

node coloring of BP [Vi] among the colorings using at most 2 colors; such a coloring can
be found in O(m) time where m = |E|.

Theorem 3.8 Algorithm BIPARTITECOLOR polynomially solves in time O(nm) the
weighted node coloring problem in bipartite-graphs within approximation ratio bounded
above by 8

7
.

Proof : Let I = (BP,w) be a weighted bipartite-graph where BP = (L,R; E) and
S∗ = (S∗

1 , ..., S
∗
l ) be an optimal node coloring of I with w(S∗

1) ≥ ... ≥ w(S∗
l ). If

l < 3, then BIPARTITECOLOR finds an optimal weighted node coloring which is Sn

(corresponding to the step i = n). Now, assume l � 3 and let ij = min{k : vk ∈ S∗
j }.

We have i1 = 1 and
opt(I) � w(vi1) + w(vi2) + w(vi3) (3.1)

Let us examine several steps of this algorithm:

• when i = i2 − 1, the algorithm produces a node 3-coloring Si2−1 = (S1
i2−1, L \

S1
i2−1, R \ S1

i2−1). Indeed, by construction Vi2−1 ⊆ S∗
1 is an independent set, and

then, S∗
i2−1 is defined by Si2−1

1 = Vi2−1 and Si2−1
2 = ∅. Moreover, ∀v /∈ Vi2−1,

w(v) � w(vi2) and then

val(S i2−1) � w(vi1) + 2w(vi2) (3.2)

• when i = i3−1, the algorithm produces on BP [Vi3−1] a node 2-coloring S∗
i3−1 with

a cost val(S∗
i3−1) � w(vi1) + w(vi2) since the coloring (S∗

1 ∩ Vi3−1, S
∗
2 ∩ Vi3−1) is a

feasible node 2-coloring of BP [Vi3−1] with cost w(vi1) + w(vi2). Finally, since the
weights are sorted in non-increasing order, we obtain:

val(S i3−1) � w(vi1) + w(vi2) + 2w(vi3) (3.3)

• when i = n (the last step), the algorithm just produced a node 2-coloring satisfying:

val(Sn) � 2w(vi1) (3.4)

Using (3.2), (3.3) and (3.4), we deduce:
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val(S) � min{2w(vi1); w(vi1) + w(vi2) + 2w(vi3); w(vi1) + 2w(vi2)} (3.5)

The convex combination of these 3 values with coefficients 1
7
, 4

7
and 2

7
respectively

and the inequality (3.1) give the expected result, i.e.:

val(S) � 1

7
×2w(vi1)+

4

7
×(w(vi1)+w(vi2)+2w(vi3))+

2

7
×(w(vi1)+2w(vi2)) � 8

7
opt(I)

�

4 Weighted edge coloring in bipartite graphs

The weighted edge coloring problem on a graph G can be viewed as the weighted node
coloring problem on L(G) where L(G) is the line graph of G. Here, for simplicity, we
refer to the edge model.

4.1 Complexity results

Demange et al. [4] have proved that MIN WEIGHTED EDGE COLORING in bipartite cubic
graphs is strongly NP-complete and a lower bound of 8

7
is given for the approximation.

Here, we slightly improve these complexity results. Indeed, we show that weighted edge
coloring in bipartite cubic planar graphs is strongly NP-complete and we deduce that it is
NP-complete to obtain an approximation within a ratio 7

6
− ε, for any ε > 0.

Theorem 4.1 MIN WEIGHTED EDGE COLORING is strongly NP-complete in bipartite
cubic planar graphs.

Proof : We shall reduce PREXT EDGE COLORING in bipartite cubic planar graphs to
our problem. Given a bipartite cubic planar graph BP = (V,E) and 3 pairwise disjoint
matchings E1, . . . , E3 of E, the question of PREXT EDGE COLORING is to determine if
it is possible to extend the edge precoloring E1, . . . , E3 to a proper edge 3-coloring of G.
Very recently, this problem has been shown NP-complete in Marx [16].

Let BP = (V,E) and E1, . . . , E3 be an instance of PREXT EDGE COLORING; we con-
struct an instance I = (BP ′, w) of weighted edge coloring such that the answer of PREXT

EDGE COLORING instance is yes if and only if there exists an edge coloring S of I with
cost val(S) � 6.

The construction of instance I is the following :
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• Each edge in E1 receives weight 3.

• Each edge [x, y] ∈ E2 is replaced by a gadget F2 described in Figure 4.1, where we
identify x and y to v0 and v9 respectively.

• Each edge in E3 is replaced by a gadget F3 which is the same as gadget F2 except
that we have exchanged weights 1 and 2.

• The other edges of G receive weight 1.

v2 v6

v0 v1 v4 v5 v8 v9

v3 v7

2

3

1

1

3

2

2

2

3

1

1

3

2

Figure 7: Gadget F2 for e ∈ E2.

Remark that BP ′ is still a bipartite cubic planar graph.

First of all, assume that BP admits an edge 3-coloring S = (M1,M2,M3) where Ei ⊆ Mi

for any i = 1, 2, 3. We get a coloring S ′ = (M ′
1,M

′
2,M

′
3) of BP ′ where M ′

1 = M1 ∪{e ∈
F2 ∪ F3 : w(e) = 3} and, for i = 2, 3, M ′

i = (Mi \Ei) ∪ {e ∈ F2 ∪ F3 : w(e) = 4− i}.
We can easily check that opt(I) � val(S ′) = 3 + 2 + 1 = 6.

Conversely, consider an edge coloring S ′ = (M ′
1, . . . ,M

′
�) of G′ with val(S ′) � 6 and

assume w(M ′
1) � . . . � w(M ′

�). We have � � 3 since ∆(BP ′) = 3. Then, all the edges
of weight 3 must be in the matching M ′

1, and no edge of weight 2 is in M ′
p with p � 3,

since otherwise we have val(S ′) � 7 (3 + 3 + 1 in the first case and 3 + 2 + 2 in the
second case). Moreover, each edge of weight 2 is adjacent to an edge of weight 3, and
then, these edges are necessarily in M ′

2. Finally, remark that the edges of the gadgets
of weight 1 are adjacent to an edge of weight 2 and an edge of weight 3 and must be
in M ′

p with p � 3. Moreover, p = 3 and more generally � = 3 since val(S ′) � 6.
Now, consider the edge coloring (M1,M2,M3) of BP where for any i = 1, 2, 3 we have
Mi = (M ′

i \ {e ∈ F2 ∪ F3 : w(e) = 4 − i}) ∪ Ei. We can easily see that (M1,M2,M3)
is a solution for the edge precoloring extension problem. �

From the proof of Theorem 4.1, we deduce that computing an optimal weighted edge
3-coloring of a cubic bipartite graphs among edge 3-colorings is NP-complete. By the
same technics, we can prove that more generally, finding an optimal weighted edge k-
coloring of a cubic bipartite graphs among the edge colorings using at most k colors is
NP-complete for any k = 3, 4, 5.
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Corollary 4.2 For all ε > 0, MIN WEIGHTED EDGE COLORING is not 7/6 − ε approx-
imable in bipartite cubic planar graphs unless P=NP.

4.2 Approximation result

In Demange et al. [4], a 5
3
-approximation is given for MIN WEIGHTED EDGE COLORING

in bipartite graphs with maximum degree 3. Here, we give a 7
6
-approximation.

We need some notations: If BP = [V,E] is a bipartite graph with node set V =
{v1, . . . , vn}, we always assume that its edges E = {e1, . . . , em} are sorted in non-
increasing weight order (i.e., w(e1) � . . . � w(em)). If V ′ is a subset of nodes and E ′ a
subset of edges, BP [V ′] and BP [E ′] denote the subgraph of BP induced by V ′ and the
partial graph of BP induced by E′ respectively. For any i � m, we set Ei = {e1, . . . , ei}
and Ei = E \Ei. Finally, Vi denotes the set of nodes of BP incident to an edge in Ei (so,
it is the subset of non-isolated nodes of BP [Ei]).

Consider the following algorithm.

BIPARTITEEDGECOLOR

1 For i = m downto 1 do

1.1 Apply algorithm SOL1 on BP [Ei];

1.2 If SOL1(BP [Ei])�= ∅, complete in a greedy way all the colorings produced by
SOL1 on the edges of Ei. Let S1,i be a best one among these edge colorings
of BP ;

1.3 For j = i downto 1 do

1.3.1 Apply algorithm SOL2 on BP [Ej];

1.3.2 If SOL2(BP [Ej])�= ∅, complete in a greedy way all the colorings pro-
duced by SOL2 on the edges of Ej . Let S2,j,i be a best one among these
edge colorings of BP ;

1.3.3 Apply algorithm SOL3 on BP [Ej];

1.3.4 If SOL3(BP [Ej])�= ∅, complete in a greedy way all the colorings pro-
duced by SOL3 on the edges of Ej . Let S3,j,i be a best one among these
edge colorings of BP

2 Output S = argmin{val(S1,i), val(Sk,j,i) : k = 2, 3, j = 1, . . . , i, i = 1, . . . ,m}.
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The greedy steps 1.2, 1.2.2 and 1.2.4 can be described as follows: for each edge not
yet colored, try to color it with an existing color, and otherwise take a new color. A simple
argument shows that these edge colorings do not use more than 5 colors. Indeed, assume
the reverse and let us consider an edge with color 6. Since the maximum degree of BP
is 3, this edge is adjacent to at most 4 edges and then to at most 4 colors. Thus, we can
recolor this edge with a missing color in 1, . . . , 5. Obviously, this result also holds for an
optimal solution. More generally, in [4], we have proved that, in any graph G, there is an
optimal weighted node coloring using at most ∆(G) + 1 colors, where ∆(G) denotes the
maximum degree of G. In our case, we have G = L(H), the line graph of H , and we
deduce ∆(L(H)) � 2(∆(H) − 1) + 1 = 2∆(H) − 1.

The 3 algorithms SOL1, SOL2 and SOL3 are used on several partial graphs BP ′ of BP .
In the following, V ′, E ′ and m′ denote respectively the node set, the edge set and the
number of edges of the current graph BP ′. Moreover, we set V ′

i = V ′ \V ′
i and E ′

i = E ′ \
E ′

i. If M = (M1, . . . ,Ml) is an edge coloring of BP ′, we note ij = min{k : ek ∈ Mj}
for j = 1, . . . , l. We assume, for reason of readability, that some colors Mj may be
empty (in this case ij = m′ + 1). The principle of these algorithms consist in finding a
decomposition of BP ′ (a subgraph of BP ) into two subgraph BP ′

1 and BP ′
2 having each

a maximum degree 2. When there exists such a decomposition, we can color BP ′
1 and

BP ′
2 with at most 2 colors respectively since BP is bipartite.

SOL1

1 For j = m′ downto 1 do

1.1 If the degree of BP ′[E ′
j] is at most 2 then

1.1.1 Consider the graph BP ′j :

• induced by the nodes of BP ′ incident to at least 2 edges of E′
j ;

• restricted to the edges of E′
j .

1.1.2 Determine if there exists a matching M j of BP ′j such that every node of
V ′

j is saturated;

1.1.3 If such a matching is found, consider the decomposition BP ′
1,j and BP ′

2,j

of BP ′ induced by E ′
j ∪ M j and E ′ \ (E ′

j ∪ M j) respectively;

1.1.4 Find an optimal edge coloring (M j
1 ,M

j
2 ) among the edge 2-colorings of

BP ′
1,j;

1.1.5 Color greedily the edges of BP ′
2,j with two colors (M j

3 ,M
j
4 );

1.1.6 Define Sj
1 = (M j

1 ,M
j
2 ,M

j
3 ,M

j
4 ) the edge coloring of BP ′;
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2 Output {Sj
1 : j = 1, . . . ,m′ − 1};

Note that the step 1.1.2 is polynomial. Indeed, more generally, given a graph G =
[V,E] and a set V ′ ⊆ V , it is polynomial to determine if there exists a matching such that
each node of V ′ is saturated. To see this, consider the graph G′ where we add to G all
missing edges between nodes of V \ V ′. If |V | is odd, then we add a node to the clique
V \ V ′. It is easy to see that G′ has a perfect matching if and only if G has a matching
such that each node of V ′ is saturated.

Lemma 4.3 If S = (M1,M2,M3,M4) with w(M1) � . . . � w(M4) is an edge coloring
of BP ′, then algorithm SOL1 produces a solution Sj

1 satisfying: val(Sj
1) � w(M1) +

w(M2) + 2w(M3)

Proof : Let S = (M1,M2,M3,M4) with w(M1) � . . . � w(M4) be an edge coloring
of BP ′. Let us examine the step of SOL1 corresponding to j = i3 − 1. By construction,
BP ′[E ′

i3−1] is 2 edge colorable since we have E ′
i3−1 ⊆ M1 ∪ M2. Moreover, in the

subgraph induced by E′
i3−1, each node of degree 3 has at least an edge of M1∪M2 incident

to it. Thus, in BP ′j , there exists a matching where each node of V ′
i3−1 is saturated. The

subgraph BP ′
1,i3−1 has a maximum degree 2 and contains by construction the subgraph

BP ′[E ′
i3−1]. Moreover, two any connected components of BP ′[E ′

i3−1] have not been
merged in BP ′

1,i3−1 since each edge e = [x, y] ∈ M i3−1 has at least one node (say x)
satisfying dBP ′[E′

i3−1](x) = 0. Thus, any edge 2-coloring of BP ′[Ei′3−1] can be extended

to an edge 2-coloring of BP ′
1,i3−1 . So, since ∀e ∈ M i3−1, ∀e′ ∈ E ′

i3−1 w(e) � w(e′), and
(M i3−1

1 ,M i3−1
2 ) is an optimal weighted 2 edge coloring of BP ′

1,i3−1, we deduce:

w(M i3−1
1 ) + w(M i3−1

2 ) � w(M1) + w(M2) (4.1)

By construction, BP ′
2,i3−1 has no node with degree 3, and then BP ′

2,i3−1 has a a maxi-
mum degree 2. Moreover, ∀e /∈ (M i3−1∪E ′

i3−1) we have w(e) � w(ei3) = w(M3). Thus,
any edge coloring of BP ′

2,i3−1 using at most 2 colors and in particular (M i3−1
3 ,M i3−1

4 ) sat-
isfies:

w(M i3−1
3 ) + w(M i3−1

4 ) � 2w(M3) (4.2)

Combining (4.1) and (4.2), we obtain:

val(S i3−1
1 ) � w(M1) + w(M2) + 2w(M3)

�
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SOL2

1 For k = m′ downto 1 do

1.1 If E ′
k is a matching :

1.1.1 Determine if there exists a matching Mk of BP ′[V ′
k ] such that each node

of BP ′[V ′
k ] having a degree 3 in BP ′ is saturated.

1.1.2 If such a matching is found, consider the decomposition BP ′
1,k and BP ′

2,k

of BP ′ induced by E ′
k ∪ Mk and E ′ \ (E ′

j ∪ Mk) respectively;

1.1.3 Color BP ′
1,k with one color Mk

1 ;

1.1.4 Color greedily BP ′
2,k with two colors Mk

2 and Mk
3 ;

1.1.5 Define Sk
2 = (Mk

1 ,Mk
2 ,Mk

3 ) the edge coloring of BP ′;

2 Output {Sk
2 : k = 1, . . . ,m′};

Lemma 4.4 If S = (M1,M2,M3) with w(M1) � w(M2) � w(M3) is an edge coloring
of BP ′, then algorithm SOL2 produces a solution Sk

2 satisfying: val(Sk
2 ) � w(M1) +

2w(M2).

Proof : Let S = (M1,M2,M3) with w(M1) � w(M2) � w(M3) be an edge coloring
of BP ′. Let us examine the step of SOL2 corresponding to k = i2 − 1. By construction,
E ′

i2−1 ⊆ M1 and among M1 \ E ′
i2−1 there is a matching of BP ′[V ′

i2−1] where each node
of degree 3 is saturated (otherwise, S = (M1,M2,M3) is not feasible). Thus, BP ′

1,i2−1

can be considered and colored with one color M i2−1
1 , and we have:

w(M i2−1
1 ) = w(M1) (4.3)

We also deduce that BP ′
2,i2−1 has a maximum degree 2. Then, it can be edge colored

with 2 colors M i2−1
2 and M i2−1

3 . Moreover, since ∀e /∈ E ′
i2−1, w(e) � w(ei2) = w(M2),

we obtain:
w(M i2−1

2 ) + w(M i2−1
3 ) � 2w(M2) (4.4)

Using (4.3) and (4.4), we obtain:

val(S i2−1
2 ) � w(M1) + 2w(M2)

�
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SOL3

1 For k = m′ downto 1 do

1.1 Determine if there is a matching Mk in BP ′[E ′
k] such that each node of degree

3 in BP ′ is saturated.

1.2 If such a matching is found, consider the decomposition BP ′
1,k and BP ′

2,k of
BP ′ induced by Mk and E ′ \ Mk respectively;

1.3 Color BP ′
1,k with one color Mk

3 ;

1.4 Color greedily BP ′
2,k with two colors Mk

1 and Mk
2 ;

1.5 Define Sk
3 = (Mk

1 ,Mk
2 ,Mk

3 ) the edge coloring of BP ′;

2 Output {Sk
3 : k = 1, . . . ,m′ − 1};

Lemma 4.5 If S = (M1,M2,M3) with w(M1) � w(M2) � w(M3) is an edge coloring
of BP ′, then algorithm SOL3 produces a solution Sk

3 satisfying: val(Sk
3 ) � 2w(M1) +

w(M3)

Proof : Let S = (M1,M2,M3) with w(M1) � w(M2) � w(M3) be an edge coloring
of BP ′. As previously, let us consider one particular iteration of SOL3. In this lemma, we
study the case where k = i3 − 1. By construction, we have M3 ⊆ E ′

i3−1 and M3 contains
a matching where each node of BP ′[E ′

i3−1] having a degree 3 in BP ′ is saturated. Thus,
BP ′

2,i3−1 exists. Moreover, since ∀e ∈ E ′
i3−1, w(e) � w(ei3) = w(M3), we obtain:

w(M i3−1
3 ) � w(M3) (4.5)

As previously, we deduce that BP ′
1,i3−1 can be edge colored with 2 colors M i3−1

1 and
M i3−1

2 and we have:
w(M i3−1

1 ) + w(M i3−1
2 ) � 2w(M1) (4.6)

Combining (4.5) and (4.6), we obtain:

val(S i3−1
3 ) � 2w(M1) + w(M3)

�
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Remark 4.6 Observe that if a color M i3−1
j is empty, then we can improve the bound :

in this case, val(S i3−1
3 ) ≤ 2w(M1). This remark is also valid for algorithms SOL1 and

SOL2, and if several colors are empty. For SOL1 for instance, if M i3−1
2 and M i3−1

2 are
empty, then val(S i3−1

1 ) ≤ w(M1) + w(M3).

Theorem 4.7 BIPARTITEEDGECOLOR produces a 7
6

approximation for MIN WEIGHTED

EDGE COLORING in bipartite graphs with maximum degree 3.

Proof : Let S∗ = (M∗
1 , . . . ,M∗

5 ) with w(M∗
1 ) � . . . � w(M∗

5 ) be an optimal
weighted edge coloring of BP . Denote by i∗k the smallest index of an edge in M∗

k

(i∗k = m + 1 if the color is empty).

Consider the iteration of BIPARTITEEDGECOLOR corresponding to the cases i =
i∗5 − 1 and j = i∗4 − 1. Then :

• applying lemma 4.3, we produce on BP ′ = BP [Ei] an edge coloring of weight at
most w(M∗

1 ) + w(M∗
2 ) + 2w(M∗

3 ). Then the greedy coloring of the edges of Ei

produces a coloring of weight at most

w(M∗
1 ) + w(M∗

2 ) + 2w(M∗
3 ) + w(M∗

5 ) (4.7)

• Applying lemma 4.4, we produce on BP ′ = BP [Ej] an edge coloring of weight at
most w(M∗

1 ) + 2w(M∗
2 ). Then the greedy coloring of the edges of Ej produces a

coloring of weight at most

w(M∗
1 ) + 2w(M∗

2 ) + 2w(M∗
4 ) (4.8)

• Applying lemma 4.5, we produce on BP ′ = BP [Ej] an edge coloring of weight at
most 2w(M∗

1 ) + w(M∗
3 ). Then the greedy coloring of the edges of Ej produces a

coloring of weight at most

2w(M∗
1 ) + w(M∗

3 ) + 2w(M∗
4 ) (4.9)

Note that if there is an empty color or several empty colors produced by one of the
algorithms SOLi, then the bound are still valid. Indeed, for SOL3 for instance, according
to Remark 4.6, the value of the coloring computed at step j = i3 − 1 has a weight at most
2w(M∗

1 ), and the greedy step produces a coloring of value at most 2w(M∗
1 ) + 3w(M∗

4 ) �
2w(M∗

1 ) + w(M∗
3 ) + 2w(M∗

4 ).

Using (4.7), (4.8) and (4.9), we deduce that the coloring S computed by BIPARTITE-
EDGECOLOR satisfies:

251



Weighted coloring on planar, bipartite and split graphs: complexity and approximation

val(S) � min{ w(M∗
1 ) + w(M∗

2 ) + 2w(M∗
3 ) + w(M∗

5 );

w(M∗
1 ) + 2w(M∗

2 ) + 2w(M∗
4 ); 2w(M∗

1 ) + w(M∗
3 ) + 2w(M∗

4 )}(4.10)

The convex combination of these 3 values with coefficients 3
6
, 2

6
and 1

6
respectively

and the inequality (4.10) give the expected result, that is:

w(S) � 7

6
w(M∗

1 ) +
7

6
w(M∗

2 ) +
7

6
w(M∗

3 ) + w(M∗
4 ) +

1

2
w(M∗

5 ) � 7

6
opt(I)

�

5 Weighted node coloring in Split graphs

The split graphs are a class of graphs related to bipartite graphs. Formally, G = (K1, V2; E)
is a split graph if K1 is a clique of G with size |K1| = n1 and V2 is an independent set with
size |V2| = n2. So, a split graph can be viewed as a bipartite graph where the left set is a
clique. Since split graphs form a subclass of perfect graphs, the node coloring problem on
split graphs is polynomial. On the other hand, in [4], it is proved that the weighted node
coloring problem is strongly NP-complete in split graphs, even if the weights take only
two values. Thus, we deduce that there is no fully polynomial time approximation scheme
in such a class of graphs. Here, we propose a polynomial time approximation scheme us-
ing structural properties of optimal solutions. An immediate observation of split graphs
is that any optimal node coloring S∗ = (S∗

1 , . . . , S
∗
� ) satisfies |K1| � � � |K1| + 1 and

any color S∗
i is a subset of V2 with possibly one node of K1. In particular, for any op-

timal node coloring S∗ = (S∗
1 , . . . , S

∗
� ) , there exists at most one index i(S∗) such that

S∗
i(S∗) ∩ K1 = ∅.

Lemma 5.1 There is an optimal weighted node coloring S∗ = (S∗
1 , . . . , S

∗
� ) with w(S∗

1) �
. . . � w(S∗

� ) and an index i0 � � + 1 such that:

• ∀j < i0 S∗
j = {vj} ∪ {v ∈ V2 : v /∈ ∪j−1

k=1S
∗
k and [v, vj] /∈ E} for some vj ∈ K1.

• S∗
i0

= V2 \ (S∗
1 ∪ . . . ∪ S∗

i0−1).

• ∀j > i0 S∗
j = {vj} for some vj ∈ K1.

Proof : Let G = (K1, V2; E) be a split graph and let S∗ = (S∗
1 , . . . , S

∗
� ) with w(S∗

1) �
. . . � w(S∗

� ) be an optimal weighted node coloring of G. If � = n1 (we recall that
n1 = |K1|), then we set i0 = � + 1 otherwise let i0 be the unique i such that S∗

i ∩K1 = ∅.
We build set S∗′

i by the following way:
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• For i = 1, . . . , i0 − 1, S∗′
i = {vi} ∪ {v ∈ V2 : v /∈ ∪i−1

k=1S
∗′
k and [v, vi] /∈ E} where

we assume that S∗
i ∩ K1 = {vi}.

• S∗′
i0

= V2 \ (S∗′
1 ∪ . . . ∪ S∗′

i0−1).

• For i = i0 + 1, . . . , �, S∗′
i = S∗

i ∩ K1.

Thus, when i0 = � + 1, the sets resulting from second and third items are empty. Let
us prove that:

∀i = 1, . . . , �, w(S∗′
i ) � w(S∗

i ) (5.1)

Since w(S∗
1) � . . . � w(S∗

� ), we have w(S∗
i ) = max{w(v) : v ∈ K1 ∪ V2 \ (S∗

1 ∪
. . . ∪ S∗

i−1)}. Moreover, by construction ∪i−1
j=1S

∗
j ⊆ ∪i−1

j=1S
∗′
j . Thus, the result follows.

Using inequality (5.1), we deduce that node coloring S∗′ = (S∗′
1 , . . . , S∗′

� ) has a cost
val(S∗′) �

∑�
i=1 w(S∗

i ) = opt(I) and then, S∗′ is an optimal weighted node coloring
satisfying Lemma 5.1. �

SPLITNODECOLORk

1 For all subset K ′
1 ⊆ K1 with |K ′

1| = p � k do

1.1 For all bijection f : {1, . . . , p} �−→ K ′
1 do

1.1.1 For i = 1 to p do

1.1.1.1 Set S
K′

1,f
i = {f(i)} ∪ {v ∈ V2 : v /∈ ∪i−1

k=1S
K′

1,f
k and [v, f(i)] /∈ E};

1.1.2 Set S
K′

1
p+1,f = V2 \ (S

K′
1,f

1 ∪ . . . ∪ S
K′

1,f
p );

1.1.3 For i = p + 2 to n1 + 1 (assume K1 \ K ′
1 = {vp+2, . . . , vn1+1) do

1.1.3.1 Set S
K′

1,f
i = {vi};

1.1.4 Set SK′
1,f = (S

K′
1,f

1 , . . . , S
K′

1,f
n1+1);

2 Output S = argmin{val(SK′
1,f )};

This algorithm has a complexity-time O(k!nk+1).
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Theorem 5.2 For all ε > 0, SPLITNODECOLOR� 1
ε� produces a 1+ε approximation for

MIN WEIGHTED NODE COLORING in split graphs.

Proof : Let G = (K1, V2; E) be a split graph and let S∗ = (S∗
1 , . . . , S

∗
� ) with w(S∗

1) �
. . . � w(S∗

� ) be an optimal weighted node coloring of G satisfying Lemma 5.1. Let
k =

⌈
1
ε

⌉
. If i0 � k, then by construction the solution S returned by SPLITNODECOLORk

is optimal. So, assume i0 > k and let K∗′
1 = (∪k

j=1S
∗
j ) \ V2. Obviously, |K∗′

1 | = k and let
f ∗(i) = S∗

i ∩ K1 for i = 1, . . . , k.

Let us examine the solution SK∗′
1 ,f∗

corresponding to the step K ′
1 = K∗′

1 and f = f ∗ of
SPLITNODECOLORk. By construction, we have

∀i = 1, . . . , k, S
K∗′

1 ,f∗
i = S∗

i (5.2)

Moreover, since K1 \ K∗′
1 ⊆ S∗

k+1 ∪ . . . ∪ S∗
� and K1 \ K∗′

1 is a clique, we obtain:

n1+1∑
j=k+2

w(S
K∗′

1 ,f∗
i ) �

�∑
j=k+1

w(S∗
i ) (5.3)

Thus, combining (5.2) and (5.2), we deduce:

val(SK∗′
1 ,f∗

) − w(S
K∗′

1 ,f∗
k+1 ) � opt(I) (5.4)

Moreover, by construction w(S
K∗′

1 ,f∗
k+1 ) � w(S∗

k) � . . . � w(S∗
1) and then

w(S
K∗′

1 ,f∗
k+1 ) � 1

k
× opt(I) (5.5)

Finally, using these two last inequalities with 1
k

� ε, we obtain the expected result. �
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