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Weighted coloring on planar, bipartite and split
graphs. complexity and approximation

M. Demange', B. Escoffierf, J. Monnot?, V. Th. Paschos!, D. de Werra*

Abstract

We study complexity and approximation of MIN WEIGHTED NODE COLORING
in planar, bipartite and split graphs. We show that this problem is NP-complete in
planar graphs, even if they are triangle-free and their maximum degree is bounded
above by 4. Then, we prove that MIN WEIGHTED NODE COLORING is NP-complete
in Ps-free bipartite graphs, but polynomial for Ps-free bipartite graphs. We next
focus ourselves on approximability in general bipartite graphs and improve earlier
approximation results by giving approximation ratios matching inapproximability
bounds. We next deal with MIN WEIGHTED EDGE COLORING in bipartite graphs.
We show that this problem remains strongly NP-compl ete, even in the case where the
input-graph is both cubic and planar. Furthermore, we provide an inapproximability
bound of 7/6 — ¢, for any ¢ > 0 and we give an approximation agorithm with the
same ratio. Finally, we show that MIN WEIGHTED NODE COLORING in split graphs
can be solved by a polynomial time approximation scheme.

Key words : Graph coloring; ; weighted node coloring; weighted edge coloring;
approximability; NP-completeness; planar graphs; bipartite graphs; split graphs.

1 Introduction

We give in this paper some complexity results as well as some improved approximation
results for MIN WEIGHTED NODE COLORING, originaly studied in Guan and Zhu [8]
and more recently in [4]. A k-coloring of G = (V, E) isapartition S = (54,...,Sk)
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of the node set V' of GG into stable sets S;. In this case, the objective is to determine
a node coloring minimizing k. A natura generalization of this problem is obtained by
assigning a strictly positive integer weight w(v) for any node v € V, and defining the
weight of stable set S of G as w(S) = max{w(v) : v € S}. Then, the objective is to
determine S = (54, ..,Sk) anode coloring of G minimizing the quantity Zle w(S;).
This problem is easily shown NP-hard; it suffices to consider w(v) = 1, Yo € V and
MIN WEIGHTED NODE COLORING becomes the classical node coloring problem. Other
versions of weighted colorings have been studied in Hassin and Monnot [9].

Consider an instance I of an NP-hard optimization problem IT and a polynomial time
algorithm A computing feasible solutions for TI. Denote by m,(1,.S) the value of aIl-
solution S computed by A on I and by opt(7), the value of an optimal TI-solution for I.
The quality of A is expressed by the ratio (called approximation ratio in what follows)
pa(I) = my(I,S)/opt(I), and the quantity py = inf{r : pp,(I) < r, I instance of IT}. A
very favorable situation for polynomial approximation occurs when an algorithm achieves
ratios bounded above by 1 + ¢, for any € > 0. We call such algorithms polynomial time
approximation schemes. The complexity of such schemes may be polynomial or exponen-
tial in 1 /¢ (they are aways polynomial in the sizes of the instances). A polynomial time
approximation scheme with complexity polynomial asoin 1/« iscalled fully polynomial
time approximation scheme.

This paper extends results on MIN WEIGHTED NODE COLORING, the study of which
has started in [4]. We first dea with planar graphs and we show that, for this family, the
problem studied is NP-complete, even if we restrict to triangle-free planar graphs with
node-degree not exceeding 4.

We then deal with particular families of bipartite graphs. The NP-completeness of
MIN WEIGHTED NODE COLORING hasbeen established in[4] for general bipartite graphs.
We show here that thisremainstrue even if werestrict to planar bipartite graphsor to Py -
free bipartite graphs (for definitions of graph-theoretical notions used in this paper, the
interested reader is referred to Berge [1]).

It is interesting to observe that these results are obtained as corollaries of a kind of
generic reduction from the precoloring extension problem shown to be NP-complete
in Bodlaender et al. [2], Hujter and Tuza [11, 12], Kratochvil [14]. Then, we slightly
improve the last result to Ps-free bipartite graphs and show that the problem becomes
polynomial in Ps-free bipartite graphs. Observe that in [4], we have proved that MIN
WEIGHTED NODE COLORING is polynomial for P;-free graphs and NP-complete for Ps-
free graphs.

Then, we focus oursel ves on approximability of MIN WEIGHTED NODE COLORING in
(general) bipartite graphs. As proved in [4], this problem is approximable in such graphs
within approximeation ratio 4/3; in the same paper alower bound of 8/7—¢, forany € > 0,
was also provided. Here we improve the approximation ratio of [4] by matching the 8 /7-
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lower bound of [4] with a same upper bound; in other words, we show here that MIN
WEIGHTED NODE COLORING in hipartite graphs is approximable within approximation
ratio bounded above by 8/7.

We next deal with MIN WEIGHTED EDGE COLORING in bipartite graphs. In this
problem we consider an edge-weighted graph GG and try to determine a partition of the
edges of G into matchings in such away that the sum of the weights of these matchingsis
minimum (analogously to the node-model, the weight of a matching is the maximum of
theweights of itsedges). In [4], itisshown that MIN WEIGHTED EDGE COLORING iSNP-
complete for cubic bipartite graphs. Here, we dlightly strengthen this result showing that
this problem remains strongly NP-complete, even in cubic and planar bipartite graphs.
Furthermore, we strengthen the inapproximability bound provided in [4], by reducing it
from8/7 — 10 7/6 — ¢, for any ¢ > 0. Also, we match it with an upper bound of the
same value, improving so the 5 /3-approximation ratio provided in [4].

Finally, we deal with approximation of MIN WEIGHTED NODE COLORING in split
graphs. Asproved in [4], MIN WEIGHTED NODE COLORING is strongly NP-completein
such graphs, even if the nodes of the input graph receive only one of two distinct weights.
It followed that this problem cannot be solved by fully polynomial time approximation
schemes, but no approximation study was addressed there. In this paper we show that
MIN WEIGHTED NODE COLORING in split graphs can be solved by a polynomial time
approximation scheme.

In the remainder of the paper, we shall assume that for any weighted node or edge
coloring S = (54, ..., S¢) considered, wewill have w(Sy) > ... = w(Sy).

2 Weighted node coloringin triangle-free planar graphs

The node coloring problem in planar graphs has been shown NP-complete by Garey and
Johnson [6], even if the maximum degree does not exceed 4. On the other hand, this
problem becomes easy in triangle-free planar graphs (see Grotzsch [7]). Here, we show
that the weighted node coloring problem is NP-complete in triangle-free planar graphs
with maximum degree 4 by using a reduction from 3-SAT PLANAR, proved to be NP-
complete in Lichtenstein [15]. This problem is defined as follows: Given a collection
C = (Cy,...,Cy) of clauses over the set X = {xzy,...,z,} of boolean variables such
that each clause C; has at most three literals (and at |east two), is there a truth assignment
f satisfying C ? Moreover, the bipartite graph BP = (L, R; F) is planar where |L| = n,
|R| = m and [z;, ¢;] € Eiff thevariable z; (or 7;) appearsin the clause C;.

Theorem 2.1 MIN WEIGHTED NODE COLORING is NP-complete in triangle-free planar
graphs with maximum degree 4.
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Proof : Let BP = (L, R; E) be the bipartite graph representing an instance (X, C) of
3-SAT PLANAR Where L = {zy,...,z,}, R = {c1,...,cn}. We construct an instance
I = (G, w) of MIN WEIGHTED NODE COLORING by using two gadgets:

234

* Thegadgets clause F'(C};) aregivenin Figure 1 for clause C; of size3and in Figure
2for clause C; of size 2. The nodes ¢} are those that will belinked to the rest of the
graph.

cjl (:? c?
3 3 3
2 2 2 ZT—O 3
30—0—-—=0 O O O—CO 3

2

Figure 1: Graph F'(C}) representing aclause C; of size 3.

Figure 2: Graph F'(C}) representing aclause C; of size 2.

» The gadgets variable H(x;) is given in Figure 3 for variable z;. Assume that z;
appears p; times positively and p, times negatively in (X,C), thenin H(z;) there
are 2p = 2(p; + po) specid nodes z¥, 2%, k = 1,..., p. These nodes form a path

which meets node ¥, 2% alternatively.

» The weights of nodes which are not given in Figures 1, 2 and 3 are 1.
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3 3 3 3 3 3

Figure 3: Graph H(x;) representing variable z;

» These gadgets are linked together by the following process. If variable x; appears
positively (resp. negatively) in clause C;, welink one of the variables ¥ (resp. z¥),
with a different & for each C;, to one of the three nodes ¢} of gadget F( ;). This
can be donein away which preserves the planarity of the graph

Indeed, for each node v of degree d(v) inthe planar graph BP, let'scal e}, - - - ,ed®

the endpoints on v of the edges adjacent to v consi dered inacircular order. Then,
for each edgein B P which joins node z; in endpoint ¥ to node C; in endpoint ec ,

we put an edge from z¥ (if z; appears negatively in C;, xl otherwise) to c].

Observe that G is triangle-free and planar with maximum degree 4. Moreover, we
assume that GG is not bipartite (otherwise, we add a digoint cycle T" with |T'| = 7 and
Yo e V(T),w(v) = 1).

It isthen not difficult to check that (X, C) is satisfiable iff opt (1) < 6.

Let g be a truth assignment satisfying (X,C). Weset S] = {v : w(v) = 3} and

= {v: wk) =2y U{zr : g(z;) = 1} U {2k : g(x;) = 0}. Since g satis-
fies the formula, we can color at least one node c;? with color 2 and then easily extend
(57,55) toacoloring S = (51,952,53) of G with 5! C S; fori = 1,2. We have
w(S1) = 3,w(Ss) = 2,w(S3) =1 and then val(S) < 6

Conversely, let S = (54, ..., S,) beacoloring of G with val(S) < 6. Assume w(S;) >

. = w(S¢). Wehave ¢ > 3 since G is not bipartite and w(S;) = 3. We deduce
w(Sy) < 3 (otherwise val(S) > 3 + 3 + 1). Moreover, since each node of weight
2 is adjacent to a node of weight 3, we have W (S;) = 2. For the same reasons as
previously, we deduce ¢ = 3 and W(Sg) = 1. Weclamthat forany j = 1,...,m
Sy N {cj, 3,2} # 0 where c],cj ¢} are the nodes of F/(C;) (with may be ¢} = 0).
Otherwise, we must have {cj, c;, ¢} C Sg but in this case, we cannot colored F( ;) with
3 colors. Thus, setting g(x,) = 1 iff 2 € Sy, we deduce that ¢ is a truth assignment

satisfying (X, C). a
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3 Weighted node coloring in bipartite graphs

3.1 Complexity results

The NP-completeness of MIN WEIGHTED NODE COLORING in bipartite graphs has been
proved in Demange et al. [4]. Here, we show that some more restrictive versions are also
NP-complete, namely bipartite planar graphs and P»;-free bipartite graphs, i.e. bipartite
graphs which do not contain induced chains of length 21 or more. We use a generic
reduction from the precoloring extension node coloring problem (in short PREXT NODE
COLORING). Then, using another reduction we improve this result to P;-free bipartite
graphs. This latter problem can be described as follows. Given a positive integer k, a
graph G = (V, E) and k pairwise digoint subsets V1, ..., Vj, of V, we want to decide if
there existsanode coloring S = (54, ...,S5k) of Gsuchthat V; C S;, foral i =1,... k.
Moreover, we restrict us to some class of graphs G: we assume that G is closed when we
add a pending edge with anew node (i.e, if G = (V,E) e Gandx € V, y ¢ V, then
G+ [z,y] € G).

Theorem 3.1 Let G be a class of graphs which is closed when we add a pending edge
with a new node. If PREXT NODE COLORING is NP-complete for graphsin G, then MIN
WEIGHTED NODE COLORING is NP-complete for graphsin G.

Proof : Let G be such aclass of graphs. We shall reduce PREXT NODE COLORING in
G graphs to weighted node coloring in G graphs. Let G = (V, F) € G and k pairwise
digoint subsets V7, ..., V. of V. Webuild instance I = (G, w) of weighted node coloring
using several gadgets T;, fori = 1, ..., k. The construction of T; is given by induction as
follows:

* T, issimply aroot v; with weight w(v,) = 281,

s GivenTy,...,T;1, T; isatree with aroot v; of weight w(v;) = 25~ that we link

totree T}, viaedge [v;,v,| foreachp =1,...,i — 1.

Figure 4 illustrates the gadgets 71, Tz, T3. Now, I = (G',w) where G' = (V' E') is
constructed in the following way:

* G’ contains G.

e Fordli=1,..., k, wereplace each nodev € V; by acopy of the gadget T; where
we identify v with root v;.

s FordlveV\ (U,V) wesetw(v) = 1.
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T 15
T
2k—1 2k—2 //22:1\\
/ \
O O———0 1
v (% ! v !

Figure 4; Gadgetsfor 17,15 and T3.

Note that, by hypothesis, G’ € G. We prove that the precoloring of G (given by
Vi,..., Vi) can be extended to a proper node coloring of G using at most % colors iff
opt(I) < 2% — 1.

LetS = (S1,...,,Sk) withV; C S; beanode coloring of G. Weget S’ = (57, ....,5;)
where each stable S/ isgivenby S/ = (S; \ Vi) U{v: Jj <k, v € T; and w(v) = 2877},
Itis easy to check that S’ isacoloring of G and opt(I) < val(S') = S35 2k = 2k —1.

Conversely, let ' = (57, ..., 5)) withw(S]) > ... > w(S)) beaweighted node coloring
of G’ with cost val(S') < 2% — 1. Firgt, we prove by induction that V/ = {v : Jp <
k, v e T, wv)=2""} isasubset of S}, for al i < k. Fori = 1, the result istrue since
otherwise we have w(S)) = w(S4) = 281 and then, val(S') > w(S)) + w(Sh) = 2*.
Now, assume that V; C S’ for j < i and let usprovethat V; = {v : Ip < k, v €
T,, w(v) = 2¥"} C S!. By construction of gadget 7}, j > i, each node v of weight
2+~ is adjacent to a node of weight 27 for al p < 4. Thus, v ¢ S. Now, if V/ ¢ 5,
then w(S)) = w(S,,) = 2" and we deduce val(S’') > w(S]) + ...+ w(S,,) =
23:1 2k=i 4 9k=t —= 2k 'which is a contradiction. Since V; # 0 for i < k, we deduce
¢ > k. Consequently, ¢ = k, sinceVv € V', w(v) > 1. Now, getting S = (5S4, ..., Sk)
where S; = (S;\ V/) UV, foreachi =1, ..., k, we obtain anode coloring of G. O

Using the results of Kratochvil [14] on the NP-completeness of PREXT NODE COL-
ORING in bipartite planar graphs and P;5-free bipartite graphs, we deduce:

Corollary 3.2 In bipartite planar graphs, MIN WEIGHTED NODE COLORING is strongly
NP-complete and it is not % — e-approximable for all ¢ > 0 unless P=NP.

Proof : PREXT NODE COLORING with & = 3 has been proved NP-complete in [14]
for bipartite planar graphs. Since these graphs are closed when we add an pending edge
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with anew node, the result follows. Moreover, from the proof of Theorem 3.1 with k = 3,
we deduce that it is NP-complete to distinguish whenever opt(I) < 7 and opt(I) > 8. O

Coroallary 3.3 In P -freebipartite graphs, MIN WEIGHTED NODE COLORING isstrongly
NP-complete and it is not % — eg-approximablefor all ¢ > 0 unless P=NP.

Proof : PREXT NODE COLORING with &k = 5 has been proved NP-complete in [14] for
Py3-free bipartite graphs. When, we add gadgets 7; with i < 5, G’ becomes P,;-free
bipartite graphs. Moreover, from the proof of Theorem 3.1 with k£ = 5, we deduce that it
is NP-complete to distinguish whenever opt(I) < 31 and opt(I) > 32. 0

In Hujter and Tuza [12], it is shown that PREXT NODE COLORING is NP-complete
in Ps-free bipartite chordal graphs for unbounded £ (a bipartite graph is chordal if the
induced cycles of length at least 5 have a chord). Unfortunately, we cannot use this result
in Theorem 3.1 since the resulting graph has an induced chain with arbitrarily large length.
However, we can adapt their reduction to our problem.

Theorem 3.4 MIN WEIGHTED NODE COLORING is NP-complete in Ps-free bipartite
graphs.

Proof . We shall reduce 3-sAT-3, proved to be NP-complete in Papadimitriou [17], to our
problem. Given acollectionC = (C4,...,C,,) of clausesover theset X = {zy,...,z,}
of boolean variables such that each clause C; has at most three literals and each variable
appears 2 times positively and one time negatively, we construct aninstance I = (BP, w)
in the following way:

» We start from BP, = (L, Ry; Ey), a complete bipartite graph K, ,,, where L, =
{z1,...,z,} a0d Ry = {cy, ..., cm}. Moreover, each node of BP; hasweight 1.

* There is aso another bipartite graph B P, isomorphic to K5, 2, Where a perfect
matching has been deleted. More formally, BP, = (Ls, Ra; E») Where Ly =
{ll,. . .712"}, Ry = {Tl,. . .,7"2”} and [li,Tj} € FEy iff 4 75 7. F|na”y, w(l,) =
U}(7Z) = 22~ for ¢ = 1,...,2n. Indeed, sets {121;177'22‘,1} and {lzi,TQi} will
correspond to variable x; and T; respectively.

» Between BP, and BP,, thereisaset E; of edges. [z;,7;] ¢ Esiff j =2i — 1 or
j=2iand[l;,¢;] ¢ E5iffi =2k —1andx;isinC; ori = 2k and 7 isin Cj.

Figure 5 illustrates the construction of the complement of B P with the clause ¢,,, =
TV 2o VT,

Let us show that BP is Ps-free. We represent in Figure 6 the possible subgraphs on
BP; (configuration A;, As and A3) and on B P, (configuration B; to By) induced by a
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T T2 Tn ™ ) 3 T4 Ton—1 Ton

L G Cm L Is U lon—1 lop

Figure 5: Complement of graph BP withtheclausec,, =77V 22 V T,

DaRsip e

Ayt Ayt Ay BBy By i Byt Bs i Bg: Br: Bg i By
Figure 6: Subgraphson B P, and B P, induced by a chain

chain on BP. In configurations A3 and By, the number of nodes is arbitrary. Note that
the upper line may correspond either to L; or R; for the left part (and L, or R, for the
right part). Now welook at the possible waysto link a configuration A; to a configuration
B; to obtain a chain of length (at least) 8.

* If we choose A;, we easily seethat it'simpossible.

« If we choose A,, the only way to have a chain of length at least 8 is to choose Bg
and link anode of A, to anode of Bs. In this case, we can see that the upper line
corresponds to R, (left part) and L, (right part), and that there is a clause which
contains a variable and its negation.

« If we choose A3, the only possibility to have achain of length at least 8 isto choose
By. But in this case, the chain simply alternates a node of R; and a node of L.
Then, at least one node of L, is not linked to at least 3 nodes of Ry, i.e. alitera
appearsin at least 3 clauses.

We claim that (X, C) is satisfiable iff opt(I) < 227 — 1.

Let g be a truth assignment satisfying (X, C). We build inductively the colors. Sy = 0
and for ¢ = 1,..,,n, Soi_1 = {lgi_l,’f’gi_l} U {Cj N ¢ Sp.,p < 21 — Lg(xL) =
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1 and Z; isin Cj}, SQi = {lzi,’rgi} @] {Cj TG ¢ Sp,p < 21,9(1‘1) = Oand‘T_llsm C]}
Finaly, if g(x;) = 1 then we add x; to Sy;; otherwise, we add z; to Sy;_;. We can easily
seethat S = (54, ..., Sa,) isanode coloring of BP with val(S) = 2" — 1.

Conversdly, let S = (Si,...,S;) be anode coloring of BP with val(S) = 2** — 1.
An inductive proof on i shows that {/;,r;} C S; (otherwise, we have val(S) > 2*");
consequently, ¢ = 2n. Thus, setting g(z;) = 1if z; € Sy; and g(x;) = 0if z; € So;_1, we
obtain atruth assignment satisfying (X, C). O

3.2 Polynomial result

We now prove that MIN WEIGHTED NODE COLORING is polynomial for Ps-free bipartite
graphs, i.e., without induced chain on 5 nodes. Notice that in general Ps-free graphs,
the weighted node coloring problem is NP-complete since on the one hand, the split
graphs are Ps-free and on the other hand, we have proved in Demange et a. [4] that
the weighted node coloring problem is NP-complete for split graphs. There are severa
characterizations of Ps-free bipartite graphs, see for example, Hammer et a. [10], Chung
et a. [3] and Hujter and Tuza [11]. In particular, BP is a Ps-free bipartite graph iff
BP ishipartite and each connected component of BP is2K,-free, i.e., itscomplement is
Cy-free.

Lemma 3.5 In P5-free bipartite graph, any optimal weighted node coloring uses at most
3colors.

Proof : Let BP = (L, R; EY) be a Ps-free bipartite graph with connected components
BPy, ..., BP,. Assumethereverseandlet usconsider an optimal solutionS* = (S7,...,S;)
with ¢ > 4 and w(ST) > ... > w(S;). Observe that, without loss of generality, we can
assume that there exist a connected component B P, colored with ¢ colors and any con-
nected component B P; using j colorsis colored with colors 1, .. ., j. Moreover, we also
suppose that in any connected component B P;, each node colored with color i > 2 is
adjacent to nodes with colors 1, ...,i — 1 (by applying greedy rule on S*).

Weclaimthat thereexist 1 <i < j < ¢suchthat S;NL # Qand S;NR # () fork =i, 5.

Otherwise, since £ > 4, we must have S; C L (resp., S; € R) and S; C L (resp,

S C R) for someiy < jo. Inthis case, by merging S;; with S , we obtain a better node
coloring that S*, which is a contradiction.

So, consider connected component B, and let [; € S; N L andr; € SN L two
nodes of BP,. From this claim, we deduce there exist 2 other nodes /;, r; of B P, such
thatl; € S;NL,r, e S;NLand[l;,r;] € E,[l;,r;] € E. Since BP isbipartite, these 2
edges are independents which is a contradiction with characterization of Ps-free bipartite
graphs. O
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Let BPy,..., BP, be the connected components of BP where BP; = (L;, R;; E;).
Let S* = (S}, S5,.5;5) (with maybe some S; = () be an optimal solution with w(S}) >
w(S3) > w(S;) and denoteby S; = (S, S5, S3*) the restriction of S* to the subgraph
BP,. Remark that we may assume w(S;") > w(S3") > w(S5") (otherwise, we can flip
the color without increasing the weight). Moreover, we have:

Lemma 3.6 We can always assume that one of these situations occurs, for any i =
1,...,p:

(i) Sy' = L; (resp., S;" = R;), Sy = R; (resp., Sy = L;) and S = 0.

(i1) S;'NL; #0and S;' N R, # 0, Sy C R; (resp., Sy*  L;) and S5 C L; (resp.,
Syt C Ry).

Proof : Let BP = (L, R; E) be a Ps-free bipartite graph with connected components
BP,,...,BP,. Assumethat S;* N L; = § or S;" N R; = 0. In this case, it is clear that
we are in the first item (i) (since we have assumed w(S}") > w(S;") > w(S;")). Now,
suppose S;' N L; # () and S;* N R; # (); from the proof of Lemma 3.5, the result follows.
O

The agorithm computing an optimal solution is described by the following way:

P5- FREEBI PARTI TECOLOR

1 For al kl,kg S {w(v) LU E V}, kl > k?2, do

1.1 For dl connected component BP, = (L;, R;; E;),i =1,...,p,do

1.1.1 If L;UR;\ (L;UR,) isanindependent set where L) = {v € L; : w(v) <
kiband R, = {v € R; : w(v) < kp} thenset S31™ = L, 31" = R
and Sy = L; UR; \ (L} U RY);

1.1.2 Otherwise, if L; U R; \ (L U R;) isan independent set where L, = {v €
Li: wv) <k}land R = {v € R;: w(v) <k} thenset S33* = Ry,
Syvk = Liand S{Y* = L; U R; \ (L, U RY);

1.1.3 Otherwise go to step 1;

114 SetSPv* = U Sh* for j = 1,2, 3and Skt = (S gyte ke
(with maybe %1% — ):

2 Output S = argmin{val(S¥*2) : ky < ki};
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This algorithm has a complexity O(n|w|?) where |w| = [{w(v) : v € V}|. By
applying a dichotomy technic on k., we can improve it to O(n|w|log|w|). Note that this
algorithm also computes the best node 2-coloring among the colorings using at most 2
colors (when k; = waz)-

Theorem 3.7 MIN WEIGHTED NODE COLORING ispolynomial in P5-free bipartite graphs.

Proof : Let S* = (S7,53,5%) (with may be S; = ) be an optimal solution satisfying
Lemmas 3.5 and 3.6. We assume w(.S;) > w(S;) and if S* isanode 3-coloring, then we
have w(S}) = Wia,; Otherwise w(Sy) = 0. Let ky = w(S3) and ke = w(S%); consider
the step of algorithm corresponding to k&, k. If S* isanode 2-coloring, then theresult is
true. So, assume S} # ); by construction, P5- FREEBI PARTI TECOLORfind an feasible
solution S¥1-+2 with w(SF*) < wiae, w(SE*2) < ky and w(SE*?) < k,y. Thus, we
deduce the expected result. m]

3.3 Approximation

In Demange et d. [4], a%—approximation isgiven for MIN WEIGHTED NODE COLORING
anditisproved that a (% — g)-approximation is not possible, for any € > 0, unless P=NP,
even if we consider arbitrarily large values of opt(I). Using Corollary 3.2, we deduce
that this lower bound also holds if we consider bipartite planar graphs. Here, we give a
S-approximation in bipartite graphs.

Bl PARTI TECOLOR

1 Sort the nodes of BP in non-increasing weight order (i.e., w(vy) > ... = w(v,));
2 Fori=1tondo

2.1 SetV :{vl,,vz},

2.2 ComputeS; = (5%, .S%) (S% may be empty) an optimal weighted node coloring
in BP[V;] among the colorings using at most two colors;

2.3 Define node coloring §' = (S, S5, L\ V;, R\ V;) (L \ V; orland R \ V; may
be empty);

3 Output S = argmin{val(S) : i=1,...,n};
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Thestep 2.2 consists of computing the (unique) 2-coloration (S5 ;, S5 ;) (Withw (ST ;) >
w(Ss;)) of each connected component BP;,j = 1...p of BP[V}] (with S5, = 0 if
BP; is an isolated node). Then it merges the most expensive sets, i.e. it computes
S} = Uj_,S;; fori = 1,2. Itiseasy to observe that S = (57, S5) is the best weighted
node coI ormg of BPIV;] among the colorings using at most 2 colors; such a coloring can
befoundin O(m) timewherem = |E]|.

Theorem 3.8 Algorithm Bl PARTI TECOLOR polynomially solves in time O(nm) the
weighted node coloring problem in bipartite-graphs within approximation ratio bounded
above by £.

Proof : Let I = (BP,w) be a weighted bipartite-graph where BP = (L, R; E) and
S* = (57,...,S]) be an optimal node coloring of I with w(S}) > ... > w(S)). If
[ < 3, then Bl PARTI TECCLOR finds an optimal weighted node coloring which is S™
(corresponding to the step « = n). Now, assume ! > 3 and let i; = min{k : v € S;}.
Wehave:; = 1 and

opt(I) Z w(vi,) + w(vi,) + w(vi,) (G0

Let us examine several steps of this algorithm:

. whenz‘ = iy — 1, the algorithm produces a node 3-coloring S~ = (S},_;, L\

Si_1,R\ S}_,). Indeed, by construction V;,_; C S is an independent set, and

then, S;,_, is defined by Si>~' = V;,_; and S~' = ). Moreover, Vv ¢ Vi,_1,
w(v) < w(v;,) and then

val (8271 < w(vy,) + 2w(vyy,) 32
+ wheni = i3 — 1, theagorithm produces on B P[V;, ;] anode 2-coloring S;, ; with
acost val(S;,_) < w(vy,) +w(v;,) sincethecoloring (ST NVi,_1, S5 NVi,—1) isa

feasible node 2-coloring of BP[V;,_,] with cost w(v;,) + w(v;,). Finaly, since the
weights are sorted in non-increasing order, we obtain:

val(S71) < w(vy,) + w(vy,) + 2w(vy,) (33

» wheni = n (thelast step), the algorithm just produced a node 2-coloring satisfying:
val(S™) < 2w(vy,) 34

Using (3.2), (3.3) and (3.4), we deduce;
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val(8) < min{2w(vi,); w(vi,) + w(vi,) + 2w(viy); w(vi,) + 2w (vi,) } (35)

The convex combination of these 3 values with coefficients 1, 2 and 2 respectively
and the inequality (3.1) give the expected result, i.e.:

Val(8) < X 20(ui, 2 X (w(oi, (w1, 20 + 2 (0o, ) +20(01)) < Sop(T)

O

4 Weighted edge coloring in bipartite graphs

The weighted edge coloring problem on a graph G can be viewed as the weighted node
coloring problem on L(G) where L(G) is the line graph of G. Here, for simplicity, we
refer to the edge model.

4.1 Complexity results

Demange et a. [4] have proved that MIN WEIGHTED EDGE COLORING in bipartite cubic
graphs is strongly NP-complete and a lower bound of % is given for the approximation.
Here, we dlightly improve these complexity results. Indeed, we show that weighted edge
coloring in bipartite cubic planar graphsis strongly NP-complete and we deduce that it is
NP-complete to obtain an approximation within aratio g — ¢, forany e > 0.

Theorem 4.1 MIN WEIGHTED EDGE COLORING is strongly NP-complete in bipartite
cubic planar graphs.

Proof : We shall reduce PREXT EDGE COLORING in bipartite cubic planar graphs to
our problem. Given a bipartite cubic planar graph BP = (V, E') and 3 pairwise digoint
matchings E1, . . ., B3 of F, the question of PREXT EDGE COLORING isto determine if
it is possible to extend the edge precoloring F1, . . ., F5 to aproper edge 3-coloring of G.
Very recently, this problem has been shown NP-completein Marx [16].

Let BP = (V,E) and Ey, ..., E3 be an instance of PREXT EDGE COLORING; We con-
struct aninstance I = (BP’, w) of weighted edge coloring such that the answer of PREXT
EDGE COLORING instance is yes if and only if there exists an edge coloring S of I with
cost val(S) < 6.

The construction of instance [ isthe following :
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Each edgein E; receives weight 3.

Each edge [z, y] € E, isreplaced by agadget F; described in Figure 4.1, where we
identify x and y to vy and vy respectively.

Each edge in E5 isreplaced by a gadget F3 which is the same as gadget F, except
that we have exchanged weights 1 and 2.

The other edges of G receive weight 1.

Figure 7: Gadget F; for e € Es.

Remark that BP' is till a bipartite cubic planar graph.

First of all, assumethat B P admitsan edge 3-coloringS = (M;, Ms, M3) where E; C M
foranyi = 1,2,3. Wegetacoloring &' = (M, M}, M}) of BP' where M| = M;U{e €
F,UF;: w(e)=3}and,fori =2,3, M = (M;\ E;) U{e € F,UF3: w(e) =4—i}.
We can easily check that opt(I) < val(8') =3+2+1=6.

Conversely, consider an edge coloring S’ = (M, ..., M;) of G' with val(S’) < 6 and
assume w(Mj) > ... > w(M;). Wehave ¢ > 3 since A(BP') = 3. Then, al the edges
of weight 3 must be in the matching /], and no edge of weight 2 isin M withp > 3,
since otherwise we have val(S’) > 7 (3 + 3 + 1 in thefirst case and 3 + 2 + 2 in the
second case). Moreover, each edge of weight 2 is adjacent to an edge of weight 3, and
then, these edges are necessarily in M. Finaly, remark that the edges of the gadgets
of weight 1 are adjacent to an edge of weight 2 and an edge of weight 3 and must be
in M with p > 3. Moreover, p = 3 and more generally ¢ = 3 since val(S') < 6.
Now, consider the edge coloring (M;, M, M3) of BP wherefor any i = 1,2, 3 we have
]\/{z = (Afl/ \ {6 € F2 U F‘3 . w(e) =4 - Z}) U El We can eaS”y %ethat (]\/fl, ]\/[2,]\/[3)
isasolution for the edge precoloring extension problem. a

From the proof of Theorem 4.1, we deduce that computing an optimal weighted edge
3-coloring of a cubic bipartite graphs among edge 3-colorings is NP-complete. By the
same technics, we can prove that more generally, finding an optimal weighted edge k-
coloring of a cubic bipartite graphs among the edge colorings using at most & colors is
NP-complete for any k£ = 3,4, 5.
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Corollary 4.2 For all £ > 0, MIN WEIGHTED EDGE COLORING iSnot 7/6 — £ approx-
imable in bipartite cubic planar graphs unless P=NP.

4.2 Approximation result

In Demange et al. [4], ag—approximation isgiven for MIN WEIGHTED EDGE COLORING
in bipartite graphs with maximum degree 3. Here, we give a %-approximation.

We need some notations: If BP = [V, E] is a bipartite graph with node set V' =
{v1,...,v,}, we always assume that its edges £ = {e,...,e,} are sorted in non-
increasing weight order (i.e., w(e;) > ... = w(ey)). If V' isasubset of nodesand E’ a
subset of edges, BP[V’] and BP[E'] denote the subgraph of BP induced by V' and the
partial graph of BP induced by E’ respectively. For any i < m,weset E; = {ey,...,¢e;}
and E; = E \ E;. Finaly, V; denotes the set of nodes of B P incident to an edgein E; (so,
it is the subset of non-isolated nodes of BP[E}]).

Consider the following algorithm.

Bl PARTI TEEDGECOLCOR

1 For i = m downto 1 do

1.1 Apply agorithm SOL1 on BP[E;];

1.2 1f SOL1(BP[E;])# 0, completein agreedy way all the colorings produced by
SOL1 ontheedgesof E;. Let S;; be abest one among these edge colorings
of BP;

1.3 For j = i downto 1 do

1.3.1 Apply algorithm SOL2 on BP[E;];

1.3.2 If SOL2(BP|E,])# 0, complete in a greedy way al the colorings pro-
duced by SOL2 on the edges of FJ Let S, ;,; be abest one among these
edge colorings of BP;

1.3.3 Apply algorithm SOL3 on BP[E}];

1.3.4 If SOL3(BP[E;]))# 0, complete in a greedy way all the colorings pro-
duced by SOL3 on the edges of E;. Let S; ;,; be a best one among these
edge colorings of BP

2 Output S = argmin{val(Sy;),val(S ) : k=2,3,j=1,...,4,i=1,...,m}.

246



Annaesdu LAMSADE n°4-5

The greedy steps 1.2, 1.2.2 and 1.2.4 can be described as follows: for each edge not
yet colored, try to color it with an existing color, and otherwise take anew color. A simple
argument shows that these edge colorings do not use more than 5 colors. Indeed, assume
the reverse and let us consider an edge with color 6. Since the maximum degree of BP
is 3, this edge is adjacent to at most 4 edges and then to at most 4 colors. Thus, we can
recolor this edge with amissing color in 1, ..., 5. Obviously, this result also holds for an
optimal solution. More generally, in [4], we have proved that, in any graph G, thereisan
optimal weighted node coloring using at most A(G) + 1 colors, where A(G) denotes the
maximum degree of G. In our case, we have G = L(H), the line graph of H, and we
deduce A(L(H)) < 2(A(H) — 1) +1 = 2A(H) — 1.

The 3 algorithms SOL1, SOL2 and SOL3 are used on severa partia graphs BP’ of BP.
In the following, V', E' and m' denote respectively the node set, the edge set and the
number of edges of the current graph BP’. Moreover, weset V/ = V/\ V/ and E/ = E'\
ELIf M = (M, ..., M) isan edge coloring of BP', wenotei; = min{k : e, € M,}
for j = 1,...,1. We assume, for reason of readability, that some colors A/; may be
empty (in thiscasei; = m’ + 1). The principle of these algorithms consist in finding a
decomposition of B P’ (asubgraph of B P) into two subgraph B P, and B P, having each
a maximum degree 2. When there exists such a decomposition, we can color BP] and
BPj with at most 2 colors respectively since B P is bipartite.

SCaL1

1 For j = m/ downto 1 do

L.1 If the degree of BP'[E]] isa most 2 then

1.1.1 Consider the graph BP" :

« induced by the nodes of B P’ incident to at least 2 edges of E ;
* restricted to the edges of E7.
1.1.2 Determineif there exists amatching M7 of B P such that every node of
V] is saturated;
1.1.3 If such amatching is found, consider the decomposition BF; ; and BF; ;
of BP"induced by £ U M7 and E' \ (E; U M) respectively;
1.1.4 Find an optimal edge coloring (A7, MJ) among the edge 2-colorings of
BP j;

1.1.5 Color greedily the edges of BP; ; with two colors (M, M3);
1.1.6 Define S} = (M, M, Mj, MJ) the edge coloring of BP”;

247



Weighted coloring on planar, bipartite and split graphs: complexity and approximation

2 Output {S7: j=1,...,m' —1};

Note that the step 1.1.2 is polynomial. Indeed, more generally, given a graph G =
[V,E]andaset V' C V, it ispolynomial to determine if there exists a matching such that
each node of V' is saturated. To see this, consider the graph G/ where we add to G all
missing edges between nodes of V' \ V'. If |V| is odd, then we add a node to the clique
V\ V'. Itiseasy to see that G’ has a perfect matching if and only if G has a matching
such that each node of V" is saturated.

Lemma4.3 If S = (M, My, Ms, My) withw(M,) > ... > w(M,) isan edge coloring
of BP', then algorithm SAL1 produces a solution Sj satisfying: val(S]) < w(M;) +
w(My) + 2w(Ms)

Proof : Let S = (My, My, M3, My) withw(M;) > ... > w(M,) be an edge coloring
of BP'. Let us examine the step of SOL1 corresponding to j = i3 — 1. By construction,
BP'[E], ] is 2 edge colorable since we have E;, ; C M; U M,. Moreover, in the
subgraphinduced by £, _, each node of degree 3 hasat least an edge of M, UM, incident
toit. Thus, in BP", there exists a matching where each node of V/ _, is saturated. The
subgraph B P/ ;. , has a maximum degree 2 and contains by construction the subgraph
BP'[E;, ,]. Moreover, two any connected components of BP'[E;, ;] have not been
merged in BP[,, , since each edge e = [z,y] € M™~! has at least one node (say x)
satisfying dBP,[E;H] (x) = 0. Thus, any edge 2-coloring of BP’[Ei/S_l] can be extended
to an edge 2-coloring of BP[,, ,.So0,sinceVe € M*~',Ve' € Ej,_, w(e) < w(¢'), and
(M7=, M3~") isan optimal weighted 2 edge coloring of BP[ ;, _,, we deduce:

w(MP™) +w(Mpp™") < w(My) + w(Msy) (4.1)

By construction, BF, ;, , hasno node with degree 3, and then BP; ;. | has aamaxi-
mum degree 2. Moreover, Ve ¢ (Ms~'UE/,_,) wehavew(e) < w(e;,) = w(Ms). Thus,
any edge coloring of BP; ;. _, using at most 2 colorsand in particular (M3, M* ") sat-
isfies:

w(ME ™)+ w(MPE) < 2w(Ms) 4.2)

Combining (4.1) and (4.2), we obtain:

val(SPP~Y) < w(My) + w(Ms) + 2w(Ms)
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SOL2

1 For k = m’ downto 1 do

1.1 If E} isamatching :

1.1.1 Determine if there exists a matching M, of BP'[V}] such that each node
of BP'[V]] having adegree 3in BP’ is saturated.

1.1.2 If such amatching isfound, consider the decomposition BP; , and BP,
of BP"induced by E, U M, and E"\ (E} U M) respectively,

1.1.3 Color BP[; with one color Mf;

1.1.4 Color greedily BP; , with two colors M5 and My,

1.1.5 Define 8§ = (MF, My, M¥) the edge coloring of BP’;

2 Output {S¥: k=1,....m'};

Lemmad.4 If S = (M, My, Ms) with w(M;) > w(Ms) > w(Ms) isan edge coloring
of BP’, then algorithm SOL2 produces a solution S5 satisfying: val(Sy) < w(M;) +

Proof : Let S = (M, My, M3) with w(M,) > w(Mz) > w(Ms;) be an edge coloring
of BP'. Let us examine the step of SOL2 corresponding to k& = i, — 1. By construction,
E;, ; € M, and among M, \ Ej, , thereisamatching of BP'[V;, ] where each node

of degree 3 is saturated (otherwise, S = (M), My, M3) is not feasible). Thus, BP;;, ,
can be considered and colored with one color M>~*, and we have:

w(MP™) = w(M,) 4.3

We also deduce that BP, ;, , hasamaximum degree 2. Then, it can be edge colored
with 2 colors M3>~" and M3>~". Moreover, since Ve ¢ E; _;, w(e) < w(e;,) = w(Ms),
we obtain: _ 4

w(MPE) + w(MP) < 2w(Ms) (4.4)

Using (4.3) and (4.4), we obtain:

val(S271) < w(My) + 2w(M,)
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SCL3

1 For k = m/ downto 1 do
1.1 Determineif thereisamatching M, in BP'[E}] such that each node of degree
3in BP' issaturated.

1.2 If such amatching is found, consider the decomposition BF; , and BF; , of
BP'induced by M;, and E’ \ M, respectively;

1.3 Color BP{, with one color Mj;
1.4 Color greedily BP;, withtwo colors M and M§;
1.5 Define S¥ = (MF, My, M¥) the edge coloring of BP’;

2 Output {S¥: k=1,....m' —1};

Lemmad4b If S = (M, My, M) with w(M;) > w(Ms) > w(Ms) isan edge coloring
of BP', then algorithm SOL 3 produces a solution S¥ satisfying: val(S§) < 2w(M,) +
w(Ms)

Proof : Let S = (M, M, M) with w(M,) > w(Mz) > w(Ms;) be an edge coloring
of BP'. Asprevioudly, let usconsider one particular iteration of SOL3. Inthislemma, we
study the case where k = i3 — 1. By construction, we have M3 C E;,_, and M3 contains
amatching where each node of BP'[E], _,] having adegree 3in BP' is saturated. Thus,

BP,,, , exists. Moreover, sinceVe € £, w(e) < w(e;;) = w(Ms), we obtain:

WM < w(Ms) (45)

As previously, we deduce that BP] ;,_, can be edge colored with 2 colors M7~ and
M2~ and we have: _ _
w(MP) + w(MPpY) < 2w(M)) (4.6)
Combining (4.5) and (4.6), we obtain:

val (8271 < 2w(M,y) + w(Ms)

250



Annaesdu LAMSADE n°4-5

Remark 4.6 Observe that if a color M ;3*1 is empty, then we can improve the bound :
in this case, val(8§3‘1) < 2w(M,). Thisremark is also valid for algorithms SOL1 and
SQAL2, and if several colors are empty. For SOL1 for instance, if Mi*~" and M2~ are
empty, then val(S*™1) < w(M;) + w(Ms).

Theorem 4.7 Bl PARTI TEEDG:‘CG_O?producesag approximation for MIN WEIGHTED
EDGE COLORING in bipartite graphs with maximum degree 3.

Proof : Let S* = (M,..., M) with w(M]) > ... > w(M;) be an optimal
weighted edge coloring of BP. Denote by ¢} the smallest index of an edge in A}
(¢ = m + 1if thecolor is empty).

Consider the iteration of Bl PARTI TEEDGECOLOR corresponding to the cases i =
it —landj =i} — 1. Then:

* applying lemma 4.3, we produce on BP' = BP|E;] an edge coloring of weight at
most w(M;) + w(M3) + 2w(M;). Then the greedy coloring of the edges of E;
produces a coloring of weight at most

w(M7) + w(M3) + 2w(M3) + w(M) 4.7

* Applying lemma4.4, we produce on BP' = BP|[E}| an edge colori ng of weight at
most w (M) + 2w(M;). Then the greedy coloring of the edges of E; produces a
coloring of weight at most

w(M;) + 2w(My) + 2w (M) (4.8)

* Applying lemma 4.5, we produce on BP" = B P[E;]| an edge coloring of weight at
most 2w (M;) + w(M;). Then the greedy coloring of the edges of £; produces a
coloring of weight at most

2w (M) + w(M;) + 2w(M) (4.9)

Note that if there is an empty color or several empty colors produced by one of the
algorithms SOL, then the bound are still valid. Indeed, for SOL3 for instance, according
to Remark 4.6, the value of the coloring computed at step j = i3 — 1 hasaweight at most
2w(My), and the greedy step produces a coloring of value at most 2w(M;) + 3w (M) <
2w(M;) + w(M;) + 2w(My).

Using (4.7), (4.8) and (4.9), we deduce that the coloring S computed by Bl PARTI TE-
EDGECOLOR sdtisfies:
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val(S) < min{ w(M7) 4+ w(M3) + 2w(M3) + w(M;);
w(M{) + 2w(My) + 2w(My); 2w( M) + w(My) + 2w(M,%10)

The convex combination of these 3 values with coefficients 2, 2 and ¢ respectively
and the inequality (4.10) give the expected result, that is:

7 7 1 7
GWOME) + cw (M) + w(M) + Sw(Mg) < copt(I)

<
w(S) < 6 6 6

w(M;) +

[SNIN|

5 Weighted node coloring in Split graphs

The split graphsare aclass of graphsrelated to bipartite graphs. Formaly, G = (K3, Va3 E)
isasplitgraphif K isacliqueof G withsize| K| = n; and V; isan independent set with
size |V,| = ny. So, asplit graph can be viewed as a bipartite graph where the left set isa
clique. Since split graphs form a subclass of perfect graphs, the node coloring problem on
split graphs is polynomial. On the other hand, in [4], it is proved that the weighted node
coloring problem is strongly NP-complete in split graphs, even if the weights take only
two values. Thus, we deduce that thereisno fully polynomial time approximation scheme
in such a class of graphs. Here, we propose a polynomial time approximation scheme us-
ing structural properties of optimal solutions. An immediate observation of split graphs
is that any optimal node coloring S* = (S}, ...,S;) satisfies |K;| < ¢ < |K;| + 1 and
any color S} is asubset of V2 with possibly one node of K. In particular, for any op-
timal node coloring S* = (S}, ...,5;) , there exists at most one index i(S*) such that
Syis N K1 =0.

Lemma5.1 Thereisan optimal weighted nodecoloring S* = (S5, ..., S;) withw(S}) >
...z w(Sy) andanindex iy < ¢ + 1 such that:

s Vji<igSi={vju{vely:v¢ U3 Sx and v, v;] ¢ E} for somev; € K.
« S =V \(SfU...USf ).
* Vj > i Sj = {v;} for somew; € K.

Proof : Let G = (K4, Vh; E) beasplit graph and let $* = (S5,...,S;) withw(ST) >

. = w(S;) be an optimal weighted node coloring of G. If ¢ = n; (we recall that
ny = | K1), thenwesetip = ¢+ 1 otherwiselet iy be the unique ¢ such that S N K; = 0.
We build set S;" by the following way:

252



Annaesdu LAMSADE n°4-5

s Fori=1,...,50— 1,5 ={v}u{veVy: v¢ U S adv,v] ¢ E} where

we assumethat S N K = {v;}.
« S =Vo\ (57 U...US:_).
e Fori=ig+1,...,0,8 =S:NK,.
Thus, when iy = ¢ + 1, the sets resulting from second and third items are empty. Let

us prove that:
Vi=1,...,0 w(S) <w(S)) (5.1)

Since w(S) = ... = w(S;), wehave w(S;) = max{w(v) : v € Ky UV, \ (S7U
...US; )} Moreover, by construction Ui—} S; € U2} 7. Thus, the result follows.

Using inequality (5.1), we deduce that node coloring S* = (S}, ...,S;") has a cost
val(8*) < S0_, w(Sy) = opt(I) and then, S* is an optimal weighted node coloring
satisfying Lemma5.1. a

SPLI TNODECOLOR;,

1 For all subset K C K, with |K/| = p < k do

1.1 For dl bijection f: {1,...,p} — K do
1.1.1 Fori=1topdo
1111 Set S50 = (f(i)yufv e Va: v ¢ Ut 88 and [u, £(i)] ¢ E};
K| K1, K1 fy.
112 Set Sy = Vo \ (S7 7 UL usp Yy,
1.1.3 Fori=p+2ton; + 1 (assume K; \ K| = {vp42, ..., Upn,41) dO

1.1.3.1 Set S5 = {u,};
/ K, Ki.fy.
114 Set 8K/ = (517 gk,

2 Output S = argmin{val(S¥i/)};

This algorithm has a complexity-time O (k!n*+1).

253



Weighted coloring on planar, bipartite and split graphs: complexity and approximation

Theorem 5.2 For all ¢ > 0, SPLI TNODECOL OQM produces a 1 + ¢ approximation for
MIN WEIGHTED NODE COLORING in split graphs.

Proof : Let G = (K, Va; E) beasplit graph and let S* = (S},...,S;) with w(ST) >

. = w(S;) be an optimal weighted node coloring of G satisfying Lemma 5.1. Let
k= [%].1f iy < k, then by construction the solution S returned by SPLI TNODECOLOR,
isoptimal. So, assume iy > k and let K7 = (U¥_,57) \ V5. Obviously, |K}'| = k and let
[fi)y=SnK fori=1,..., k.

Let us examine the solution SXi/* corresponding to the step K| = K and f = f* of
SPLI TNODECCLOR,. By construction, we have

Vi=1,...k S =g (5.2)

Moreover, since K; \ K C S;,; U...US; and K; \ K7 isaclique, we obtain:

n1+1 , 0
ST ws Ty < ST w(sy) (5.3)
Jj=k+2 Jj=k+1

Thus, combining (5.2) and (5.2), we deduce:

val(SSi7Y = w(SKT) < opt(I) (5.4)

Moreover, by construction w(S,ﬁl’f*) <w(Sy) < ... <w(Sy) and then

o 1
w(Si") < 7 x opt() (5.5)

Finally, using these two last inequalities with + < ¢, we obtain the expected result. O
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