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A GENERATING ALGORITHM FOR RIBBON TABLEAUX AND SPIN

POLYNOMIALS

FRANCOIS DESCOUENS

Abstract. We describe a general algorithm for generating various families of ribbon tableaux and
computing their spin polynomials. This algorithm is derived from a new matricial coding. An
advantage of this new notation lies in the fact that it permits one to generate ribbon tableaux with
skew shapes.

1. Introduction

Ribbon tableaux are planar structures generalizing Young tableaux (see [5, 10] for the classical
case). These are tilings of Ferrers’s diagram by ribbons (diagrams with special shape) labelled with
integers verifying some vertical and horizontal monotonicity conditions.

Standard ribbon tableaux (all labels different) have first been introduced by Stanton and White
in 1985, in order to explain some combinatorial properties of colored permutations [11]. Semi-
standard ribbon tableaux (repeated labels are allowed) go back to the work of Lascoux, Leclerc
and Thibon [8]. These authors were motivated by the introduction of q-analogues of certain combi-
natorial identities, and in particular of the famous Littlewood-Richardson rule describing products
of Schur functions. They obtained q-analogues of decomposition coefficients for any product of
Schur functions and many questions about these q-coefficients are still open.

Studying ribbon tableaux is quite a difficult subject, which mainly uses huge numerical ex-
perimentations. This is why we are interested in finding efficient algorithms for generating and
computing statistics on them.

The matricial coding of ribbon tableaux used for numerical experimentations in [8, 9] is deficient
because it does not give some elementary properties (shape and position of the head of the ribbons
for example) without additional computations and cannot be generalized to skew shapes. The
algorithm used at the time was not published and appeared only as a programming example with
Maple/ACE in [6] and a distributed version is described in [13].

The aim of this paper is to present a more general algorithm for generating ribbon tableaux and
computing spin polynomials, using a different and more transparent coding for ribbon tableaux.
These algorithms are implemented in the combinatorial library MuPAD-Combinat[4] which can be
downloaded at http://mupad-combinat.sourceforge.net/.

2. Basic definitions on ribbon tableaux

We will mainly follow [1, 5, 10] for classical notions on partitions and tableaux and [10] for
notations related to partitions. Let λ and µ be two partitions such that the diagram of λ contains
the diagram of µ, The skew partition of shape λ/µ can be defined as the set-theoretic difference
λ− µ (λ is called the outer partition and µ the inner).
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h(R)

Figure 1. An 11-ribbon of height h(R) = 4

Definition 1. Let k be a nonnegative integer. A k-ribbon R is a connected skew diagram with k
cells which does not contains a 2×2 square. The first (north-west) cell is called the head and the

last one (south-east) the tail. The spin is defined as sp(R) = h(R)−1
2 .

Figure 2. A tiling with 3-ribbons of the skew partition (8, 7, 6, 5, 1, 1)/(3, 3, 1) of
spin 3

We will denote by Pavk(λ/µ) the set of k-ribbon tilings of the skew shape λ/µ. The spin sp(P )
of a tiling P is the sum of the spins of its ribbons, and the cospin is the associated co-statistic into
Pavk(λ/µ), i.e:

cosp(P ) = max{sp(U), U ∈ Pavk(λ/µ)} − sp(P ).

Ribbon tableaux are labelled tilings verifying monotonicity conditions similar to these of Young
tableaux. The spin of a k-ribbon tableau is the spin of the underlying tiling.
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Figure 3. A 3-ribbon tableau of shape (8, 7, 6, 5, 1, 1)/(3, 3, 1), weight (2, 2, 2, 1),
and spin 3

Definition 2. A k-ribbon tableau of skew shape λ/µ is a tiling of the skew shape λ/µ by labelled
k-ribbons such that the head of a ribbon labelled i must not be on the right of a ribbon labelled j > i
and its tail must not be on the top of a ribbon labelled j ≥ i. The weight of a k-ribbon tableau is
the vector ν such that νi is the number of k-ribbons labelled i.

We denote by Tabk(λ/µ, ν) the set of all semi-standard k-ribbon tableaux of shape λ/µ and
weight ν.

Definition 3. The spin and cospin polynomials associated to the set Tabk(λ/µ, ν) are:

G
(k)
λ/µ,ν(q) =

∑

T ∈Tabk(λ/µ,ν)

qsp(T ) and G̃
(k)
λ/µ,ν(q) =

∑

T ∈Tabk(λ/µ,ν)

qcosp(T ).
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If we write sp∗ = max{sp(T ), T ∈ Tabk(λ/µ)}, the following property holds:

G
(k)
λ/µ,ν(q) = qsp∗G̃

(k)
λ/µ,ν(

1

q
).

Example 1. In Tab3((8, 7, 6, 5, 1), (3, 3, 2, 1)), these two polynomials are:

G
(3)
(8,7,6,5,1),(3,3,2,1)(q) = 3q2 + 17q3 + 33q4 + 31q5 + 18q6 + 5q7,

G̃
(3)
(8,7,6,5,1),(3,3,2,1)(q) = 3q5 + 17q4 + 33q3 + 31q2 + 18q + 5.

3. A generating algorithm

In this section, we describe a new algorithm for generating all the ribbon tableau in Tabk(λ/µ, δ)
and computing their spin polynomials. The main basic idea is to apply recursively the algorithm
of removing k-ribbon strips from a partition.

3.1. A new coding for ribbon tableaux. In this subsection, we extend the coding of [13] which
is not well adapted to ribbon tableaux with skew shape λ/µ and does not give immediate access
to the shape of the tableau. If the partition λ is (λ1, . . . , λn), our coding is an n × λ1-array (Ai,j)
defined as follow:

1- Ai,j = −1 if (i, j) ∈ µ,
2- Ai,j = p if there is the head of a ribbon labelled p in the cell (i, j),
3- Ai,j = 0 otherwise.

By construction, we can immediately read the shape of the corresponding ribbon tableau, and the
length of the ribbons is obtained by dividing the number of non negative cells by the number of
positive cells. This coding makes sense when k = 1 because we obtain the classical representation
of a skew Young tableau (each ribbon is reduced to its head).

Example 2. The new coding of a 3-ribbon tableau of shape (8, 7, 6, 5, 1, 1) and weight (3, 3, 2, 1):

4

1

2
2 3

1 1

2

3

−→




2
0 2 3 0 0
0 0 0 2 0 4
1 1 0 1 0 0 0
0 0 0 0 0 3 0 0




.

The structure used in [13] was a matrix where the entry (i, j) is equal to k if there is the tail of
a ribbon labelled i in the j-th column of the shape. We show that the main difficulty in carrying
out this construction is that we cannot read the shape of the partition without reconstructing the
entire ribbon tableau. Furthermore, this coding become non injective when we try to generalize
it on ribbon tableaux of skew shape. With the previous example we would obtain the following
matrix: 



0 3 3 0 3 0 0 0
3 0 3 0 3 0 0 0
0 0 0 0 3 0 0 3
0 0 0 0 0 0 3 0


 .
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Example 3. The new coding of a 3-ribbon tableau of skew shape (8, 7, 6, 5, 1, 1)/(3, 3, 1) and weight
(3, 2, 2, 1):

4

1

2 3

2

1

3

−→




1
0
0 2 3 0 0
−1 0 0 2 0 4
−1 −1 −1 1 0 0 0
−1 −1 −1 0 0 3 0 0




.

Decoding a k-ribbon tableau from an array (Ai,j) is as follow: for each label p considered in
decreasing order, we fix vertically by the head a ribbon labelled p in the cell (i, j) of the shape if
Ai,j = p, and we drive them to the frontier of the partition.

Algorithm 1 (From coding to ribbon tableaux).

• Input: an array M = (mij).
• Initialize:

– λ/µ ←− the shape of the tableau coded by M ,
– ν ←− the weight of the tableau.

• For each label i in ν:
– fix ribbons labelled i by the head in each position corresponding to the

cells labelled i in M,

– drive these ribbons on the frontier of λ,
– λ←− λ without previous ribbons labelled i.

• Output: The k-ribbon tableau corresponding to the array M .
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Figure 4. Running of the algorithm on the previous 3-ribbon tableau of shape
(8, 7, 6, 5, 1, 1)/(3, 3, 1) and weight (2, 2, 2, 1)
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3.2. Adding and removing k-ribbon strip. In order to explain our generating algorithm, we
begin with a general algorithm for adding or removing a k-ribbon strip from a partition (these two

operators on partitions come from the representation theory of the quantum algebra Uq(ŝln), see
[2] for more details).

Definition 4. A skew tiling by k-ribbons Θ where the tail of each ribbon is not on top of an other
ribbon is called a k-ribbon strip. The weight of Θ is the number of ribbons in the tiling. Let Θ↑

(resp. Θ↓) be the the horizontal strip made of the top cells (resp. the bottom cells) of the columns
of Θ.

Figure 5. A horizontal 5-ribbon strip of weight 4 and spin 3/2

In a ribbon strip, the head of each ribbon lies in Θ↑ and the tails in Θ↓. As a k-ribbon strip
has a unique tiling by k-ribbons, it is completely defined by the positions of all the ribbons’s heads
and the outer partition or all the tails and the inner partition. For adding a k-ribbon strip Θ to
a partition, we represent this strip by the integer vector P = (p1, . . . , pn) with pi = k if Θ has
a ribbon with tail in the i-th column of Θ↓. Similarly, for removing a k-ribbon strip Θ from a
partition, the vector P is now defined by pi = −k if Θ has a ribbon with head in the i-th column
of Θ↑.

Algorithm 2 (Algorithm for adding a k-ribbon strip to a partition).

• Input: the partition λ = (λ1, . . . , λn) and the positions vector P = (p1, . . . , pr).
• Initialize:

– δ ←− (max(n, r)− 1, . . . , 0),
– λ←− conjugate partition of λ.

• λ←− λ + δ + P.
• Sorting λ:

– λ←− σ(λ),
– I ←− the inversions number of σ.

• if λ− δ is a partition:

– then λ←− conjugate (λ− δ) and I ←− (k−1)(p1+...+pr)−I
2k ,

– else λ←− FAIL.
• Output: (λ, I) if exists, FAIL otherwise.

In the previous algorithm, σ corresponds to a permutation which permits to sort the vec-
tor λ. Let defined the number of inversions of the permutation σ by the cardinality of the set
{(i, j) such that i < j and σ(i) > σ(j)}.

3.3. Generating algorithm and computation of the spin and cospin polynomials for

ribbon tableaux of a given shape and weight. We will generalize the generating algorithm
of [13] to the case of k-ribbon tableaux of skew shapes. A basic remark consists in the fact that
the ribbons labelled i form a k ribbon strip Θi of weight νi. That’s why we search recursively all
the k-ribbon strip of weight νi contained in the shape and removable from the outer partition and
we fill an array with the positions of the head in Θi↑. As the algorithm 1 also returns the spin of
the added/removed k-ribbon strip, by keeping the spin in each step of the construction we obtain
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finally the spin of each tableau. In other words this algorithm permits one to compute the spin
and cospin polynomials without additional computation.

Algorithm 3 (Generating algorithm for ribbon tableaux and spin polynomials).

• Input: The shape λ/µ, the weight ν = (ν1, . . . , νp) and k.
• Initialize: P = 0 and L ←− {(T, λ, 0)} where T is an array filled with -1 in

cells corresponding to µ and 0 otherwise.

• For each weight j from p down to 1,
For each (T, λT , spT ) in L and each permutation C of the vector (0, . . . , 0︸ ︷︷ ︸

λ1−νj

, k, . . . , k︸ ︷︷ ︸
νj times

)

corresponding to a valid removed k-ribbon strip,

– fill in T the cells corresponding to the frontier of λT and the non-zero

coordinates of C,
λT ←− λT without the k-ribbon strip corresponding to C,

– spT ←− spT+ the spin of the previous k-ribbon strip,

– if µ ⊂ λT then L←− L ∪ (T, λT , spT ).
• For each tableau T in L, P ←− P + qspT .

• Output:
– The list L of all the k-ribbon tableaux of skew shape λ/µ and weight ν,
– P the spin polynomial of this set.

By studying the progress of this algorithm with huge set of ribbon tableaux we remark that at the
bottom of the tree there are a lot of nodes, but in there is only few different shape for the remaining
partition. For example the number of nodes for λ = (6, 6, 6, 6, 6, 6) and ν = (3, 1, 1, 1, 1, 1, 1, 1, 1, 1)
is the sequence 3, 12, 48, 198, 780, 2940, 10080, 31080, 81480 and finally 43680 but the number
of different remaining shape are 3, 9, 16, 27, 33, 38, 33, 27, 16, 1. Our previous algorithm search,
at step i, all the possibility to retire a k ribbon strip from the remaining partition, but in fact
we need to test all the possibility only on the few remaining partitions. That’s why a recursive
implementation of the previous algorithm with a remember option seems to be the most efficient
way to generate ribbon tableaux.

Example 4. In the case of 3-ribbons with λ = (9, 9, 9, 9, 9, 9, 9, 9, 9) and standard weight µ = (127),
we have the following spin polynomial:

414315330 + 8286306600q + 85027356570q2 + 588666753870q3 + 3062543589300q4 +
12659483135520q5 + 42941179272810q6 + 121912682783970q7 + 293410572110760q8 +
603798294330270q9 + 1068859924958280q10 + 1634693172838050q11 +
2166452577489720q12 + 2492870571244950q13 + 2492870571244950q14 +
2166452577489720q15 + 1634693172838050q16 + 1068859924958280q17 +
603798294330270q18 + 293410572110760q19 + 121912682783970q20 + 42941179272810q21 +
12659483135520q22 + 3062543589300q23 + 588666753870q24 + 85027356570q25 +
8286306600q26 + 414315330q27

which correspond to a computation over 16 882 686 792 972 000 ribbon tableaux.
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