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On the approximation of Min Split-coloring and
Min Cocoloring

Marc Demange∗, Tinaz Ekim†, Dominique de Werra†

Abstract

We consider two problems, namely Min Split-coloring and Min Cocoloring, that
generalize the classical Min Coloring problem by allowing to use not only stable
sets but also cliques to cover all the vertices of a given graph. We prove the NP-
hardness of some cases. We derive approximation results for Min Split-coloring and
Min Cocoloring in line graphs, comparability graphs and general graphs. This pro-
vides to our knowledge the first approximation results for Min Split-coloring since it
was defined only very recently [13, 8, 9]. Also, we provide some results on the ap-
proximability of Min Cocoloring and comparisons with Min Split-coloring and Min
Coloring.

Key words : Split-coloring, cocoloring, line graphs, approximation.

1 Introduction

A generalization of the well known vertex coloring problem (Min Coloring) consists
in partitioning the vertex set of a given graph into p cliques and k stable sets. Such a
partition is called a (p, k)-coloring. In this paper we deal with two natural optimization
problems in this context, namely Min Cocoloring and Min Split-coloring.
Given a graph G, the Min Cocoloring problem consists in finding the minimum number
(p + k) of cliques and stable sets covering the vertices of G. The related optimal value
is called cochromatic number of G and is denoted by z(G). This problem was first intro-
duced by Lesniak et al. in [23] and extensively studied since then [8, 15, 17].
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On the approximation of Min Split-coloring and Min Cocoloring

The Min Split-coloring, problem defined first in [13], consists in minimizing the integer
max(p, k) for which a (p, k)-coloring of G exists, which is equivalent to partitioning ver-
tices of G into a minimum number of split graphs (defined as graphs whose vertex set can
be partitioned into a clique and a stable set). The optimal value is denoted by χS(G).

Min Coloring consists in minimizing the integer k for which G admits a (0, k)-coloring,
i.e., is k-colorable. The minimum value is the chromatic number denoted by χ(G); it sat-
isfies χS(G) ≤ z(G) ≤ χ(G). Max Stable and Max Clique consist in maximizing the
size of a stable set and a clique, respectively, and α(G) is the maximum size of a stable
set in G.

It is clear that, in general, both Min Cocoloring and Min Split-coloring are NP-hard.
There are numerous articles dealing with such coloring problems in general graphs [5, 14,
17] or in restricted classes of graphs [9, 8, 22, 15, 20] to detect polynomial cases and to
approximate NP-hard cases. In this paper, we first consider the class of line-graphs; given
a graph G, in its line graph, denoted by L(G), edges of G are replaced by vertices and
two vertices of L(G) are adjacent iff the corresponding edges are adjacent in G. We will
observe that Min Cocoloring is NP-hard in line graphs. In [9], we show that Min Split-
coloring is NP-hard in line graphs of bipartite graphs while Min Cocoloring is polynomial
for this class. Here we approximate Min Split-coloring and Min Cocoloring in line graphs.
Then, we give an improved approximation of Min Split-coloring in line graphs of bipartite
graphs. In addition, noticing that Min Split-coloring is NP-hard in comparability graphs,
also known as transitively orientable graphs, we give a 2-approximation algorithm for
this case; this result is the split counterpart of a result for cocoloring in comparability
graphs [15].

A polynomial algorithm is said to guarantee a (standard) approximation ratio of ρ
if, for every instance x, λ(x)/β(x) is at most (for minimization case) ρ, where λ(x)
denotes the approximated value and β(x) the optimal value of x. If some ambiguity
arises, we write λS, βS (respectively λC , βC) in order to refer the Min Split-coloring (Min
Cocoloring). In what follows, unless otherwise stated, approximation ratio stands for
standard approximation ratio. Only in the last section, we refer to another approximation
ratio, called differential approximation ratio.

In approximation theory, indeed, this ratio also called z-approximation ratio [18], can
be alternatively used for analyzing approximation algorithms. Min Coloring, for instance,
is known to be constant approximated from this point of view [19, 12] while it is poor ap-
proximated from the usual point of view. This ratio is extensively discussed in [11, 10];
many studies in this area have pointed out that both ratios are complementary without triv-
ial links between them, which emphasizes the interest to systematically study a problem
by using both ratios.

In the last section, we recall the definition of this ratio and we study the differential
approximation behavior of Min Cocoloring and Min Split-coloring problems in general
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graphs. In particular, we show that Min Split-coloring and Min Cocoloring are better
approximable than Min Coloring in terms of differential approximation ratio since they
admit a differential polynomial time approximation schema.

For a given graph G = (V,E) with |V | = n and |E| = m, ∆(G) stands for the
maximum degree of G, i.e., the largest degree d(x) of a vertex x in G. Moreover, Γ(x)
denotes the set of neighbors of a vertex x and Ḡ stands for the complementary graph of G.
For V ′ ⊂ V , G[V ′] denotes the subgraph of G induced by V ′ while G\V ′ = G[V \V ′]. In
general, graphs will be simple (no loops, no multiple edges). See [4] for graph theoretical
definitions not given here.

2 Preliminary remark

Let us first mention the following preliminary result on approximation dealing with
standard approximation ratio.

Proposition 1 There is a reduction preserving approximation between Min Split-coloring
and Min Cocoloring, more precisely, every r-approximation algorithm for one of these
problems gives a 2r-approximation algorithm for the other one.

Proof. Suppose we have a r-approximation algorithm for Min Cocoloring giving a solu-
tion of value λC(G) for any graph G. Consider the vertex partition of that solution as a
split-coloring of value λS(G). Clearly, we have λS(G) ≤ λC(G) ≤ rz(G) ≤ 2rχS(G)
since a minimum split-coloring of G provides a cocoloring of value 2χS(G).
Similarly, if we have a r-approximation algorithm for Min Split-coloring giving a solu-
tion of value λS(G) for any graph G, then the value of a cocoloring obtained by that same
solution verifies λC(G) ≤ 2λS(G) ≤ 2rχS(G) ≤ 2rz(G).

Corollary 1 For every class of graphs for which z(G) (χS(G), respectively) can be com-
puted in polynomial time, Min Cocoloring (Min Split-coloring) induces a 2-approximation
for Min Split-coloring (Min Cocoloring).

3 Line graphs

Given a graph G, Min Split-coloring in L(G) consists in covering the edges of G by
either bundles, i.e., sets of edges adjacent to a same central vertex, or triangles (cliques in
L(G)) and by matchings (stable sets in L(G)). We call Min Edge Split-coloring in G the
Min Split-coloring problem in L(G). The objective is to minimize the maximum between
the number of triangles or bundles and the number of matchings covering all edges. The
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optimal value for G is χ′
S(G) = χS(L(G)). Equivalently, we define Min Edge Cocoloring

in G as being Min Cocoloring in L(G). Here, we minimize the total number of triangles,
bundles and matchings covering all edges. Then the optimal value of edge cocoloring for
G is z′(G) = z(L(G)). Note that a graph is called line-perfect whenever its line graph
is perfect. In what follows, we devise some approximation algorithms for both Min Edge
Split-coloring and Min Edge Cocoloring.

3.1 Complexity results

First, let us mention the following theorem.

Theorem 1 [9] In line-perfect graphs, Min Edge Cocoloring is polynomially solvable
while Min Split-coloring is NP-hard.

On the other hand, one can show the NP-hardness of both Min Edge Split-coloring
and Min Edge Cocoloring.

Proposition 2 (i) Edge 3-cocolorability is NP-complete.
(ii) Edge 3-split-colorability is NP-complete.

Proof. (i) It is clearly in NP and we prove its NP-completeness by a reduction from edge
3-colorability (shown NP-complete in [21]). Let us consider an instance G of edge 3-
colorability. We transform G into an instance G̃ of edge 3-cocolorability by adding 4
disjoint K1,3, that is 4 bundles of size 3 each. Note that in any edge 3-cocoloring of G̃,
edges of these 4 bundles have to be covered by 3 matchings. Consequently, G̃ is edge
3-cocolorable if and only if G is edge 3-colorable.
(ii) A similar argument as (i) previously shows that edge 3-colorability reduces also to
edge 3-split-colorability. In order to show that, we obtain an instance G̃S of edge 3-split-
colorability from an instance G of edge 3-colorability by adding 3 bundles of size 4 each.
Then it suffices to observe that in any edge 3-split-coloring of G̃S , edges of 3 disjoint K1,4

have to be covered by 3 bundles. This implies that G̃S is edge 3-split-colorable if and only
if G is 3-edge-colorable.

Since Min Edge Split-coloring and Min Edge Cocoloring have both integral values,
we can immediately deduce:

Corollary 2 Both Min Edge Split-coloring and Min Edge Cocoloring are not approxi-
mated within 4

3
− ε, unless P=NP.
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3.2 Approximation results

First of all, corollary 1 combined with theorem 1 allows to state the following approx-
imation result.

Proposition 3 Min Edge Cocoloring provides a 2-approximation for Min Edge Split-
coloring in line-perfect graphs.

Let A be a polynomial time algorithm computing a (∆ + 1)-edge-coloring for any
graph of maximum degree ∆ [24] and an optimal edge-coloring for line-perfect graphs [7].
We consider the following algorithm for Min Edge Split-coloring:

Greedy Edge Split-coloring
(1) R ← ∅;
(2) while |R| < ∆(G)
(3) pick a vertex x of maximum degree;
(4) R ← R ∪ {x};
(5) remove x from G;
(6) Compute an edge coloring of the remaining edges by A

(The solution is the set of edges incident to vertices in R
completed by that edge coloring.)

The main idea is that, if k = min{d, |{x, d(x) > d}| ≤ d}, then by removing all
vertices of degree greater than k (the maximum degree is at most k in the remaining
graph) and by completing the solution by k + 1 matchings [24], one finds an edge split-
coloring of value k + 1.

Proposition 4 (i) For every graph G, Greedy Edge Split-coloring computes
an edge split-coloring of cardinality at most 2χ′

S(G) + 1.
(ii) It provides a 7/3-approximation for Min Edge Split-coloring.
(iii) Greedy Edge Split-coloring provides a 2-approximation for Min Edge Split-
coloring in line-perfect graphs.

Proof. Let us consider a graph G = (V,E), it is straightforward to verify that Greedy
Edge Split-coloring computes a split-coloring of G; we denote by λGr its value.
Let k = min{d, |{x, d(x) > d}| ≤ d}. In what follows, we show that λGr ≤ k + 1 ≤
2χ′

S(G) + 1.

(i) Let us first note that if χ′
S(G) = 1, then λGr(G) is either 1 or 2; on the other hand,

if χ′
S(G) = 2, then after 2 iterations of the while-loop the degree is less than 3 and no
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more than 3 matchings are used at line (6), computing also a solution of value 3 or less.
In both cases, λGr(G) is at most 2χ′

S(G). In what follows, we assume that χ′
S(G) ≥ 3.

Note that λGr ≤ |R|+1 since |R| ≥ ∆(G\R), where G\R = G[V \R]. Let r be the
last vertex introduced in R and R′ = R\{r}; we have |R′| < ∆(G\R′) and consequently
d(r) ≥ |R′| + 1 = |R|. Since vertices are introduced in R in decreasing order of their
degree, every vertex in R has a degree at least |R|. Consequently, |{x, d(x) ≥ |R|}| ≥
|R|. It means that |R| < min{d, |{x, d(x) ≥ d}| < d}. It is straightforward to verify that
min{d, |{x, d(x) ≥ d}| < d} = k + 1 and thus λGr ≤ |R| + 1 ≤ k + 1.

In order to show k ≤ 2χ′
S(G), we prove the following lemma:

Lemma 1 Consider an optimal edge split-coloring of value χ′
S(G) minimizing the num-

ber of triangles among optimal edge split-colorings of G. Denote by T the set of triangles
and by B the set of bundles in this solution (|T | + |B| ≤ χ′

S(G)). Let X be the set of
vertices of degree at least 2χ′

S(G)+1 that are not center of a bundle in B. Then |X| ≤ 3.

Proof. Let x ∈ X , we denote by Tx the set of triangles in T adjacent to x and by Bx the set
of bundles centered on vertices neighbors of x (by definition of X , x is not a center of a
bundle in B). Since the solution minimizes the number of triangles, any two triangles in T
are edge-disjoint and no center of a bundle in B belongs to a triangle in T . Consequently,
Tx∪Bx contains exactly |Bx|+2|Tx| edges incident to x. Since only χ′

S(G) edges incident
to x can be covered by matchings in the solution, |Bx|+2|Tx| ≥ (χ′

S(G)+1). Let us then
define a bipartite graph I = (X,T ∪B,E) with xr ∈ E ⇔ x is adjacent to r. Vertices in
T have a degree at most 3 in I and vertices in B have a degree at most |X| in I . We then
have:

∑
x∈X

|Bx| + 2|Tx| ≥ (χ′
S(G) + 1)|X| (1)

∑
x∈X

|Bx| + |Tx| ≤ 3|T | + |X||B| (2)

We deduce by subtraction:

3|T | ≥
∑
x∈X

|Tx| ≥ (χ′
S(G) − |B| + 1)|X| − 3|T | ≥ (|T | + 1)|X| − 3|T |

Consequently |X| ≤ 5. But, in this case, the number of triangles in T with degree 3 in I
is at most 2 since any graph generated by 3 triangles and at most 5 vertices can be covered
by 3 bundles, which is not possible if the solution minimizes the number of triangles.
Then, if |T | ≥ 2, (2) can be replaced by

∑
x∈X |Bx|+ |Tx| ≤ 2|T |+2+ |X||B| implying

|X| ≤ 4. By the same argument as previously, since any graph generated by 2 triangles
and at most 4 vertices can be covered by 2 bundles, at most 1 vertex in T has degree 3 in
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I implying |X|(|T | + 1) ≤ 4|T | + 2 and thus |X| ≤ 3. Finally if |T | ≤ 1, (2) becomes∑
x∈X |Bx| + |Tx| ≤ 3 + |X||B| implying |X| ≤ 3, which concludes the proof.

It implies that |{x, d(x) > 2χ′
S(G)}| ≤ χ′

S(G) + 3 ≤ 2χ′
S(G) since χ′

S(G) ≥ 3.
Then, k ≤ 2χ′

S(G) and λGr ≤ 2χ′
S(G) + 1, which concludes the proof of (i).

(ii) If χ′
S(G) ≤ 2, Greedy Min Split-coloring uses clearly no more than 3

colors. If χ′
S(G) ≥ 3, then by (i) we have λGr(G) ≤ 2χ′

S(G) + 1 ≤ 7/3χ′
S(G).

(iii) Line-perfect graphs of maximum degree ∆ can be edge colored in polynomial
time (by A) with ∆ colors if ∆ ≥ 3 and either with 2 or 3 colors if ∆ = 2. If ∆ = 2,
Greedy Edge Split-coloring uses at most 3 colors. If ∆ ≥ 3, we just have to
note that, in the proof of (i), λGr ≤ k ≤ 2χ′

S(G).

Let us finally remark that the bound is tight in bipartite graphs. Consider namely an
integer p, V1 = {xi, i = 1, . . . , 2p}, V2 = {yij, i = 1, . . . , 2p, j = 1, . . . , p+1}∪{ui, i =
1, . . . , p}, E = {(xiyij), i = 1, . . . , 2p, j = 1, . . . , p + 1} ∪ {xiuj, i = 1, . . . , 2p, j =
1, . . . , p}. Every vertex in V1 is of degree 2p + 1 = ∆(B), d(ui) = 2p, i = 1, . . . , p
and vertices yij, i = 1, . . . , 2p, j = 1, . . . , 3 are of degree 1. The greedy algorithm re-
moves vertices in V1 (the related value being 2p) while the optimal value is p+1 achieved
by removing u1, . . . , up. The related ratio is 2 − 2/(p + 1) and consequently the bound
is asymptotically tight. The bound 2 is achieved for the same instance without vertices
yi(p+1), but in this case the greedy may compute a solution of value 2p if it makes the bad
choices.

Proposition 5 Min Edge Cocoloring is 2-approximable.

Proof. Let us consider a minimum cocoloring minimizing the number of triangles. Then
it is straightforward to verify that it contains either 2 disjoint triangles or 1 or none (since
all other solutions can be replaced by solutions of the same value and containing less
triangles).

By a similar method as in Greedy Min Split-coloring, one can compute in
polynomial time k minimizing k + 1 + |{x, d(x) > k}|; then there is an edge cocoloring
consisting in {x, d(x) > k} as bundles (represented by their central vertices) completed
by (at most) k + 1 matchings. So we can construct such a solution of size k + 1 +
|{x, d(x) > k}|.

Let us first suppose that the fixed minimum edge cocoloring does not contain any
triangle. Then, |{x, d(x) > z′(G)}| ≤ z′(G) since all bundles of size greater than z′(G)
have to be taken as bundles in an optimal solution. Moreover, if |{x, d(x) > z′(G)}| =
z′(G), an optimal solution (containing only bundles) has been detected at a stage of the
computation of k. So we can assume |{x, d(x) > z′(G)}| ≤ z′(G) − 1, but in this case,
by definition of k we have:
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k + 1 + |{x, d(x) > k}| ≤ z′(G) + 1 + z′(G) − 1 = 2z′(G)

If the optimal solution contains some triangles (1 or 2), one can consider all possi-
ble triangles in a solution and then apply the previous argument to the remaining graph.
This completes the proof showing that one can compute a 2-approximation of Min Edge
Cocoloring in polynomial time.

Let us now consider Min Edge Split-coloring in bipartite graphs. Given a bipartite
graph B = (V1, V2, E) and an integer k, let us denote by d′k(x) = |Γ(x)∩ {y, d(y) ≤ k}|
the degree of x in the graph obtained by removing all neighbors of x of degree greater
than k. For i = 1, 2 we also denote by V k

i = {x ∈ Vi, d(x) > k} and by V ′k,k′
i =

{x ∈ Vi, d
′k(x) > k′}. For instance, V ′k,k′

2 is the set of vertices in V2 with a degree greater
than k′ in the graph obtained by deleting all vertices of V1 of degree greater than k. Finally,
for i ∈ {1, 2}, we denote by ī = 3 − i, i.e., {1, 2} = {i, ī}.

Bipart. Edge Split-coloring
ε ← (5 −√

17)/4;
For i = 1, 2 do
(1) for every x ∈ Vi compute d(x);
(2) for every y ∈ Vī and every x ∈ Γ(y), compute d′d(x)(y);

(3) for every d ∈ {1, . . . ,∆(B)} compute |V d
i | and |V ′

1+ε
2−ε

d,d

ī
|;

(4) di ← min{d, |V
1+ε
2−ε

d

i | + |V ′
1+ε
2−ε

d,d

ī
| ≤ d}; Si ← V

1+ε
2−ε

di

i ∪ V ′
1+ε
2−ε

di,di

ī
;

(5) d0 ← min{d, |V d
1 | + |V d

2 | ≤ d}; S0 ← V d0
1 ∪ V d0

2 ;
(6) i0 ← argmin{di, i = 0, 1, 2}; S ← Si0;
(7) Compute an edge coloring of the remaining edges by A

(The solution is the set of edges incident to vertices in S
completed by that edge coloring.)

Theorem 2 Bipart. Edge Split-coloring is a O(mn)-algorithm approximat-
ing Min Edge Split-coloring in bipartite graphs within ratio 2 − (5 − √

17)/4 = 1, 78,
where m = |E| and n = |V1 ∪ V2|.

Proof. Let us first note that d = di0 = min{d0, d1, d2}, where d0 = min{k, |V k
1 ∪ V k

2 | ≤
k} and for i = 1, 2, di = min{k, |V k 1+ε

2−ε

i | + |V ′k
1+ε
2−ε

,k

ī
| ≤ k}. Moreover, it is straightfor-

ward to verify that Bipart. Edge Split-coloring computes a feasible edge
split-coloring of value d. More precisely, d is such that the graph obtained by removing at
most d vertices is of degree at most d: the maximum degree of the graph obtained by re-

moving V d0
1 ∪V d0

2 is at most d0 and the graph obtained by removing V
di

(1+ε)
(2−ε)

i ∪V ′di
(1+ε)
(2−ε)

,di

ī
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has degrees at most di, i = 1, 2 (note that (1+ε)
(2−ε)

≤ 1). Concerning the complexity, lines
(1), (3), (4) and (5) need O(m) steps while line (2) needs O(mn).

Let us now analyze the approximation behavior of the algorithm. Denote by � =
χ′

S(B): ∃L1 ⊂ V1, L2 ⊂ V2, |L1| = l1, |L2| = l2, l1 + l2 = � and ∆(B \ (L1 ∪ L2)) ≤ �,
where B \ (L1∪L2)) = B[(V1∪V2)\ (L1∪L2)]. In the sequel, we consider the following
cases:

(1) l1 ≥ �ε and l2 ≥ �ε

(2) l2 < �ε with 2 sub-cases (2.1)|V �(1+ε)
1 | ≥ �ε and (2.2) |V �(1+ε)

1 | < �ε

(3) l1 < �ε

Let us point out the following property (P) which will be useful:

(P) If x ∈ Vi \ Li, i ∈ {1; 2} and d(x) ≥ � + r, then |Γ(x) ∩ Lī| ≥ r.

Case (1) l1 ≥ �ε and l2 ≥ �ε.

By property (P), V
�+l̄i
i ⊂ Li; i = 1, 2 and then:

|V �+max(l1,l2)
1 ∪ V

�+max(l1,l2)
2 | ≤ |V �+l2

1 | + |V �+l1
2 | ≤ l1 + l2 = � ≤ � + max(l1, l2)

We deduce, d0 ≤ � + max(l1, l2) ≤ �(2 − ε) where the last inequality holds since we
are considering case (1).

Case (2) l2 < �ε.

By property (P), we have V
�(1+ε)
1 ⊂ L1.

Sub-case (2.1) |V �(1+ε)
1 | ≥ �ε ⇒ |(L1 \ V

�(1+ε)
1 )| ≤ �(1 − ε).

Then, property (P) implies that V ′�(1+ε),�(2−ε)
2 ⊂ L2. It follows from the above rela-

tions that |V �(1+ε)
1 ∪ V ′�(1+ε),�(2−ε)

2 | ≤ � ≤ (2 − ε)�, which implies by definition of d1

(consider k = �(2 − ε) in the definition), d1 ≤ �(2 − ε).

Sub-case (2.2) |V �(1+ε)
1 | < �ε.

For every x ∈ V2 \ L2 such that d′�(1+ε)(x) > �(2 − ε), we have by property (P)
|Γ(x) ∩ (L1 \ V

�(1+ε)
1 )| ≥ �(1− ε). Then, by considering the number E of edges between

(L1 \ V
�(1+ε)
1 ) and (V ′�(1+ε),�(2−ε)

2 \ L2) we deduce:

(|V ′�(1+ε),�(2−ε)
2 | − l2)�(1 − ε) ≤ E ≤ (l1 − |V �(1+ε)

1 |)�(1 + ε) ≤ �1�(1 + ε)

since the maximum degree of V1 after removing V
�(1+ε)
1 is at most �(1 + ε).
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We deduce:

|V ′�(1+ε),�(2−ε)
2 | ≤ �(1 + ε)

1 − ε
= �(2 − 2ε)

Consequently |V �(1+ε)
1 | + |V ′�(1+ε),�(2−ε)

2 | ≤ �(2 − ε), which implies d1 ≤ �(2 − ε).

Case (3) l1 < �ε.

It corresponds to the second case by interchanging V1 and V2. So d2 ≤ �(2 − ε) and
in all cases, d = min{d0, d1, d2} satisfies the expected ratio.

4 Comparability graphs

Let us first note the following result allowing to deduce the hardness of Min Split
coloring in comparability graphs.

Proposition 6 Let G be a class of graphs closed under addition of disjoint cliques without
link to the rest of the graph and under addition of complete k-partite graph completely
linked with the rest of the graph. If Min Split-coloring is polynomial in class G, then so
does Min Cocoloring.

Proof. Let us consider a graph G of order n such that z(G) = p + k and let us first
assume that p ≤ k. Consider the graph G′ consisting of G and l = k − p ≤ n disjoint
cliques, each of size n + 1, without any link with the rest of the graph. Note that k − p
new cliques completed by p cliques and k stable sets of the optimal cocoloring of G form
a split-coloring of value k, inducing that χS(G′) ≤ k ≤ n. Consequently a minimum
split-coloring of G′ necessarily contains the k − p new cliques completed by p′ cliques
and k′ stable sets of G. Since χS(G′) = max((k − p + p′), k′) ≤ k, we have p′ ≤ p and
k′ ≤ k. On the other hand, p′ + k′ ≥ k + p since the restriction to G of the split-coloring
of G′ provides a cocoloring of value p′ + k′. So p′ + k′ = p + k and this cocoloring of G
is an optimal one.

If z(G) = p + k with p ≥ k, we show by the same arguments that a minimum
cocoloring of G can be immediately deduced from a minimum split coloring of G′, the
graph obtained from G by adding p−k ≤ n stables sets, each of size n+1 and completely
linked with the rest of the graph.

Finally, in both cases, |k − p| ≤ k + p ≤ 2χS(G), consequently, the reduction runs as
follows:
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From Split to Coco
(1) P ← ∅; (*P will contain cocolorings of G*)
(2) compute an optimal split-coloring of G;
(3) store in P the related partition; L ← 2χS(G);
(4) for every l ∈ {1, . . . , L} do
(5) construct G′ obtained from G by adding l cliques, each of

size n + 1 without link with the rest of the graph;
(6) compute an optimal split-coloring of G′

and store its restriction to G in P;
(7) construct G′ obtained from G by adding l stable sets,

each of size n + 1 and completely linked with
the rest of the graph;

(8) compute an optimal split-coloring of G′

and store its restriction to G in P;
(9) Return the best cocoloring stored in P.

Corollary 3 Min Split-coloring is NP-hard in comparability graphs.

Proof. Min Cocoloring is NP-hard even in permutation graphs [25] (a graph G is a per-
mutation graph if G and Ḡ are comparability graphs). This class of graphs is clearly
closed under addition of disjoint cliques and under complementation and consequently it
satisfies the conditions of proposition 6. Therefore Min Cocoloring polynomially reduces
to Min Split-coloring that is consequently NP-hard in permutation graphs, and then also
in comparability graphs.

In this section, we show that the method proposed in [15] for approximating Min
Cocoloring in comparability graphs can be adapted to Min Split-coloring with another
ratio. Note that a graph G is a cocomparability graph if Ḡ is a comparability graph.

Theorem 3 Min Split-coloring is 2-approximable for comparability and cocomparability
graphs.

Proof. Let us first establish the split counterpart of lemma 2 in [15]:

Lemma 2 Let G = (V,E) be a perfect graph of order n and let k satisfy k ≥ √
n, then

χS(G) ≤ k and a split-coloring of size k can be computed in polynomial time.

Proof. Let G = (V,E) be a perfect graph, we consider a slight modification of procedure
SQRTPartition of [15]. It runs as follows:
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SQRT-split-partition
(1) while k �= 0 and the graph is not empty do
(2) If min{α(G); α(Ḡ)} ≤ k
(3) then compute a k-coloring of G or Ḡ, include each

clique or stable set in the solution and
set k ← 0

(4) else find a stable set and a clique of size k + 1
and color the related split graph of size at
least 2k + 1 with a new color;

(5) Set k ← k − 1 and remove from G all already colored
vertices.

It is straightforward to verify that this procedure runs in polynomial time. Moreover if
line (3) is executed or if the graph becomes empty it computes a split-coloring of size k .
If line (3) is not computed and if k loops are performed, then at least

∑k−1
i=0 2(k− i)+1 =

k(k + 2) ≥ k2 vertices are covered and consequently the graph is also covered by k split
graphs.

Let us adapt the algorithm APPROX COCOLOURING of [15] for Min Split-coloring:

Compar. Split-coloring
(1) compute a maximum r-colorable subgraph Cr of Ḡ and a maximum

r-colorable subgraph Sr of G such that r
is minimum subject to |Cr| + |Sr| ≥ n;

(2) introduce in the solution a r-split-coloring of Cr ∪ Sr;
(3) remove Cr ∪ Sr and update G;
(4) complete the solution by the split graphs computed by

SQRT-split-partition in the remaining graph.

The complexity is O(mn) [15]. It follows from the fact that a maximum r-colorable
subgraph of G and Ḡ can be polynomially computed in comparability graphs [16].

Since G can be decomposed into χS(G) cliques and χS(G) stable sets, r ≤ χS(G).
On the other hand, since |Cr∩Sr| ≤ r2, n−|Cr∪Sr| ≤ r2 and consequently, by lemma 2,
at most r ≤ χS(G) split graphs are computed at line (4). The computed split-coloring
is of size at most 2χS(G) and the proof is complete. Note that this result remains valid
for every class of perfect graphs for which subgraphs such as described in line (1) of
Compar. Split-coloring can be polynomially computed.
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5 General graphs

5.1 Standard approximation ratio

Min Coloring is known to be particularly difficult to approximate since it is not ap-
proximable within n1−ε if Co-RP�=NP and not approximable within n1/2−ε if P�=NP [2].
Similar hardness results can be immediately deduced for Min Split-coloring and Min Co-
coloring:

Proposition 7 (i) If Min Cocoloring is n1/2−ε-approximable for 0 < ε < 1/2, then Min
Coloring is n1−ε-approximable.
(ii) If Co-RP�=NP, then for every ε > 0, Min Cocoloring is non approximable within
n1/2−ε; if P�=NP, then for every ε > 0, Min Cocoloring is non approximable within n1/4−ε.
(iii) The same holds for Min Split-coloring.

Proof. Let O be an oracle for Min Cocoloring guaranteeing the ratio n1/2−ε, with ε <
1/2; the reduction constructs G̃ consisting in (�n1−ε� + 1) copies of G without link and
computes a cocoloring of G̃ by using O. If a copy of G in G̃ is covered only by stable
sets, then it outputs this coloring; else it outputs any greedy coloring.

If χ(G) ≤ nε, then z(G̃) ≤ χ(G̃) = χ(G) ≤ nε. As the cocoloring computed by the
oracle on G̃ guarantees the ratio n(G̃)1/2−ε and n(G̃) ≤ n2, it uses at most (n2)1/2−εnε =
n1−ε colors. Consequently at least one copy of G in G̃ is covered only by stable sets in
the cocoloring computed by O, which leads to a coloring of G using at most n1−ε colors
and the ratio n1−ε is guaranteed. If now χ(G) > nε, then any coloring of G guarantees
the expected ratio, which concludes the proof of (i). (ii) follows from hardness results for
Min Coloring. Finally (iii) is immediately deduced by using proposition 1.

This hardness result considerably limits the possibilities for approximating Min Split-
coloring or Min Cocoloring in general graphs. A master-slave strategy [1] allows to re-
duce these problems to Max Stable and Max Clique with an increase of the ratios by a fac-
tor O(log n) (the approximation counterpart of the algorithm GREEDY COCOLOURING
of [15]), leading trivially to a O(n/ log n)-approximation for both problems; but it seems
not so easy to reduce these problems to Min Coloring in order to refine the comparison of
their approximation behavior.

5.2 Differential approximation ratio

The framework of the differential approximation ratio, also called z-approximation
(see for instance [11, 10, 18] for more details about this area) allows such a compari-
son. For every instance x, this ratio is defined by δ(x) = [ω(x) − λ(x)]/[ω(x) − β(x)],
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where λ(x) denotes the approximated value, β(x) the optimal value of x and ω(x) its
worse value (the number of vertices in the case of Min Coloring for which this approach
can be seen as maximizing the number of unused colors among n potential colors [19])
and an algorithm guarantees a differential ratio of r if, for every instance x, δ(x) ≥ r.
Note that δ(x) ∈ [0, 1] and the largest the ratio is, the better, without distinction between
maximization and minimization problems. Roughly speaking, this ratio gives the position
of the approximated value between the worst and the best one. This ratio has been used
since a long time (see for instance [26]) and is extensively discussed in [11]. In partic-
ular, it has the advantage of respecting some affine equivalence such as the equivalence
between maximum stable set and minimum vertex covering problems while both prob-
lems are known to have radically different approximation behaviors for the usual ratio.
Works in this context have pointed out that it is often interesting to simultaneously con-
sider both points of view since these ratios provide different pieces of information about
combinatorial problems.

For instance, Min Coloring admits constant differential approximation algorithms, the
best ratio currently known being 59/72 [12], while it is hard to approximate from the usual
ratio. On the other side, it does not admit any differential PTAS (differential ratio 1 − ε,
for every ε > 0), unless P=NP ([3]). On the contrary, some other problems are constant
approximated from the usual ratio and hard to approximate from the differential point of
view and, finally, some problems have similar behavior from both points of view. More-
over, every approximation ratio is more or less appropriate to compare the approximation
behavior of different given problems. In what follows, we show that, as for Min Coloring,
Min Cocoloring and Min Split-coloring are well approximated from the differential point
of view; moreover they appear to be better approximated than the Min Coloring problem
from this point of view.

More precisely, we devise a differential PTAS for Min Split-coloring and Min Co-
coloring, i.e., a (1 − ε)-differential approximation with complexity O(n1+3/ε), for every
0 < ε < 1. On the other hand, a differential FPTAS (the same ratio with complexity
polynomial in 1/ε) cannot be guaranteed, unless P=NP.

For Min Split-coloring, we consider �n(G)/3� as worst value since one can always
assume that each color (except at most one) contains at least 3 vertices (every set of 3
vertices induces in G a split graph). The ratio associated to G is δ(G) = [�n(G)/3� −
λ(G)]/[�n(G)/3�−χS(G)]. Similarly, the differential ratio for Min Cocoloring is [�n(G)/2�
−λ(G)]/[�n(G)/2�− z(G)]. Note that a larger worse value such as n could be also used,
leading to better approximation ratios. But it is reasonable to consider the little more
restrictive values �n(G)/3� and �n(G)/2�, respectively, in order to avoid this artificial
increasing of the final ratio (see [11] where the notion of worst value is discussed). It
simply corresponds to restrict the analysis to ”reasonable” solutions.

Theorem 4 DPTAS-split-coco is a O(n3p+1)-algorithm guaranteeing a differential ap-
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proximation ratio of (1 − 1/p) for both Min Split-coloring and Min Cocoloring.

DPTAS-split-coco
(1) while the current graph contains a 3p-stable or a 3p-clique,

color such a stable set or clique with
a new color;

(2) complete the solution by an exhaustive search on
the remaining graph.

Proof. For the whole complexity, note that step (2) is computed for a graph without a
stable set or a clique of order 3p and consequently the order of which is less than the
related Ramsey number R2(3p, 3p) ≤ Kp for a constant K [4, 6].

It is straightforward to verify DPTAS-split-coco computes either a split-coloring
or a cocoloring of the instance. The only difference between the two cases arises in line (2)
that computes either an optimal split-coloring or an optimal cocoloring in the remaining
graph.

We propose an analysis valid for both problems. The problem being fixed, we denote
respectively by ω(H) and β(H) the worse value and the optimal value of H , with respect
to this problem (consequently β(H) stands either for χS(H) or for z(H)).

The approximation ratio is proved by induction on n(G) (see also [19]).

If n(G) < 3p, then only the step (2) is computed and the algorithm finds an optimal
solution corresponding to a ratio of 1. Let us now assume that the expected ratio is
guaranteed for every graph of order n or less, where n ≥ 3p and consider a graph Gn+1

of order n + 1. If no clique or stable set of order 3p is detected at step (1), then Gn+1 is
optimally colored at step (2). Else, the algorithm attributes a new color either to a stable
set or to a clique of size 3p and is then executed on the graph G′ obtained from Gn+1 by
deleting these 3p vertices. Since G′ is of order less than n, the ratio is guaranteed for G′.
Note also that:

λ(Gn+1) = 1 + λ(G′)
β(Gn+1) ≥ β(G′)
ω(Gn+1) ≥ ω(G′) + p ≥ λ(Gn+1)

which implies:

ω(G′) + p − λ(Gn+1) ≥ (1 − 1/p)(ω(G′) − β(G′)) + p − 1
≥ (1 − 1/p)(ω(G′) + p − β(Gn+1))

and then, since ω(Gn+1) ≥ ω(G′) + p, we have:
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ω(Gn+1) − λ(Gn+1)

ω(Gn+1) − β(Gn+1)
≥ ω(G′) + p − λ(Gn+1)

ω(G′) + p − β(Gn+1)
≥ (1 − 1/p)

which concludes the proof.

In some cases the algorithm remains polynomial for p ≤ log n:

Corollary 4 For every class of graphs for which Max Stable and Max Clique are polyno-
mial, Min Split-coloring and Min Cocoloring are approximated within a differential ratio
of (1 − 1/ log n).

It is straightforward to verify that, since Min Split-coloring (resp. Min Cocoloring) has
integral values and ω(G)−χS(G) is polynomially bounded, an DFPTAS (differential fully
polynomial time approximation scheme) would allow to solve it polynomially. Moreover,
a result of [3] implies that both problems are PTAS-complete under a Turing reduction
preserving FPTAS.

6 Conclusion

We have considered essentielly two extensions of the classical coloring problems,
namely Min Cocoloring and Min Split-coloring. The complexity status of these problems
has been settled for some classes of graphs and approximability has been studied as well.
Further research should examine how the approximation algorithms sketched here could
be improved; in particular the case of edge-cocoloring could be handled.
Also, subclasses of graphs could be characterized where these problems become poly-
nomially solvable or admit better approximations; for instance the permutation graphs
which will be studied in a forthcoming paper.
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