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. Also, we provide some results on the approximability of Min Cocoloring and comparisons with Min Split-coloring and Min Coloring.

Introduction

A generalization of the well known vertex coloring problem (Min Coloring) consists in partitioning the vertex set of a given graph into p cliques and k stable sets. Such a partition is called a (p, k)-coloring. In this paper we deal with two natural optimization problems in this context, namely Min Cocoloring and Min Split-coloring. Given a graph G, the Min Cocoloring problem consists in finding the minimum number (p + k) of cliques and stable sets covering the vertices of G. The related optimal value is called cochromatic number of G and is denoted by z(G). This problem was first introduced by Lesniak et al. in [START_REF] Lesniak | The cochromatic number of a graph[END_REF] and extensively studied since then [START_REF] Demange | Partitioning cographs into cliques and stable sets[END_REF][START_REF] Fomin | Approximating minimum cocolourings[END_REF][START_REF] Gimbel | On cocolorings and cochromatic numbers of graphs[END_REF].

The Min Split-coloring, problem defined first in [START_REF] Ekim | On split-coloring problems[END_REF], consists in minimizing the integer max(p, k) for which a (p, k)-coloring of G exists, which is equivalent to partitioning vertices of G into a minimum number of split graphs (defined as graphs whose vertex set can be partitioned into a clique and a stable set). The optimal value is denoted by χ S (G).

Min Coloring consists in minimizing the integer k for which G admits a (0, k)-coloring, i.e., is k-colorable. The minimum value is the chromatic number denoted by χ(G); it satisfies χ S (G) ≤ z(G) ≤ χ(G). Max Stable and Max Clique consist in maximizing the size of a stable set and a clique, respectively, and α(G) is the maximum size of a stable set in G.

It is clear that, in general, both Min Cocoloring and Min Split-coloring are NP-hard. There are numerous articles dealing with such coloring problems in general graphs [START_REF] Brandstädt | The complexity of some problems related to graph 3-colorability[END_REF][START_REF] Feder | List partitions[END_REF][START_REF] Gimbel | On cocolorings and cochromatic numbers of graphs[END_REF] or in restricted classes of graphs [START_REF] Demange | k)-coloring problems in line graphs[END_REF][START_REF] Demange | Partitioning cographs into cliques and stable sets[END_REF][START_REF] Kézdy | Partitioning permutations into increasing and decreasing subsequences[END_REF][START_REF] Fomin | Approximating minimum cocolourings[END_REF][START_REF] Hell | Partitioning chordal graphs into independent sets and cliques[END_REF] to detect polynomial cases and to approximate NP-hard cases. In this paper, we first consider the class of line-graphs; given a graph G, in its line graph, denoted by L(G), edges of G are replaced by vertices and two vertices of L(G) are adjacent iff the corresponding edges are adjacent in G. We will observe that Min Cocoloring is NP-hard in line graphs. In [START_REF] Demange | k)-coloring problems in line graphs[END_REF], we show that Min Splitcoloring is NP-hard in line graphs of bipartite graphs while Min Cocoloring is polynomial for this class. Here we approximate Min Split-coloring and Min Cocoloring in line graphs. Then, we give an improved approximation of Min Split-coloring in line graphs of bipartite graphs. In addition, noticing that Min Split-coloring is NP-hard in comparability graphs, also known as transitively orientable graphs, we give a 2-approximation algorithm for this case; this result is the split counterpart of a result for cocoloring in comparability graphs [START_REF] Fomin | Approximating minimum cocolourings[END_REF].

A polynomial algorithm is said to guarantee a (standard) approximation ratio of ρ if, for every instance x, λ(x)/β(x) is at most (for minimization case) ρ, where λ(x) denotes the approximated value and β(x) the optimal value of x. If some ambiguity arises, we write λ S , β S (respectively λ C , β C ) in order to refer the Min Split-coloring (Min Cocoloring). In what follows, unless otherwise stated, approximation ratio stands for standard approximation ratio. Only in the last section, we refer to another approximation ratio, called differential approximation ratio.

In approximation theory, indeed, this ratio also called z-approximation ratio [START_REF] Hassin | z-approximations[END_REF], can be alternatively used for analyzing approximation algorithms. Min Coloring, for instance, is known to be constant approximated from this point of view [START_REF] Hassin | Maximizing the number of unused colors in the vertex coloring problem[END_REF][START_REF] Duh | Approximation of k-set cover by semi-local optimization[END_REF] while it is poor approximated from the usual point of view. This ratio is extensively discussed in [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF][START_REF] Demange | Differential approximation algorithms for some combinatorial optimization problems[END_REF]; many studies in this area have pointed out that both ratios are complementary without trivial links between them, which emphasizes the interest to systematically study a problem by using both ratios.

In the last section, we recall the definition of this ratio and we study the differential approximation behavior of Min Cocoloring and Min Split-coloring problems in general graphs. In particular, we show that Min Split-coloring and Min Cocoloring are better approximable than Min Coloring in terms of differential approximation ratio since they admit a differential polynomial time approximation schema.

For a given graph G = (V, E) with |V | = n and |E| = m, ∆(G) stands for the maximum degree of G, i.e., the largest degree d(x) of a vertex x in G. Moreover, Γ(x) denotes the set of neighbors of a vertex x and Ḡ stands for the complementary graph of G.

For V ⊂ V , G[V ] denotes the subgraph of G induced by V while G\V = G[V \V ].
In general, graphs will be simple (no loops, no multiple edges). See [START_REF] Berge | Graphs and Hypergraphs[END_REF] for graph theoretical definitions not given here.

Preliminary remark

Let us first mention the following preliminary result on approximation dealing with standard approximation ratio.

Proposition 1 There is a reduction preserving approximation between Min Split-coloring and Min

Cocoloring, more precisely, every r-approximation algorithm for one of these problems gives a 2r-approximation algorithm for the other one.

Proof. Suppose we have a r-approximation algorithm for Min Cocoloring giving a solution of value λ C (G) for any graph G. Consider the vertex partition of that solution as a split-coloring of value λ S (G). Clearly, we have λ S (G) ≤ λ C (G) ≤ rz(G) ≤ 2rχ S (G) since a minimum split-coloring of G provides a cocoloring of value 2χ S (G).

Similarly, if we have a r-approximation algorithm for Min Split-coloring giving a solution of value λ S (G) for any graph G, then the value of a cocoloring obtained by that same solution verifies λ C (G) ≤ 2λ S (G) ≤ 2rχ S (G) ≤ 2rz(G).

Corollary 1 For every class of graphs for which z(G) (χ S (G), respectively) can be computed in polynomial time, Min Cocoloring (Min Split-coloring) induces a 2-approximation for Min Split-coloring (Min Cocoloring).

Line graphs

Given a graph G, Min Split-coloring in L(G) consists in covering the edges of G by either bundles, i.e., sets of edges adjacent to a same central vertex, or triangles (cliques in L(G)) and by matchings (stable sets in L(G)). We call Min Edge Split-coloring in G the Min Split-coloring problem in L(G). The objective is to minimize the maximum between the number of triangles or bundles and the number of matchings covering all edges. The optimal value for G is χ S (G) = χ S (L(G)). Equivalently, we define Min Edge Cocoloring in G as being Min Cocoloring in L(G). Here, we minimize the total number of triangles, bundles and matchings covering all edges. Then the optimal value of edge cocoloring for G is z (G) = z(L(G)). Note that a graph is called line-perfect whenever its line graph is perfect. In what follows, we devise some approximation algorithms for both Min Edge Split-coloring and Min Edge Cocoloring.

Complexity results

First, let us mention the following theorem.

Theorem 1 [START_REF] Demange | k)-coloring problems in line graphs[END_REF] In line-perfect graphs, Min Edge Cocoloring is polynomially solvable while Min Split-coloring is NP-hard.

On the other hand, one can show the NP-hardness of both Min Edge Split-coloring and Min Edge Cocoloring.

Proposition 2 (i) Edge 3-cocolorability is NP-complete. (ii) Edge 3-split-colorability is NP-complete.

Proof. (i) It is clearly in NP and we prove its NP-completeness by a reduction from edge 3-colorability (shown NP-complete in [START_REF] Holyer | The NP-completeness of edge-coloring[END_REF]). Let us consider an instance G of edge 3colorability. We transform G into an instance G of edge 3-cocolorability by adding 4 disjoint K 1,3 , that is 4 bundles of size 3 each. Note that in any edge 3-cocoloring of G, edges of these 4 bundles have to be covered by 3 matchings. Consequently, G is edge 3-cocolorable if and only if G is edge 3-colorable. (ii) A similar argument as (i) previously shows that edge 3-colorability reduces also to edge 3-split-colorability. In order to show that, we obtain an instance GS of edge 3-splitcolorability from an instance G of edge 3-colorability by adding 3 bundles of size 4 each. Then it suffices to observe that in any edge 3-split-coloring of GS , edges of 3 disjoint K 1,4 have to be covered by 3 bundles. This implies that GS is edge 3-split-colorable if and only if G is 3-edge-colorable.

Since Min Edge Split-coloring and Min Edge Cocoloring have both integral values, we can immediately deduce:

Corollary 2 Both Min Edge Split-coloring and Min Edge Cocoloring are not approximated within 4 3 -, unless P=NP.

Approximation results

First of all, corollary 1 combined with theorem 1 allows to state the following approximation result.

Proposition 3 Min Edge Cocoloring provides a 2-approximation for Min Edge Splitcoloring in line-perfect graphs.

Let A be a polynomial time algorithm computing a (∆ + 1)-edge-coloring for any graph of maximum degree ∆ [START_REF] Misra | A constructive proof of Vizing's theorem[END_REF] and an optimal edge-coloring for line-perfect graphs [START_REF] De Werra | On line perfect graphs[END_REF]. We consider the following algorithm for Min Edge Split-coloring:

Greedy Edge Split-coloring (1) R ← ∅; (2) while |R| < ∆(G) (3) pick a vertex x of maximum degree; (4) R ← R ∪ {x}; (5) remove x from G; (6

) Compute an edge coloring of the remaining edges by A

(The solution is the set of edges incident to vertices in R completed by that edge coloring.)

The main idea is that, if k = min{d, |{x, d(x) > d}| ≤ d}, then by removing all vertices of degree greater than k (the maximum degree is at most k in the remaining graph) and by completing the solution by k + 1 matchings [START_REF] Misra | A constructive proof of Vizing's theorem[END_REF], one finds an edge splitcoloring of value k + 1.

Proposition 4 (i) For every graph G, Greedy Edge Split-coloring computes an edge split-coloring of cardinality at most 2χ S (G) + 1. (ii) It provides a 7/3-approximation for Min Edge Split-coloring. (iii) Greedy Edge Split-coloring provides a 2-approximation for Min Edge Splitcoloring in line-perfect graphs.

Proof. Let us consider a graph G = (V, E), it is straightforward to verify that Greedy Edge Split-coloring computes a split-coloring of G; we denote by λ Gr its value.

Let k = min{d, |{x, d(x) > d}| ≤ d}. In what follows, we show that λ Gr ≤ k + 1 ≤ 2χ S (G) + 1. (i) Let us first note that if χ S (G) = 1, then λ Gr (G)
is either 1 or 2; on the other hand, if χ S (G) = 2, then after 2 iterations of the while-loop the degree is less than 3 and no more than 3 matchings are used at line [START_REF] Chung | A survey of bounds for classical ramsey numbers[END_REF], computing also a solution of value 3 or less. In both cases, λ Gr (G) is at most 2χ S (G). In what follows, we assume that χ S (G) ≥ 3. In order to show k ≤ 2χ S (G), we prove the following lemma: Lemma 1 Consider an optimal edge split-coloring of value χ S (G) minimizing the number of triangles among optimal edge split-colorings of G. Denote by T the set of triangles and by B the set of bundles in this solution (|T | + |B| ≤ χ S (G)). Let X be the set of vertices of degree at least 2χ S (G) + 1 that are not center of a bundle in B. Then |X| ≤ 3.

Note that λ

Gr ≤ |R| + 1 since |R| ≥ ∆(G \ R), where G \ R = G[V \ R]. Let
Proof. Let x ∈ X, we denote by T x the set of triangles in T adjacent to x and by B x the set of bundles centered on vertices neighbors of x (by definition of X, x is not a center of a bundle in B). Since the solution minimizes the number of triangles, any two triangles in T are edge-disjoint and no center of a bundle in B belongs to a triangle in T . Consequently, T x ∪B x contains exactly |B x |+2|T x | edges incident to x. Since only χ S (G) edges incident to x can be covered by matchings in the solution, |B x | + 2|T x | ≥ (χ S (G) + 1). Let us then define a bipartite graph I = (X, T ∪ B, E) with xr ∈ E ⇔ x is adjacent to r. Vertices in T have a degree at most 3 in I and vertices in B have a degree at most |X| in I. We then have:

x∈X |B x | + 2|T x | ≥ (χ S (G) + 1)|X| (1) x∈X |B x | + |T x | ≤ 3|T | + |X||B| (2)
We deduce by subtraction: (iii) Line-perfect graphs of maximum degree ∆ can be edge colored in polynomial time (by A) with ∆ colors if ∆ ≥ 3 and either with 2 or 3 colors if ∆ = 2. If ∆ = 2, Greedy Edge Split-coloring uses at most 3 colors. If ∆ ≥ 3, we just have to note that, in the proof of (i), λ Gr ≤ k ≤ 2χ S (G).

3|T | ≥ x∈X |T x | ≥ (χ S (G) -|B| + 1)|X| -3|T | ≥ (|T | + 1)|X| -3|T | Consequently |X| ≤ 5. But,
(G)}| ≤ χ S (G) + 3 ≤ 2χ S (G) since χ S (G) ≥ 3. Then, k ≤ 2χ S (G)
Let us finally remark that the bound is tight in bipartite graphs. Consider namely an integer p,

V 1 = {x i , i = 1, . . . , 2p}, V 2 = {y ij , i = 1, . . . , 2p, j = 1, . . . , p + 1} ∪ {u i , i = 1, . . . , p}, E = {(x i y ij ), i = 1, . . . , 2p, j = 1, . . . , p + 1} ∪ {x i u j , i = 1, . . . , 2p, j = 1, . . . , p}. Every vertex in V 1 is of degree 2p + 1 = ∆(B), d(u i ) = 2p, i = 1, .
. . , p and vertices y ij , i = 1, . . . , 2p, j = 1, . . . , 3 are of degree 1. The greedy algorithm removes vertices in V 1 (the related value being 2p) while the optimal value is p + 1 achieved by removing u 1 , . . . , u p . The related ratio is 2 -2/(p + 1) and consequently the bound is asymptotically tight. The bound 2 is achieved for the same instance without vertices y i(p+1) , but in this case the greedy may compute a solution of value 2p if it makes the bad choices.

Proposition 5 Min Edge Cocoloring is 2-approximable.

Proof. Let us consider a minimum cocoloring minimizing the number of triangles. Then it is straightforward to verify that it contains either 2 disjoint triangles or 1 or none (since all other solutions can be replaced by solutions of the same value and containing less triangles). Let us first suppose that the fixed minimum edge cocoloring does not contain any triangle. Then, |{x, d(x) > z (G)}| ≤ z (G) since all bundles of size greater than z (G) have to be taken as bundles in an optimal solution. Moreover, if |{x, d(x) > z (G)}| = z (G), an optimal solution (containing only bundles) has been detected at a stage of the computation of k. So we can assume |{x, d(x) > z (G)}| ≤ z (G) -1, but in this case, by definition of k we have:

By a similar method as in

k + 1 + |{x, d(x) > k}| ≤ z (G) + 1 + z (G) -1 = 2z (G)
If the optimal solution contains some triangles (1 or 2), one can consider all possible triangles in a solution and then apply the previous argument to the remaining graph. This completes the proof showing that one can compute a 2-approximation of Min Edge Cocoloring in polynomial time.

Let us now consider Min Edge Split-coloring in bipartite graphs. Given a bipartite graph B = (V 1 , V 2 , E) and an integer k, let us denote by d k (x) = |Γ(x) ∩ {y, d(y) ≤ k}| the degree of x in the graph obtained by removing all neighbors of x of degree greater than k. For i = 1, 2 we also denote by

V k i = {x ∈ V i , d(x) > k} and by V k,k i = {x ∈ V i , d k (x) > k }. For instance, V k,k 2
is the set of vertices in V 2 with a degree greater than k in the graph obtained by deleting all vertices of V 1 of degree greater than k. Finally, for i ∈ {1, 2}, we denote by ī = 3i, i.e., {1, 2} = {i, ī}.

Bipart. Edge Split-coloring ← (5 - √ 17)/4; For i = 1, 2 do (1) for every x ∈ V i compute d(x); (2)
for every y ∈ Vī and every x ∈ Γ(y), compute d d(x) (y); (4) 

d i ← min{d, |V 1+ 2-d i | + |V 1+ 2-d,d ī | ≤ d}; S i ← V 1+ 2-d i i ∪ V 1+ 2-d i ,d i ī ; (5) d 0 ← min{d, |V d 1 | + |V d 2 | ≤ d}; S 0 ← V d0 1 ∪ V d0 2 ; (6) i 0 ← argmin{d i , i = 0,
= |V 1 ∪ V 2 |. Proof. Let us first note that d = d i0 = min{d 0 , d 1 , d 2 }, where d 0 = min{k, |V k 1 ∪ V k 2 | ≤ k} and for i = 1, 2, d i = min{k, |V k 1+ 2- i | + |V k 1+ 2-,k ī | ≤ k}.
Moreover, it is straightforward to verify that Bipart. Edge Split-coloring computes a feasible edge split-coloring of value d. More precisely, d is such that the graph obtained by removing at most d vertices is of degree at most d: the maximum degree of the graph obtained by removing V d0 1 ∪ V d0 2 is at most d 0 and the graph obtained by removing

V d i (1+ ) (2-) i ∪ V d i (1+ ) (2-) ,d i ī has degrees at d i , i = 1, 2 (note that (1+ )
(2-) ≤ 1). Concerning the complexity, lines (1), ( 3), ( 4) and ( 5

) need O(m) steps while line (2) needs O(mn).

Let us now analyze the approximation behavior of the algorithm. Denote by = χ S (B):

∃L 1 ⊂ V 1 , L 2 ⊂ V 2 , |L 1 | = l 1 , |L 2 | = l 2 , l 1 + l 2 = and ∆(B \ (L 1 ∪ L 2 )) ≤ , where B \ (L 1 ∪ L 2 )) = B[(V 1 ∪ V 2 ) \ (L 1 ∪ L 2 )].
In the sequel, we consider the following cases:

(1) l 1 ≥ and l 2 ≥ (2) l 2 < with 2 sub-cases (2.1)|V (1+ ) 1 | ≥ and (2.2) |V (1+ ) 1 | < (3) l 1 <
Let us point out the following property (P) which will be useful:

(P) If x ∈ V i \ L i , i ∈ {1; 2} and d(x) ≥ + r, then |Γ(x) ∩ Lī| ≥ r.
Case (1) l 1 ≥ and l 2 ≥ .

By property (P),

V +lī i ⊂ L i ; i = 1, 2 and then: |V +max(l1,l2) 1 ∪ V +max(l1,l2) 2 | ≤ |V +l2 1 | + |V +l1 2 | ≤ l 1 + l 2 = ≤ + max(l 1 , l 2 )
We deduce, d 0 ≤ + max(l 1 , l 2 ) ≤ (2 -) where the last inequality holds since we are considering case (1).

Case (2)

l 2 < .
By property (P), we have

V (1+ ) 1 ⊂ L 1 .

Sub-case (2.1) |V

(1+ ) 1 | ≥ ⇒ |(L 1 \ V (1+ ) 1 )| ≤ (1 -).
Then, property (P) implies that

V (1+ ), (2-) 2 ⊂ L 2 . It follows from the above rela- tions that |V (1+ ) 1 ∪ V (1+ ), (2-) 2 | ≤ ≤ (2 -) , which implies by definition of d 1 (consider k = (2 -) in the definition), d 1 ≤ (2 -).

Sub-case (2.2)

|V (1+ ) 1 | < . For every x ∈ V 2 \ L 2 such that d (1+ ) (x) > (2 -), we have by property (P) |Γ(x) ∩ (L 1 \ V (1+ ) 1
)| ≥ (1 -). Then, by considering the number E of edges between

(L 1 \ V (1+ ) 1
) and (V (1+ ), (2-) 2 \ L 2 ) we deduce:

(|V (1+ ), (2-) 2 | -l 2 ) (1 -) ≤ E ≤ (l 1 -|V (1+ ) 1 |) (1 + ) ≤ 1 (1 + ) since the maximum degree of V 1 after removing V (1+ ) 1 is at most (1 + ).
We deduce:

|V (1+ ), ) 2 | ≤ (1 + ) 1 - = (2 -2 )
Consequently |V

(1+ ) 1 | + |V (1+ ), (2-) 2 | ≤ (2 -), which implies d 1 ≤ (2 -). Case (3) l 1 < .
It corresponds to the second case by interchanging V 1 and V 2 . So d 2 ≤ (2 -) and in all cases, d = min{d 0 , d 1 , d 2 } satisfies the expected ratio.

Comparability graphs

Let us first note the following result allowing to deduce the hardness of Min Split coloring in comparability graphs. If z(G) = p + k with p ≥ k, we show by the same arguments that a minimum cocoloring of G can be immediately deduced from a minimum split coloring of G , the graph obtained from G by adding p-k ≤ n stables sets, each of size n+1 and completely linked with the rest of the graph.

Proposition 6 Let G be a class of graphs closed under addition of disjoint cliques without link to the rest of the graph and under addition of complete k-partite graph completely linked with the rest of the graph. If Min Split-coloring is polynomial in class

Finally, in both cases, |k -p| ≤ k + p ≤ 2χ S (G), consequently, the reduction runs as follows:

5 General graphs

approximation ratio

Min Coloring is known to be particularly difficult to approximate since it is not approximable within n 1-if Co-RP =NP and not approximable within n 1/2-if P =NP [START_REF] Ausiello | Complexity and approximation (Combinatorial optimization problems and their approximability properties[END_REF]. Similar hardness results can be immediately deduced for Min Split-coloring and Min Cocoloring:

Proposition 7 (i) If Min Cocoloring is n 1/2--approximable for 0 < < 1/2, then Min Coloring is n 1--approximable.
(ii) If Co-RP =NP, then for every > 0, Min Cocoloring is non approximable within n 1/2-; if P =NP, then for every > 0, Min Cocoloring is non approximable within n 1/4-. (iii) The same holds for Min Split-coloring.

Proof. Let O be an oracle for Min Cocoloring guaranteeing the ratio n 1/2-, with < 1/2; the reduction constructs G consisting in ( n 1-+ 1) copies of G without link and computes a cocoloring of G by using O. If a copy of G in G is covered only by stable sets, then it outputs this coloring; else it outputs any greedy coloring.

If χ(G) ≤ n , then z( G) ≤ χ( G) = χ(G) ≤ n .
As the cocoloring computed by the oracle on G guarantees the ratio n( G) 1/2-and n( G) ≤ n 2 , it uses at most (n 2 ) 1/2-n = n 1-colors. Consequently at least one copy of G in G is covered only by stable sets in the cocoloring computed by O, which leads to a coloring of G using at most n 1-colors and the ratio n 1-is guaranteed. If now χ(G) > n , then any coloring of G guarantees the expected ratio, which concludes the proof of (i). (ii) follows from hardness results for Min Coloring. Finally (iii) is immediately deduced by using proposition 1. This hardness result considerably limits the possibilities for approximating Min Splitcoloring or Min Cocoloring in general graphs. A master-slave strategy [START_REF] Alfandari | Master-slave strategy and polynomial approximation[END_REF] allows to reduce these problems to Max Stable and Max Clique with an increase of the ratios by a factor O(log n) (the approximation counterpart of the algorithm GREEDY COCOLOURING of [START_REF] Fomin | Approximating minimum cocolourings[END_REF]), leading trivially to a O(n/ log n)-approximation for both problems; but it seems not so easy to reduce these problems to Min Coloring in order to refine the comparison of their approximation behavior.

Differential approximation ratio

The framework of the differential approximation ratio, also called z-approximation (see for instance [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF][START_REF] Demange | Differential approximation algorithms for some combinatorial optimization problems[END_REF][START_REF] Hassin | z-approximations[END_REF] for more details about this area) allows such a comparison. For every instance x, this ratio is defined by δ

(x) = [ω(x) -λ(x)]/[ω(x) -β(x)],
where λ(x) denotes the approximated β(x) the optimal value of x and ω(x) its worse value (the number of vertices in the case of Min Coloring for which this approach can be seen as maximizing the number of unused colors among n potential colors [START_REF] Hassin | Maximizing the number of unused colors in the vertex coloring problem[END_REF]) and an algorithm guarantees a differential ratio of r if, for every instance x, δ(x) ≥ r. Note that δ(x) ∈ [0, 1] and the largest the ratio is, the better, without distinction between maximization and minimization problems. Roughly speaking, this ratio gives the position of the approximated value between the worst and the best one. This ratio has been used since a long time (see for instance [START_REF] Zemel | Measuring the quality of approximate solutions to zero-one programming problems[END_REF]) and is extensively discussed in [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF]. In particular, it has the advantage of respecting some affine equivalence such as the equivalence between maximum stable set and minimum vertex covering problems while both problems are known to have radically different approximation behaviors for the usual ratio. Works in this context have pointed out that it is often interesting to simultaneously consider both points of view since these ratios provide different pieces of information about combinatorial problems.

For instance, Min Coloring admits constant differential approximation algorithms, the best ratio currently known being 59/72 [START_REF] Duh | Approximation of k-set cover by semi-local optimization[END_REF], while it is hard to approximate from the usual ratio. On the other side, it does not admit any differential PTAS (differential ratio 1 -, for every > 0), unless P=NP ( [START_REF] Bazgan | Poly-APX-and PTAS-completeness in standard and differential approximation[END_REF]). On the contrary, some other problems are constant approximated from the usual ratio and hard to approximate from the differential point of view and, finally, some problems have similar behavior from both points of view. Moreover, every approximation ratio is more or less appropriate to compare the approximation behavior of different given problems. In what follows, we show that, as for Min Coloring, Min Cocoloring and Min Split-coloring are well approximated from the differential point of view; moreover they appear to be better approximated than the Min Coloring problem from this point of view.

More precisely, we devise a differential PTAS for Min Split-coloring and Min Cocoloring, i.e., a (1 -)-differential approximation with complexity O(n 1+3/ ), for every 0 < < 1. On the other hand, a differential FPTAS (the same ratio with complexity polynomial in 1/ ) cannot be guaranteed, unless P=NP.

For Min Split-coloring, we consider n(G)/3 as worst value since one can always assume that each color (except at most one) contains at least 3 vertices (every set of 3 vertices induces in G a split graph). The ratio associated to

G is δ(G) = [ n(G)/3 - λ(G)]/[ n(G)/3 -χ S (G)]. Similarly, the differential ratio for Min Cocoloring is [ n(G)/2 -λ(G)]/[ n(G)/2 -z(G)].
Note that a larger worse value such as n could be also used, leading to better approximation ratios. But it is reasonable to consider the little more restrictive values n(G)/3 and n(G)/2 , respectively, in order to avoid this artificial increasing of the final ratio (see [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF] where the notion of worst value is discussed). It simply corresponds to restrict the analysis to "reasonable" solutions. Proof. For the whole complexity, note that step ( 2) is computed for a graph without a stable set or a clique of order 3p and consequently the order of which is less than the related Ramsey number R 2 (3p, 3p) ≤ K p for a constant K [START_REF] Berge | Graphs and Hypergraphs[END_REF][START_REF] Chung | A survey of bounds for classical ramsey numbers[END_REF].

It is straightforward to verify DPTAS-split-coco computes either a split-coloring or a cocoloring of the instance. The only difference between the two cases arises in line (2) that computes either an optimal split-coloring or an optimal cocoloring in the remaining graph.

We propose an analysis valid for both problems. The problem being fixed, we denote respectively by ω(H) and β(H) the worse value and the optimal value of H, with respect to this problem (consequently β(H) stands either for χ S (H) or for z(H)).

The approximation ratio is proved by induction on n(G) (see also [START_REF] Hassin | Maximizing the number of unused colors in the vertex coloring problem[END_REF]).

If n(G) < 3p, then only the step (2) is computed and the algorithm finds an optimal solution corresponding to a ratio of 1. Let us now assume that the expected ratio is guaranteed for every graph of order n or less, where n ≥ 3p and consider a graph G n+1 of order n + 1. If no clique or stable set of order 3p is detected at step (1), then G n+1 is optimally colored at step [START_REF] Ausiello | Complexity and approximation (Combinatorial optimization problems and their approximability properties[END_REF]. Else, the algorithm attributes a new color either to a stable set or to a clique of size 3p and is then executed on the graph G obtained from G n+1 by deleting these 3p vertices. Since G is of order less than n, the ratio is guaranteed for G . Note also that:

λ(G n+1 ) = 1 + λ(G ) β(G n+1 ) ≥ β(G ) ω(G n+1 ) ≥ ω(G ) + p ≥ λ(G n+1 )
which implies:

ω(G ) + p -λ(G n+1 ) ≥ (1 -1/p)(ω(G ) -β(G )) + p -1 ≥ (1 -1/p)(ω(G ) + p -β(G n+1 ))
and then, since ω(G n+1 ) ≥ ω(G ) + p, we have:

ω(G n+1 ) -λ(G ) ω(G n+1 ) -β(G n+1 ) ≥ ω(G ) + p -λ(G n+1 ) ω(G ) + p -β(G n+1 ) ≥ (1 -1/p)
which concludes the proof.

In some cases the algorithm remains polynomial for p ≤ log n:

Corollary 4 For every class of graphs for which Max Stable and Max Clique are polynomial, Min Split-coloring and Min Cocoloring are approximated within a differential ratio of (1 -1/ log n).

It is straightforward to verify that, since Min Split-coloring (resp. Min Cocoloring) has integral values and ω(G)-χ S (G) is polynomially bounded, an DFPTAS (differential fully polynomial time approximation scheme) would allow to solve it polynomially. Moreover, a result of [START_REF] Bazgan | Poly-APX-and PTAS-completeness in standard and differential approximation[END_REF] implies that both problems are PTAS-complete under a Turing reduction preserving FPTAS.

Conclusion

We have considered essentielly two extensions of the classical coloring problems, namely Min Cocoloring and Min Split-coloring. The complexity status of these problems has been settled for some classes of graphs and approximability has been studied as well. Further research should examine how the approximation algorithms sketched here could be improved; in particular the case of edge-cocoloring could be handled. Also, subclasses of graphs could be characterized where these problems become polynomially solvable or admit better approximations; for instance the permutation graphs which will be studied in a forthcoming paper.

  r be the last vertex introduced in R and R = R\{r}; we have |R | < ∆(G\R ) and consequently d(r) ≥ |R | + 1 = |R|. Since vertices are introduced in R in decreasing order of their degree, every vertex in R has a degree at least |R|. Consequently, |{x, d(x) ≥ |R|}| ≥ |R|. It means that |R| < min{d, |{x, d(x) ≥ d}| < d}. It is straightforward to verify that min{d, |{x, d(x) ≥ d}| < d} = k + 1 and thus λ Gr ≤ |R| + 1 ≤ k + 1.

  and λ Gr ≤ 2χ S (G) + 1, which concludes the proof of (i).(ii) If χ S (G) ≤ 2, Greedy Min Split-coloring uses clearly no more than 3 colors. If χ S (G) ≥ 3, then by (i) we have λ Gr (G) ≤ 2χ S (G) + 1 ≤ 7/3χ S (G).

  Greedy Min Split-coloring, one can compute in polynomial time k minimizing k + 1 + |{x, d(x) > k}|; then there is an edge cocoloring consisting in {x, d(x) > k} as bundles (represented by their central vertices) completed by (at most) k + 1 matchings. So we can construct such a solution of size k + 1 + |{x, d(x) > k}|.

( 3 )

 3 for every d ∈ {1, . . . , ∆(B)} compute |V d i | and |V 1+ 2-d,d ī |;

  G, then so does Min Cocoloring. Proof. Let us consider a graph G of order n such that z(G) = p + k and let us first assume that p ≤ k. Consider the graph G consisting of G and l = kp ≤ n disjoint cliques, each of size n + 1, without any link with the rest of the graph. Note that kp new cliques completed by p cliques and k stable sets of the optimal cocoloring of G form a split-coloring of value k, inducing that χ S (G ) ≤ k ≤ n. Consequently a minimum split-coloring of G necessarily contains the kp new cliques completed by p cliques and k stable sets of G. Since χ S (G ) = max((kp + p ), k ) ≤ k, we have p ≤ p and k ≤ k. On the other hand, p + k ≥ k + p since the restriction to G of the split-coloring of G provides a cocoloring of value p + k . So p + k = p + k and this cocoloring of G is an optimal one.

  in this case, the number of triangles in T with degree 3 in I is at most 2 since any graph generated by 3 triangles and at most 5 vertices can be covered by 3 bundles, which is not possible if the solution minimizes the number of triangles. Then, if |T | ≥ 2, (2) can be replaced by x∈X |B

x | + |T x | ≤ 2|T | + 2 + |X||B| implying |X| ≤ 4. By the same argument as previously, since any graph generated by 2 triangles and at most 4 vertices can be covered by 2 bundles, at most 1 vertex in T has degree 3 in I implying |X|(|T | + 1) ≤ 4|T | + 2 and thus |X| ≤ 3. Finally if |T | ≤ 1, (2) becomes x∈X |B x | + |T x | ≤ 3 + |X||B| implying |X| ≤ 3, which concludes the proof. It implies that |{x, d(x) > 2χ S

Theorem 4

 4 DPTAS-split-coco is a O(n 3p+1 )-algorithm guaranteeing a differential ap-proximation ratio of (1 1/p) for both Min Split-coloring and Min Cocoloring.

	DPTAS-split-coco
	(1) while the current graph contains a 3p-stable or a 3p-clique,
	color such a stable set or clique with
	a new color;
	(2) complete the solution by an exhaustive search on
	the remaining graph.

 

From Split to Coco P ← ∅; ( * P will contain cocolorings of G * ) (2) compute an optimal split-coloring of G;

(3) store in P the related partition; L ← 2χ S (G); (4) for every l ∈ {1, . . . , L} do [START_REF] Brandstädt | The complexity of some problems related to graph 3-colorability[END_REF] construct G obtained from G by adding l cliques, each of size n + 1 without link with the rest of the graph; [START_REF] Chung | A survey of bounds for classical ramsey numbers[END_REF] compute an optimal split-coloring of G and store its restriction to G in P ; [START_REF] De Werra | On line perfect graphs[END_REF] construct G obtained from G by adding l stable sets, each of size n + 1 and completely linked with the rest of the graph; [START_REF] Demange | Partitioning cographs into cliques and stable sets[END_REF] compute an optimal split-coloring of G and store its restriction to G in P ; (9) Return the best cocoloring stored in P .

Corollary 3 Min Split-coloring is NP-hard in comparability graphs.

Proof. Min Cocoloring is NP-hard even in permutation graphs [START_REF] Wagner | Monotonic coverings of finite sets[END_REF] (a graph G is a permutation graph if G and Ḡ are comparability graphs). This class of graphs is clearly closed under addition of disjoint cliques and under complementation and consequently it satisfies the conditions of proposition 6. Therefore Min Cocoloring polynomially reduces to Min Split-coloring that is consequently NP-hard in permutation graphs, and then also in comparability graphs.

In this section, we show that the method proposed in [START_REF] Fomin | Approximating minimum cocolourings[END_REF] for approximating Min Cocoloring in comparability graphs can be adapted to Min Split-coloring with another ratio. Note that a graph G is a cocomparability graph if Ḡ is a comparability graph.

Theorem 3 Min Split-coloring is 2-approximable for comparability and cocomparability graphs.

Proof. Let us first establish the split counterpart of lemma 2 in [START_REF] Fomin | Approximating minimum cocolourings[END_REF]: Proof. Let G = (V, E) be a perfect graph, we consider a slight modification of procedure SQRTPartition of [START_REF] Fomin | Approximating minimum cocolourings[END_REF]. It runs as follows:

SQRT-split-partition (1) while k = and the graph is not empty do [START_REF] Ausiello | Complexity and approximation (Combinatorial optimization problems and their approximability properties[END_REF] If min{α(G);

then compute a k-coloring of G or Ḡ, include each clique or stable set in the solution and set k ← 0 (4) else find a stable set and a clique of size k + 1 and color the related split graph of size at least 2k + 1 with a new color; [START_REF] Brandstädt | The complexity of some problems related to graph 3-colorability[END_REF] Set k ← k -1 and remove from G all already colored vertices.

It is straightforward to verify that this procedure runs in polynomial time. Moreover if line ( 3) is executed or if the graph becomes empty it computes a split-coloring of size k . If line ( 3) is not computed and if k loops are performed, then at least

are covered and consequently the graph is also covered by k split graphs.

Let us adapt the algorithm APPROX COCOLOURING of [START_REF] Fomin | Approximating minimum cocolourings[END_REF] for Min Split-coloring: The complexity is O(mn) [START_REF] Fomin | Approximating minimum cocolourings[END_REF]. It follows from the fact that a maximum r-colorable subgraph of G and Ḡ can be polynomially computed in comparability graphs [START_REF] Frank | On chain and antichain families of a partially ordered set[END_REF].

Since G can be decomposed into χ S (G) cliques and χ S (G) stable sets, r ≤ χ S (G). On the other hand, since |C r ∩S r | ≤ r 2 , n-|C r ∪S r | ≤ r 2 and consequently, by lemma 2, at most r ≤ χ S (G) split graphs are computed at line (4). The computed split-coloring is of size at most 2χ S (G) and the proof is complete. Note that this result remains valid for every class of perfect graphs for which subgraphs such as described in line (1) of Compar. Split-coloring can be polynomially computed.