
HAL Id: hal-00116639
https://hal.science/hal-00116639

Preprint submitted on 27 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting dominance conditions for computing
worst-case time upper bounds in bounded combinatorial

optimization problems:application to MIN SET
COVERING and MAX CUT

Federico Della Croce, Vangelis Th. Paschos

To cite this version:
Federico Della Croce, Vangelis Th. Paschos. Exploiting dominance conditions for computing worst-
case time upper bounds in bounded combinatorial optimization problems:application to MIN SET
COVERING and MAX CUT. 2006. �hal-00116639�

https://hal.science/hal-00116639
https://hal.archives-ouvertes.fr

Exploiting dominance conditions for computing
worst-case time upper bounds in bounded

combinatorial optimization problems:
application to MIN SET COVERING and MAX

CUT1

Federico Della Croce∗, Vangelis Th. Paschos†

Abstract

In the design of branch and bound methods for NP-hard combinatorial opti-
mization problems, dominance conditions have always been applied. In this work
we show how the use of dominance conditions within search tree algorithms can
lead to non trivial worst-case upper time bounds for the considered algorithms on
bounded combinatorial optimization problems. We consider here the MIN 3-SET

COVERING problem and the MAX CUT problem in graphs maximum degree three,
four, five and six. Combining dominance conditions and intuitive combinatorial
arguments, we derive two exact algorithms with worst-case complexity bounded
above by p · O(1.4492n) for the former, and p1 · O(1.2920n), p2 · O(1.4142n),
p3 · O(1.6430n) and p3 · O(1.6430n), respectively, the latter problems, where p(·)
and pi(·), i = 1, . . . , 6, denote some polynomials and n is the number of subsets for
MIN 3-SET COVERING and the number of vertices of the input-graph for MAX CUT.

Key words : Worst-case complexity, Exact algorithm, MIN SET COVERING, MAX

CUT

1Research performed while the first author was in visit at the LAMSADE on a research position funded
by the CNRS

∗D.A.I., Politecnico di Torino, Italy, federico.dellacroce@polito.it
†LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine, France,

paschos@lamsade.dauphine.fr

177

Exploiting dominance conditions for computing worst-case time upper bounds [...]

1 Introduction

The design of exact methods for NP-hard combinatorial optimization problems has always
been a challenging issue. Among the existing exact methods, search tree algorithms and in
particular branch and bound approaches have been widely applied. A branch and bound
algorithm builds and explores a search tree, thus enumerating the solutions space. In
order to reduce the computational burden, several techniques can be applied to prune
some branches of the search tree and to avoid the enumeration of known non-optimal
solutions. A usual technique is to consider dominance conditions while branching from
a node. Dominance conditions can be typically derived by comparing two nodes of the
search tree, namely two partial solutions of the given problem where the two nodes share
some common features.

In this work we study the application of dominance conditions within search tree
algorithms in the context of worst-case analysis of exact algorithms. Let T (·) be a super-
polynomial and p(·) be a polynomial, both on integers. In what follows, using nota-
tions in [13], for an integer n, we express running-time bounds of the form p(n).T (n)
as O∗(T (n)), the asterisk meaning that we ignore polynomial factors. We denote by T (n)
the worst-case time required to exactly solve the considered combinatorial optimization
problem with n variables. We recall (see, for instance, [5]) that, if it is possible to bound
above T (n) by a recurrence expression of the type T (n) �

∑
T (n − ri) + O(p(n)), we

have
∑

T (n− ri)+O(p(n)) = O∗(α(r1, r2, . . .)
n) where α(r1, r2, . . .) is the largest zero

of the function f(x) = 1 − ∑
x−ri .

A combinatorial problem will be called bounded, if some parameter of its instance
(e.g., the maximum degree of the input-graph, when dealing with graph-problems, or the
maximum set-cardinality, when dealing with problems on set-systems) is bounded above
by a fixed constant. We show that, for two bounded combinatorial optimization problems
(MIN 3-SET COVERING where each subset has maximum cardinality three and MAX CUT

in graphs with maximum degree three, four, five and six, respectively, denoted by MAX

CUT-3, MAX CUT-4, MAX CUT-5 and MAX CUT-6, respectively, in what follows), the
combination of dominance conditions and intuitive combinatorial arguments within exact
search tree algorithms leads to non trivial upper-time bounds for both algorithms. In-
deed, for MIN 3-SET COVERING an upper-time bound O∗(1.4492n) is derived, while, for
MAX CUT-3, MAX CUT-4, MAX CUT-5 and MAX CUT-6, upper-time bounds O∗(1.2920n),
O∗(1.4142n), O∗(1.6430n) and O∗(1.6430n), respectively are derived. For the former
problem, the derived bound is, to our knowledge, the best known until now. For the latter
problems, even if the yielded bounds are not the best known, they are competitive with
respect to the known bounds.

178

Annales du LAMSADE n˚4-5

2 The MIN 3-SET COVERING problem

2.1 Preliminaries

In MIN SET COVERING, we are given a universe U of elements and a collection S of (non-
empty) subsets of U . The aim is to determine a minimum cardinality sub-collection S ′ ⊆
S which covers U , i.e., ∪S∈S′S = U (we assume that S covers U). The frequency fi

of ui ∈ U is the number of subsets Sj ∈ S in which ui is contained. The cardinality dj

of Sj ∈ S is the number of elements ui ∈ U that Sj contains. We say that Sj hits Sk if
both Sj and Sk contain an element ui and that Sj double-hits Sk if both Sj and Sk contain
at least two element ui, ul. Finally, we denote by n the size (cardinality) of S and by m
the size of U . In what follows, we restrict ourselves to MIN SET COVERING-instances
such that:

1. no element ui ∈ U has frequency fi = 1;

2. no set Si ∈ S is subset of another set Sj ∈ S.

3. no pair of elements ui, uj exists such that every subset Si ∈ S containing ui contains
also uj .

Indeed, if item 1 is not verified, then the set containing ui belongs to any feasible cover
of U . On the other hand, if item 2 is not verified, then Si can be replaced by Sj in any
solution containing Si and the resulting cover will not be worse than the one containing Si.
Finally, if item 3 is not verified, then element uj can be ignored as every sub-collection S ′

covering ui will necessarily cover also uj . So, for any instance of MIN SET COVERING, a
preprocessing of data, obviously performed in polynomial time, leads to instances where
all items 1, 2 and 3 are verified.

There exist to our knowledge few results on worst-case complexity of exact algorithms
for MIN SET COVERING or for cardinality-constrained versions of it. Let us note that an
exhaustive algorithm computes any solution for MIN SET COVERING in O(2n). For MIN

SET COVERING the most recent non-trivial result is the one of [7] (that has improved the
result of [10]) deriving a bound (requiring exponential space) of O∗(1.2301(m+n)). We
consider here, the most notorious cardinality-constrained version of MIN SET COVERING,
the MIN 3-SET COVERING, namely, MIN SET COVERING where dj � 3 for all Sj ∈ S. It is
well known that MIN 3-SET COVERING is NP-hard, while MIN 2-SET COVERING (where
any set has cardinality at most 2) is polynomially solvable by matching techniques ([2, 8]).
Our purpose is to devise an exact (optimal) algorithm with provably improved worst-case
complexity for MIN 3-SET COVERING. In what follows, we propose a search tree-based
algorithm with running time O∗(1.4492n) which constitutes, to the best of our knowledge,

179

Exploiting dominance conditions for computing worst-case time upper bounds [...]

the best bound for that problem. (notice, for instance, that the bound of [7] for fi = 2, ui ∈
U , and dj = 3, for any Sj ∈ S corresponds to O∗(1.2301(5/2)) ≈ O∗(1.6782n)).

Consider, the following algorithm, denoted by SOLVE-3-SET-COVERING:

• repeat until possible:

1. for any unassigned subset Sj test if the preprocessing induced by items 1, 2
and 3 reduces the size of the instance;

2. select for branching the unassigned subset whose branching induces the min-
imum worst-case complexity (in case of tie select the subset with smallest
index).

2.2 Dominance conditions

The following straightforward lemma holds, inducing some useful domination conditions
for the solutions of MIN SET COVERING.

Lemma 1. There exists at least one optimal solution of MIN SET COVERING where

1. for any subset Sj with dj = 2 containing elements ui, up, if Sj double-hits Sk,
then Sj is excluded from S ′ (in case also dk = 2, then it is immaterial to exclude
either Sj or Sk);

2. for any subset Sj with dj = 2 containing elements ui, up, if Sj is included in S ′,
then all subsets Sk hitting Sj are excluded from S ′;

3. for any subset Sj with dj = 3 containing elements ui, up, uq, where Sj double-hits
another subset Sk with dk = 3 on ui and up, if Sj is included in S ′ then Sk must be
excluded from S ′ and viceversa;

4. for any subset Sj with dj = 3 containing elements ui, up, uq, if Sj is included in S ′,
then either all subsets Sk hitting Sj on element ui are excluded from S ′, or all
subsets Sk hitting Sj on elements up and uq are excluded from S ′.

Proof.

1. Notice that the configuration implied by item 1 cannot occur thanks to the first
hypothesis (item 1 in Section 2.1) on the form of the MIN SET COVERING-instances
dealt.

180

Annales du LAMSADE n˚4-5

2. Assume, without loss of generality, that Sj hits Sk on ui and Sl on up. Suppose
by contradiction that the optimal solution S′ includes Sj and Sk. Then, it cannot
include also Sl or else it would not be optimal as a better cover would be obtained by
excluding Sj from S′. On the other hand, suppose that S′ includes Sj, Sk but does
not include Sl. Then, an equivalent optimal solution can be derived by swapping Sj

with Sl.

For items 3 and 4, the same kind of analysis as for item 2 holds.

2.3 The worst-case upper-time bound for MIN 3-SET COVERING

The objective of this section is to show the following result.

Proposition 1. Algorithm SOLVE-3-SET-COVERING optimally solves MIN 3-SET COV-
ERING within time O∗(1.4492n).

Proof. The algorithm either detects by means of item 1 a subset Sj to be immediately
included in (excluded from) S ′ or an element ui to be ignored (correspondingly reducing
the degree of several subsets), or applies a branching on subset Sj , where the following
exhaustive relevant branching cases may occur.

1. dj = 2: then no double-hitting occurs to Sj or else, due to Lemma 1, Sj can be
excluded from s′ without branching. The following subcases occur.

(a) Sj contains elements ui, uk with fi = fk = 2 where Sj hits Sl on ui and Sm

on uk. Due to Lemma 1, if Sj is included in S ′, then both Sl and Sm must be
excluded from S ′; alternatively, Sj is excluded from S ′ and, correspondingly,
both Sl and Sm must be included in S ′ to cover elements ui, uk. This can be
seen as a binary branching where, in both cases, three subsets (Sj, Sl, Sm) are
fixed. Then, T (n) � 2T (n−3)+O(p(n)), where the term T (n−3) measures
the time for solving the same problem with n−3 subsets. Correspondingly, we
have T (n) = O∗(αn), where α is the largest real root of the equation α3 = 2,
i.e., α ≈ 1.2599, implying a time complexity of O∗(1.2599n).

(b) Sj contains elements ui, uk with fi = 2 and fk � 3, where Sj hits Sl on ui

and Sm, Sp on uk. Due to Lemma 1, if Sj is included in S ′, then Sl, Sm, Sp

must be excluded from S ′; alternatively, Sj is excluded from S ′ and, corre-
spondingly, Sl must be included in S ′ to cover element ui. This can be seen as
a binary branching where either 2 subsets (Sj, Sl), or 4 subsets (Sj, Sl, Sm, Sp)
are fixed; hence, T (n) � T (n − 2) + T (n − 4) + O(p(n)). This results in a
time-complexity of O∗(1.2721n).

181

Exploiting dominance conditions for computing worst-case time upper bounds [...]

(c) Sj contains elements ui, uk with fi � 3 and fk � 3 where Sj hits Sl, Sm on ui

and Sp, Sq on uk. Due to Lemma 1, if Sj is included in S ′, then Sl, Sm, Sp, Sq

must be excluded from S ′; alternatively, Sj is excluded from S ′. This can
be seen as a binary branching where either 1 subset (Sj) is fixed, or 5 sub-
sets (Sj, Sl, Sm, Sp, Sq) are fixed and, hence, T (n) � T (n− 1) + T (n− 5) +
O(p(n)). This results in a time-complexity of O∗(1.3248n).

2. dj = 3 (that is, there does not exist Sk ∈ S such that dk = 2) with Sj double-
hitting one or more subsets. Notice that if Sj double-hits Sk on elements ui, ul,
then fi � 3 and fl � 3 due to the preprocessing step 1 of the algorithm. The
following exhaustive subcases may occur.

(a) Sj double-hits at least 3 subsets Sk, Sl, Sm. Due to Lemma 1, if Sj is included
in S ′ then Sk, Sl, Sm must be excluded from S ′; alternatively, Sj is excluded
from S ′. This can be seen as a binary branching where either 1 subset (Sj) is
fixed, or 4 subsets (Sj, Sk, Sl, Sm) are fixed and hence, T (n) � T (n − 1) +
T (n − 4) + O(p(n)). This results in a time-complexity of O∗(1.3803n).

(b) Sj double-hits 2 subsets Sk, Sl and hits at least one more subset Sm (we as-
sume that Sj hits Sm on element ui). Due to Lemma 1, if Sj is included
in S ′, then Sk, Sl must be excluded from S ′ and a further branching on sub-
set Sm with dm = 2 can be applied (as ui is already covered by Sj) where,
in the worst case, subcase 1c holds; alternatively, Sj is excluded from S ′;
this can be seen as a binary branching where either 1 subset (Sj) is fixed,
or 3 subsets (Sj, Sk, Sl) are fixed and a branching of type 1c on subset Sm

with n′ = n−3 variables holds. Then T (n) � T (n−1)+T (n′−1)+T (n′−
5) + O(p(n)) = T (n− 1) + T (n− 4) + T (n− 8) + O(p(n)). This results in
a time-complexity of O∗(1.4271n).

(c) Sj contains elements ui, uk, ul and double-hits one subset Sk on elements ui, uk.
The following exhaustive subcases must be considered.

i. fi � 3, fk � 3, fl = 2 with ui contained at least by Sj, Sk, Sm, uk

contained at least by Sj, Sk, Sp and ul contained by Sj, Sq. A composite
branching can be devised:

• either Sj and Sq are included in S ′ and, due to Lemma 1, Sk, Sm, Sp

must be excluded from S ′,
• or Sj is included in S ′ and Sq is excluded from S ′ and, correspond-

ingly, Sk must be excluded from S ′,
• or Sj is excluded from S ′ and, correspondingly, Sq must be included

in S ′.
Then, T (n) � T (n− 2) + T (n− 3) + T (n− 5) + O(p(n)). This results
in a time-complexity of O∗(1.4292n).

182

Annales du LAMSADE n˚4-5

ii. fi = 3, fj = 3, fl � 3 with ui contained by Sj, Sk, Sm, uk contained
by Sj, Sk, Sp and ul contained at least by Sj, Sq, Sr. A composite branch-
ing can be devised:
• either Sj and Sk are excluded from S ′ and (to cover ui and uk) Sm, Sp

must be included in S ′,
• or Sj is included in S ′ and (due to Lemma 1) either Sk, Sq, Sr are

excluded from S ′ or Sk, Sm, Sp are excluded from S ′,
• or Sk is included in S ′ and (due to Lemma 1) either Sj, Sm, Sp are

excluded from S ′ or Sj, Sλ, Sµ are excluded from S ′, where Sλ, Sµ

are the subsets hitting Sk on another element (recall fk = 3) uv.
This would induce T (n) � 5T (n′ − 4) + O(p(n)), but in all subcases
a consequent branching on an unassigned subset (any of those hitting a
subset just included in S ′) having (therefore) cardinality 2 holds where,
in the worst case, subcase 1c holds. Then, T (n) � 5T (n − 5) + 5T (n −
9) + O(p(n)). This results in a time-complexity of O∗(1.4389n).

iii. fi = 3, fj � 4, fl � 3, with ui contained by Sj, Sk, Sm, uk contained at
least by Sj, Sk, Sp, Sq and ul contained at least by Sj, Sr, Su. A composite
branching can be devised:
• either Sj and Sk are excluded from S ′ and (to cover ui) Sm must be

included in S ′,
• or Sj is included in S ′ and (due to Lemma 1) either Sk, Sp, Sq are

excluded from S ′ or Sk, Sm, Sr, Su are excluded from S ′,
• or Sk is included in S ′ and (due to Lemma 1) either Sj, Sp, Sq are ex-

cluded from S ′ or Sj, Sm, Sλ, Sµ are excluded from S ′, where Sλ, Sµ

are the subsets hitting Sk on another element (recall fk = 3) uv.
This would induce T (n) � T (n−3)+2T (n−4)+2T (n−5)+O(p(n)),
but in all subcases a consequent branching on an unassigned subset (any
of those hitting a subset just included in S ′) having (therefore) cardinal-
ity 2 holds where, in the worst case, subcase 1c holds. Then, T (n) �
T (n− 4) + 2T (n− 5) + 2T (n− 6) + T (n− 8) + 2T (n− 9) + 2T (n−
10) + O(p(n)). This results in a time-complexity of O∗(1.4331n).

iv. fi � 4, fj � 4, fl � 3, with ui contained at least by Sj, Sk, Sm, Sp, uk

contained at least by Sj, Sk, Sq, Sr and ul contained at least by Sj, Su, Sv.
A composite branching on subset Sj can be devised (due to Lemma 1):
• Sj is included in S ′, Sk, Sm, Sp are excluded from S ′ and a further

branching on subset Sq can be applied with dq = 2 (as uk is already
covered by Sj),

• or Sj is included in S ′, Sk, Sq, Sr, Sq, Sv are excluded from S ′ and a
further branching on subset Sm can be applied with dm = 2 (as ui is
already covered by Sj),

183

Exploiting dominance conditions for computing worst-case time upper bounds [...]

• or Sj is excluded from S ′.
This can be seen as a composite branch where either 1 or 4 or 6 subsets
have been included in or excluded from S′ that is T (n) � T (n − 1) +
T (n−4)+T (n−6)+O(p(n)), where however, in the latter two branches a
consequent branching on an unassigned subset having cardinality 2 holds
where, in the worst case, subcase 1c holds. Then, T (n) � T (n − 1) +
T (n− 5) + T (n− 7) + T (n− 9) + T (n− 11 + O(p(n)). This results in
a time-complexity of O∗(1.4343n).

3. dj = 3 and no double-hitting occurs to Sj (nor to any other subset) that contains
elements ui, uk, ul. The following subcases occur.

(a) fi = fk = fl = 2 with ui contained by Sj, Sk, uk contained by Sj, Sl and ul

contained by Sj, Sm. A binary branching on Sj can be devised: either Sj is
excluded from S ′ and then (to cover ui, uk, ul) Sk, Sl, Sm must be included
in S ′, or Sj is included in S ′. This would induce T (n) � T (n − 1) + T (n −
4) + O(p(n)), but in all subcases, a consequent branching on an unassigned
subset (any of those hitting a subset just included in S ′) having (therefore)
cardinality 2 holds where, in the worst case, subcase 1c holds. Then, T (n) �
T (n − 2) + T (n − 5) + T (n − 6) + T (n − 9) + O(p(n)). This results in a
time-complexity of O∗(1.3515n).

(b) fi = fk = 2, fl � 3 with ui contained by Sj, Sk, uk contained by Sj, Sl and ul

contained at least by Sj, Sm, Sp. A composite branching on Sj can be devised:

• either Sj is excluded from S ′ and then (to cover ui, uk) Sk, Sl must be
included in S ′,

• or Sj is included in S ′ and Sk, Sl are excluded from S ′,
• or Sj is included in S ′ and Sm, Sp are excluded from S ′.

This would induce T (n) � 3T (n − 3) + O(p(n)), but in all subcases, a con-
sequent branching on an unassigned subset (any of those hitting a subset just
included in S ′) having (therefore) cardinality 2 holds where, in the worst case,
subcase 1c holds. Then, T (n) � 3T (n − 4) + 3T (n − 8) + O(p(n)). This
results in a time-complexity of O∗(1.3954n).

(c) fi = 2, fk � 3, fl � 3, with ui contained by Sj, Sk, uk contained by Sj, Sl, Sm,
and ul contained at least by Sj, Sp, Sq. A composite branching on Sj can be
devised: either Sj is excluded from S ′ and then (to cover ui) Sk must be in-
cluded in S ′, or Sj is included in S ′ and Sk, Sl, Sm are excluded from S ′, Sj

is included in S ′ and Sp, Sq are excluded from S ′. This would induce T (n) �
T (n − 2) + T (n − 3) + T (n − 4) + O(p(n)), but in all subcases, a conse-
quent branching on an unassigned subset (any of those hitting a subset just
included in S ′) having (therefore) cardinality 2 holds where, in the worst case,

184

Annales du LAMSADE n˚4-5

subcase 1c holds. Then, T (n) � T (n − 3) + T (n − 4) + T (n − 5) + T (n −
7) + T (n − 8) + T (n − 9) + O(p(n)). This results in a time-complexity
of O∗(1.4066n).

(d) fi = 3, fk � 3, fl � 3 with ui contained by Sj, Sk, Sl, uk contained by Sj, Sm, Sp

and ul contained at least by Sj, Sq, Sr. Also, both Sk and Sl have degree 3 and
all elements contained by Sk or Sl have frequency at least 3 or else subcase 3c
would hold either on subset Sk or on subset Sl. A composite branching can be
devised:

• either Sj is included in S ′ and then either Sk, Sl are excluded from S ′,
or Sm, Sp, Sq and Sr are excluded from S ′,

• or Sj is excluded from S ′, Sk is included in S ′ and there are at least 5 other
subsets hitting Sk and, hence, either two of these subsets are excluded
from S ′ or three of these subsets are excluded from S ′,

• or Sj, Sk are excluded from S ′, Sl is included in S ′ (to cover ui) and there
are at least 4 other subsets hitting Sk and, hence, either two of these sub-
sets are excluded from S ′, or the other two of these subsets are excluded
from S ′.

This would induce T (n) � T (n − 3) + T (n − 4) + 4T (n − 5) + O(p(n)),
but in all subcases, a consequent branching on an unassigned subset (any of
those hitting a subset just included in S ′) having (therefore) cardinality 2 holds
where, in the worst case, subcase 1c holds. Then, T (n) � T (n − 4) + T (n −
5) + 4T (n− 6) +T (n− 8) +T (n− 9) + 4T (n− 10) +O(p(n)). This results
in a time-complexity of O∗(1.4492n).

(e) fi � 4, fk � 4, fl � 4, ui is contained by Sj, Sk, Sl, Sm, uk is contained
by Sj, Sp, Sq, Sr and ul is contained at least by Sj, St, Su, Sv. A composite
branching on Sj can be devised:

• either Sj is excluded from S ′,

• or Sj is included in S ′, Sk, Sl, Sm are excluded from S ′ and a further
branching on subset Sp can be applied with dp = 2 (as uk is already
covered by Sj),

• or Sj is included in S ′, Sp, Sq, Sr, St, Su, Sw are excluded from S ′ and
a further branching on subset Sm can be applied with dm = 2 (as ui is
already covered by Sj).

This can be seen as a composite branch where either 1 or 4 or 7 subsets have
been included in or excluded from S′ that is T (n) � T (n − 1) + T (n − 4) +
T (n − 7) + O(p(n)), where however, in the latter two branches a consequent
branching on an unassigned subset having cardinality 2 holds where, in the
worst case, subcase 1c holds. Then, T (n) � T (n − 1) + T (n − 5) + T (n −

185

Exploiting dominance conditions for computing worst-case time upper bounds [...]

8) + T (n − 9) + T (n − 12) + O(p(n)). This results in a time-complexity
of O∗(1.4176n).

In all, the overall worst-case complexity for MIN 3-SET COVERING is O∗(1.4492n).

3 The MAX CUT problem

3.1 Preliminaries

In MAX CUT, we are given a graph G(V,E) with |V | = n vertices v1, . . . , vn and |E| = m
edges. The goal is to find a partition of V into two subsets V1 and V2 that maximizes the
number of edges between V1 and V2. Here, we consider the restricted case where all
vertices have maximum degree dmax � 6.

We denote by dj the degree of vertex vj and by N(vj) the set of vertices (neighbor-
hood) adjacent to vj (in other words, dj = |N(vj)|).

The best known and most recent upper time-bound for MAX CUT-3 with bounded
degree is, to our knowledge, the one of [12] (see also [11]) where, a worst-case complexity
of O∗(2min((m−n)/2,m/5)) is obtained. This bound dominates the recent bounds O∗(2m/4)
by [6] and O∗(2m/3) by [9]. In what follows, we propose a search tree-based algorithm
with worst-case time-complexity which is interestingly competitive with respect to the
state of the art ([?, 11, 6, 9]).

3.2 Dominance conditions

We assume, without loss of generality, that vertex v1 is assigned to V1. Also, with respect
to the worst-case analysis, we assume without loss of generality, that the input-graph G is
connected. The following straightforward lemma holds.

Lemma 2. There exists at least one optimal solution of MAX CUT where, for any ver-
tex vj �= v1 assigned to V1 (resp., V2), at least (dj + 1)/2 vertices vi ∈ N(vj), for dj odd,
and at least dj/2 vertices vi ∈ N(vj), for dj even, are assigned to V2 (resp., V1).

Proof. For dj odd, if less than (dj + 1)/2 vertices are assigned to V2 (resp., V1), then
moving j to V2 (resp., V1), would improve solution. On the other hand, for dj even, if less
than dj/2 vertices are assigned to V2 (resp., V1), then moving j to V2 (resp., V1), would
again improve (or at least not worsen) the solution.

Remark 1. For dj even and the vertices vi ∈ N(vj) equally distributed between V1 and V2,
it is immaterial to assign vj to V1 or V2.

186

Annales du LAMSADE n˚4-5

Consider solving MAX CUT by means of a search tree approach. Suppose that at some
point a branching is considered related to a vertex vj and that all (nearly all) of its adjacent
vertices vi (vi ∈ N(vj)) have already been assigned. We denote by Sj(Vk) the set of
vertices adjacent to vertex vj and assigned to set Vk, j = 1, . . . , n, k = 1, 2; namely,
Sj(Vk) = {i : vi ∈ N(vj) ∩ Vk}. Then, using Lemma 2, the following lemma holds.

Lemma 3. Consider any vertex vj such that:

1. all vi ∈ N(vj) have already been assigned and dj is odd;

2. all vi ∈ N(vj) have already been assigned and dj is even;

3. all but one vi ∈ N(vj) have already been assigned and dj is even.

For all of the cases above, there exists at least one optimal solution with the assignment
of vj uniquely determined as follows:

1. (item 1 holds) if |Sj(V1)| � (dj + 1)/2, then vj is assigned to V2, else it is assigned
to V1;

2. (item 2 holds)

(a) if |Sj(V1)| > dj/2, then vj is assigned to V2,

(b) if |Sj(V1)| < dj/2, then vj is assigned to V1,

(c) if |Sj(V1)| = |Sj(V2)| = dj/2, it is immaterial to assign vj to V1 or V2;

3. (item 3 holds) if |Sj(V1)| � dj/2, then vj is assigned to V2, else it is assigned to V1.

Proof. Due to Lemma 2 and Remark 1, the proof of items 1 and 2 above, is immediate.
For item 3, let vk ∈ N(vj) be the unassigned vertex. If |Sj(V1)| � dj/2, whatever the
assignment of vk, either the condition of item 2a, or the condition of item 2c hold and
hence there exists at least an optimal solution with vj assigned to V2. Analogously, if
|Sj(V1)| � dj/2 − 1, whatever the assignment of vk, either the condition of case 2b, or
the condition of case 2c hold and hence there exists at least an optimal solution with vj

assigned to V1.

Remark 2. Since the graph is connected, it is always possible to devise a tree-search
algorithm in which we always branch on a vertex vj that is adjacent to at least another
vertex vi which has already been assigned to one of the sets of the partition (V1, V2).

Consider an optimal search tree algorithm for MAX CUT, denoted by SOLVE-MAX-CUT
where, at any node of the tree, a decision is taken on the assignment of a vertex either to V1

or to V2. Algorithm SOLVE-MAX-CUT works as follows:

187

Exploiting dominance conditions for computing worst-case time upper bounds [...]

• select arbitrarily vertex v1 and assign it to V1;

• apply a search tree algorithm to assign the remaining vertices according to the fol-
lowing rule: select for branching the unassigned vertex whose branching induces
the minimum worst-case complexity and, in case of tie, the unassigned vertex with
minimum degree (in case of further tie select the vertex with smallest index).

When we consider for branching in SOLVE-MAX-CUT a given vertex vj and dmax =
3, either dj � 2 and, due to Lemma 3 and Remark 2, vj can be assigned without branching,
or dj = 3. The following dominance condition holds.

v1(V1)

v2(V1)

v3(V2) v4(V2)

v5(V1) v6(V2)
(a)

v1(V1)

v4(V2)

v5(V1) v6(V2)

v2(V2)

v3(V1)

(b)

Figure 1: Comparing two configurations with six vertices

Lemma 4. Consider six vertices v1, . . . , v6 connected as in figure 1(a). Then, swapping
the assignment of vertices v2 and v3 leads to an equivalent solution, i.e., configuration 1(a)
can be substituted by configuration 1(b).

Proof. It is immediate to see that for both configurations exactly three edges belong to
the cut.

3.3 The MAX CUT-3 problem

We now prove the following result dealing with MAX CUT-3.

Proposition 2. Algorithm SOLVE-MAX-CUT optimally solves MAX CUT-3 with worst-
case time-complexity O∗(1.2920n).

188

Annales du LAMSADE n˚4-5

Proof. The relevant branching cases for a given vertex vj in the application of SOLVE-
MAX-CUT are those with dj = 3, or else no branching occur. Let vi, vk and vl be the corre-
sponding adjacent vertices. Recall that, from Remark 2, at least one vertex vi has already
been assigned. Also, from Lemma 3, no branching occurs if all adjacent vertices vi, vk

and vl have already been assigned. Finally, from Lemma 2, no branching occurs if two of
the adjacent vertices have already been assigned to the same set of the partition (V1, V2).
Then, the following relevant cases may occur.

1. dj = 3, two vertices vi, vk adjacent to vj have already been assigned to different sets
of the partition (V1, V2), while the third adjacent vertex vl has not yet been assigned.
Then, the following exhaustive subcases may hold.

vi

vj

vk

vl

vm vq

Figure 2: Case 1a of Proposition 2.

(a) dl = 3, vl is adjacent to vertex vj and to other two vertices vm, vq both unas-
signed (see Figure 2, where black circles represent vertices assigned to V1,
black rectangles represent vertices assigned to V2 and white circles represent
yet unassigned vertices). Due to Lemma 2, if at least one of vm, vq is assigned
to V1 (resp., V2), we can arbitrarily assign vl to V2 (resp., V1) and vj to V1

(resp., V2). Alternatively, both vertices vm, vq are assigned to V2 (resp., V1)
and hence we can assign vl to V1 (resp., V2) and vj to V2 (resp., V1). This
can be seen as a binary branching where either 2 vertices (vj, vl), or 4 ver-
tices (vj, vl, vm, vq) are assigned. Then, T (n) � T (n−2)+T (n−4)+O(p(n)),
where the terms T (n−2) and T (n−4) measure the time for solving the same
case with n− 2 and n− 4 unassigned vertices, respectively. Correspondingly,
we have T (n) = O∗(1.2721n).

(b) dl = 3, vl is adjacent to vertex vj and to other two vertices vm, vq, where at
least one of them (say vm, where vm may possibly coincide with vi or vk) has

189

Exploiting dominance conditions for computing worst-case time upper bounds [...]

vi

vj

vk

vl

vm vq

Figure 3: Case 1b of Proposition 2.

already been assigned (Figure 3). Then, whatever will be the assignment of vq,
if vm is assigned to V2 (resp., V1), vl can be assigned to V1 (resp., V2) and vj

to V2 (resp., V1) without branching.

vi

vj

vk

vl

vm

Figure 4: Case 1c of Proposition 2.

(c) dl = 2 (Figure 4). Then, vl is adjacent to vertex vj and to another vertex vm

which has not yet been assigned (or else vl would have already been assigned
earlier without branching). If we assign vm to V2 (resp., V1), then vl must
be assigned to V1 (resp., V2) and vj to V2 (resp., V1). In other words, we
can branching on vertex vm and, for both branches, correspondingly, fix the
assignment of vertices vj, vl, vm all together. This can be seen as a binary
branching where, in both cases, three vertices (vj, vl, vm) are assigned and,
hence, T (n) � 2T (n − 3) + O(p(n)), i.e., T (n) = O∗(1.2599n).

190

Annales du LAMSADE n˚4-5

vi

vj

vk

vl

Figure 5: Case 1d of Proposition 2.

(d) dl = 1 (Figure 5). Then, vj can be assigned to V1 and vl to V2 without branch-
ing (actually, it is immaterial to assign vj to V1 or V2, provided that vl is as-
signed to the opposite set of the partition).

2. dj = 3, a vertex vi adjacent to vj has already been assigned to V1 (resp., V2), while
the other two adjacent vertices vk and vl have not yet been assigned. We assume,
without loss of generality, that dk � dl. The following subcases must be considered.

vi

vj

vk vl

Figure 6: Case 2a of Proposition 2.

(a) 1 � dk � dl � 2 (Figure 6). A branching on vertex vj can be applied. Ei-
ther vj is assigned to V1 (resp., V2) and correspondingly vertices vk and vl

must be assigned, due to Lemma 2, to V2 (resp., V1), or vj is assigned to V2

(resp., V1) and, correspondingly, vertices vk and vl must be assigned, due to
Lemma 2, to V1 (resp., V2). This can be seen as a binary branching where, in
both cases, 3 vertices (vj, vk, vl) are fixed and the same time-complexity O∗(1.2599n)
of case 1c holds.

191

Exploiting dominance conditions for computing worst-case time upper bounds [...]

vi

vj

vk vl

vm vq

Figure 7: Case 2b of Proposition 2.

(b) 1 � dk � 2, dl = 3, vk and vl are not adjacent and one of the vertices (vm, vq)
adjacent to vertex vl has already been assigned while the other has not yet
been assigned (Figure 7). We assume without loss of generality that vm has
already been assigned. Notice that, if vm has been assigned to V2 (resp., V1),
no branching occurs, due to Lemma 4. We assume then that vm has al-
ready been assigned to V1 (resp., V2). A branching on vertex vj can be ap-
plied. If vj is assigned to V1 (resp., V2), vertices vk, and vl must be assigned
(due to Lemma 2) to V2 (resp., V1) while vertex vq must be assigned (due to
Lemma 4) to V1 (resp., V2). Else, vj is assigned to V2 (resp., V1) and, corre-
spondingly, vk can be assigned to V1. This can be seen as a branching where,
either 2 vertices (vj, vk), or 4 vertices (vj, vk, vl, vq) are assigned and the same
time-complexity O∗(1.2721n) of case 1a holds.

vi

vj

vk vl

vm vqvr vs

Figure 8: Case 2c of Proposition 2.

192

Annales du LAMSADE n˚4-5

(c) dk = dl = 3, vk and vl are not adjacent and one of the vertices (vm, vq)
adjacent to vertex vl has already been assigned, while the other has not yet
been assigned (Figure 8). Also, the vertices (vr, vs) adjacent to vertex vk have
not yet been assigned. We assume without loss of generality that vm has al-
ready been assigned. Notice that, if vm has been assigned to V2 (resp., V1), no
branching occurs due to Lemma 4. We assume, then, that vm has already been
assigned to V1 (resp., V2). A branching on vertex vj can be applied. If vj is
assigned to V1 (resp., V2), vertices vk, vl must be assigned (due to Lemma 2)
to V2 (resp., V1) and vertices vq, vr, vs must be assigned (due to Lemma 4) to V2

(resp., V1). Else, vj is assigned to V2 (resp., V1). This can be seen as a branch-
ing where, either 1 vertex (vj) is assigned, or 6 vertices (vj, vk, vl, vq, vr, vs)
are assigned. Then, T (n) � T (n − 1) + T (n − 6) + O(p(n)), i.e., T (n) =
O∗(1.2852n).

vi

vj

vk vl

vm vqvr vs

Figure 9: Case 2d of Proposition 2.

(d) dk = dl = 3, vk and vl are not adjacent and one of the vertices (vm, vq) ad-
jacent to vertex vl has already been assigned while the other has not yet been
assigned (Figure 9). We assume without loss of generality that vm has al-
ready been assigned. Notice that, if vm has been assigned to V2 (resp., V1),
no branching occurs, due to Lemma 4. We assume, then, that vm has already
been assigned to V1 (resp., V2). Also, vk is adjacent (apart from vj) to two
vertices vr and vs where vertex vr has already been assigned while vs has not
yet been assigned. Notice that, if vr has been assigned to V2 (resp., V1), no
branching occurs, due to Lemma 4. We assume, then, that vr has already been
assigned to V1 (resp., V2). Finally, notice that vm and vr may well coincide.
A composite branching can be applied. If vj is assigned to V1 (resp., V2),
then vk, vl must be assigned (due to Lemma 2) to V2 (resp., V1) and vq, vs

must be assigned (due to Lemma 4) to V1 (resp., V2). Else, vj is assigned

193

Exploiting dominance conditions for computing worst-case time upper bounds [...]

to V2 (resp., V1): then, either vq is assigned to V1 (resp., V2) and, correspond-
ingly, vl is assigned to V2 (resp., V1), vk to V1 (resp., V2) and vs to V2 (resp., V1);
or vq is assigned to V2 (resp., V1) and vl is assigned to V1 (resp., V2): but then
for this latter case a branching on vertex k can be applied where two of its
adjacent vertices (vj, vr) have already been assigned and, in the worst case,
subcase 1a holds. Putting things together, this can be seen as a composite
branching where, either 5 vertices (vj, vk, vl, vq, vs) are assigned, or 5 vertices
(vj, vk, vl, vs, vq) are assigned, or three vertices (vj, vl, vq) are assigned and
a branching of type 1a on vertex vk with n′ = n − 3 variables holds. Then,
T (n) � 2T (n−5)+2T (n′−3)+O(p(n)) = 3T (n−5)+T (n−7)+O(p(n)).
Correspondingly, we have T (n) = O∗(αn), i.e., α ≈ 1.2886, implying a time
complexity of O∗(1.2920n).

vi

vj

vk vl

vmvqvr

Figure 10: Case 2e of Proposition 2.

(e) dk = dl = 3, vk and vl are not adjacent and one of the vertices (vm, vq) ad-
jacent to vertex vl has already been assigned while the other has not yet been
assigned (Figure 10). We assume, without loss of generality, that vm has al-
ready been assigned. Notice that, if vm has been assigned to V2 (resp., V1),
no branching occurs, due to Lemma 4. We assume then that vm has already
been assigned to V1 (resp., V2). Also, vk is adjacent (apart from vj) to vq and
to another unassigned vertex vr. A composite branch, first on vertex vj and
then on vertex vq can be applied. If vj is assigned to V1 (resp., V2), vertices vk,
and vl must be assigned (due to Lemma 2) to V2 (resp., V1) and vertices vq, vr

must be assigned (due to Lemma 4) to V1 (resp., V2). Else, vj is assigned
to V2 (resp., V1) and, if vq is assigned to V2 (resp., V1), then vk and vl must
be assigned to V1 (resp., V2), else vq is assigned to V1 (resp., V2) and, con-
sequently, vl must be assigned to V2 (resp., V1), vk to V1 (resp., V2) and vr

to V2 (resp., V1). This can be seen as a branching with three children nodes

194

Annales du LAMSADE n˚4-5

where, either 5 vertices (vj, vk, vl, vq, vr), or 4 vertices (vj, vk, vl, vq), or 5 ver-
tices (vj, vk, vl, vq, vr) are assigned. Then, T (n) � T (n − 4) + 2T (n − 5) +
O(p(n)), i.e., T (n) = O∗(1.2672n).

vi

vj

vk vl

vmvqvr

Figure 11: Case 2f of Proposition 2.

(f) dk = dl = 3, vk and vl are not adjacent and one of the vertices (vm, vq)
adjacent to vertex vl has already been assigned while the other has not yet
been assigned (Figure 11). We assume without loss of generality that vm has
already been assigned. Notice that, if vm has been assigned to V2 (resp., V1),
no branching occurs, due to Lemma 4. We assume, then, that vm has already
been assigned to V1 (resp., V2). Also, vk is adjacent (apart from vj) to vq and
to another vertex vr that has already been assigned. Notice that, if vr has been
assigned to V2 (resp., V1), no branching occurs, due to Lemma 4. We assume,
then, that vr has already been assigned to V1 (resp., V2). Finally, notice that vm

and vr may well coincide. We observe that vj, vq must be assigned to the
same set of the partition. Indeed, if vj is assigned to V1 (resp., V2), vq cannot
be assigned to V2 (resp., V1) due to Lemma 4; on the other hand, if vq is
assigned to V1 (resp., V2), then vk and vl must be assigned to V2 (resp., V1)
and, correspondingly, vj cannot be assigned to V2 (resp., V1). Summarizing,
either vj and vq are assigned to V1 and, correspondingly, vk, vl are assigned
to V2, or vj and vq are assigned to V2 and, correspondingly, vk, vl are assigned
to V1. This can be seen as a binary branching where, in both cases, 4 vertices
(vj, vk, vl, vq) are fixed. Then, T (n) � 2T (n − 4) + O(p(n)), i.e., T (n) =
O∗(1.1892n).

(g) 1 � dk � dl = 3, vl is adjacent to vk and to another vertex vm (that may even-
tually coincide with vi) that has already been assigned (Figure 12). If vm has
been assigned to V2 (resp., V1), no branching occurs, as vj must be assigned
to V2 (resp., V1), or else, vk, vl and vm would all be assigned to V2 (resp., V1),

195

Exploiting dominance conditions for computing worst-case time upper bounds [...]

vi

vj

vk vl

vm

Figure 12: Case 2g of Proposition 2.

violating Lemma 2. We assume, then, that vm has already been assigned to V1

(resp., V2). But then a branching on vk can be applied. If vk is assigned
to V1 (resp., V2), vertices vj and vl must be assigned (due to Lemma 2) to V2

(resp., V1). If vk is assigned to V2 (resp., V1), then vertices vj, vl must be as-
signed to different sets of the partition (V1, V2) but it is immaterial to assign vj

to V1 and vl to V2 or viceversa. Putting things together, this can be seen as a
binary branching where, in both cases, 3 vertices (vj, vk, vl) are assigned and
the same time-complexity O∗(1.2599n) of case 1c holds.

vi

vj

vk vl

vm vq

Figure 13: Case 2h of Proposition 2.

(h) 1 � dk � 2, dl = 3, vertex vl is not adjacent to vk but is adjacent to vertices vm

and vq both unassigned (Figure 13). A branching on vertex vj can be applied.
If vj is assigned to V1 (resp., V2), vertices vk and vl must be assigned (due to
Lemma 2) to V2 (resp., V1), and vertices vm and vq must be assigned to V1

196

Annales du LAMSADE n˚4-5

(resp., V2) as they cannot be assigned to different sets of the partition(due to
Lemma 4), nor they can both be assigned to V2 (resp., V1) due to Lemma 2 ap-
plied to vertex vl. Else, vj is assigned to V2 (resp., V1) and correspondingly vk

can be assigned to to V1 (resp., V2). This can be seen as a branching where,
either 2 vertices (vj, vk), or 5 vertices (vj, vk, vl, vm, vq) are assigned. Then,
T (n) � T (n − 2) + T (n − 5) + O(p(n)), i.e., T (n) = O∗(1.1939n).

vi

vj

vk vl

vm vqvr vs

Figure 14: Case 2i of Proposition 2.

(i) dk = dl = 3, vertex vl is not adjacent to vk but is adjacent to vertices vm and vq

both unassigned (Figure 14). Vertex vk is adjacent to other two vertices vr, vs

both unassigned. A branching on vertex vj can be applied. If vj is assigned
to V1 (resp., V2), vertices vk and vl must be assigned (due to Lemma 2) to V2

(resp., V1), and vertices vm, vq, vr, vs must be assigned to V1 (resp., V2) due to
Lemma 4. Else, vj is assigned to V2 (resp., V1). This can be seen as a branching
where, either 1 vertex (vj) is assigned, or 7 vertices (vj, vk, vl, vm, vq, vr, vs)
are assigned. Then, T (n) � T (n − 1) + T (n − 7) + O(p(n)), i.e., T (n) =
O∗(1.2555n).

(j) dk = dl = 3, vertex vl is not adjacent to vk but is adjacent to vertices vm

and vq both unassigned (Figure 15). Vertex vk is adjacent to vertex vq and to
another vertex vr also unassigned. A branching on vertex vj can be applied.
If vj is assigned to V1 (resp., V2), vertices vk and vl must be assigned (due
to Lemma 2) to V2 (resp., V1), and vertices vm, vq, vr must be assigned to V1

(resp., V2) due to Lemma 4. Else, vj is assigned to V2 (resp., V1). This can
be seen as a branching where, either 1 vertex (vj) is assigned, or 6 vertices
(vj, vk, vl, vm, vq, vr) are assigned. Then, T (n) � T (n − 1) + T (n − 6) +
O(p(n)) and the same time-complexity O∗(1.2852n) of case 2c holds.

(k) dk = dl = 3, vertex vl is not adjacent to vk but is adjacent to vertices vm and vq

both unassigned (Figure 16). Vertex vk is also adjacent to vertices vm and vq.

197

Exploiting dominance conditions for computing worst-case time upper bounds [...]

vi

vj

vk vl

vmvqvr

Figure 15: Case 2j of Proposition 2.

vi

vj

vk vl

vm vq

Figure 16: Case 2k of Proposition 2.

Notice that vj and vk cannot be assigned to the same set of the partition, or
else vl, vm, vq would all be assigned to the other set of the partition violating
Lemma 2. Analogously, vj and vl cannot be assigned to the same set of the
partition. But then, if vj is assigned to V1 (resp., V2), correspondingly, vk, vl

are assigned to V2 (resp., V1) and vm, vq are assigned to V1 (resp., V2); else, vj

is assigned to V2 (resp., V1), vk, vl are assigned to V1 (resp., V2) and vm, vq are
assigned to V2 (resp., V1). This can be seen as a binary branching where, in
both cases, 5 vertices (vj, vk, vl, vm, vq) are assigned. Then, T (n) � 2T (n −
5) + O(p(n)), i.e., T (n) = O∗(1.1487n).

(l) dk = 2, dl = 3, vl is adjacent to vk and to another vertex vm that has not yet
been assigned (Figure 17). If vj is assigned to V1 (resp., V2), vertices vk and vl

must be assigned (due to Lemma 2) to V2 (resp., V1), and correspondingly
vertex vm must be assigned to V1 (resp., V2). But an equivalent solution is

198

Annales du LAMSADE n˚4-5

vi

vj

vk vl

vm

Figure 17: Case 2l of Proposition 2.

obtained by simply swapping the assignment of vertices vj, vk. Hence, for
this subcase, vj can be assigned to V2 (resp., V1) without branching.

vi

vj

vk vl

vmvq

Figure 18: Case 2m of Proposition 2.

(m) dk = dl = 3, vk is adjacent to vl and to an unassigned vertex vq, vl is adjacent
to vk and to an unassigned vertex vm, vm �= vq (Figure 18). If vj is assigned
to V1 (resp., V2), vertices vk and vl must be assigned (due to Lemma 2) to V2

(resp., V1), and correspondingly vertices vm and vq must be assigned to V1

(resp., V2). But an equivalent solution is obtained by simply swapping the
assignment of vertices vj, vk. Hence, for this subcase, vj can be assigned to V2

(resp., V1) without branching.

(n) dk = dl = 3, vk is adjacent to vl and both vk and vl are adjacent to another
unassigned vertex vm (Figure 19). If vj is assigned to V1 (resp., V2), vertices vk

and vl must be assigned (due to Lemma 2) to V2 (resp., V1), and, correspond-

199

Exploiting dominance conditions for computing worst-case time upper bounds [...]

vi

vj

vk vl

vm

Figure 19: Case 2n of Proposition 2.

ingly, vertex vm must be assigned to V1 (resp., V2). But an equivalent solution
is obtained by simply swapping the assignment of vertices vj, vk. Hence, for
this subcase, vj can be assigned to V2 (resp., V1) without branching.

Putting things together, the global worst-case complexity for MAX CUT-3 with maximum
degree three is O∗(1.2920n).

3.4 The MAX CUT-4 problem

We now deal with graphs of maximum degree four. For this case, the following proposi-
tion holds.

Proposition 3. Algorithm SOLVE-MAX-CUT optimally solves MAX CUT-4 with time-
complexity O∗(1.4142n).

Proof. For dmax = 4, the relevant branching cases for a given vertex vj in the application
of SOLVE-MAX-CUT are those mentioned in the proof of Proposition 2 plus all cases
related to the presence of vertices with degree four. The following further cases must be
taken into account.

1. dj = 4, two vertices vi, vk adjacent to vj have already been assigned to different
sets of the partition (V1, V2), while the other two adjacent vertices vl, vm have not
yet been assigned (Figure 20). Then, a branching on vertex vl can be applied. If vl

is assigned to V1 (resp., V2), due to Lemma 2, vj must be assigned to V2 (resp., V1).
This can be seen as a binary branching where, in both cases, 2 vertices (vj, vl) are
assigned. Then, T (n) � 2T (n − 2) + O(p(n)), i.e., T (n) = O∗(1.4142n).

200

Annales du LAMSADE n˚4-5

vi

vj

vk

vl vm

Figure 20: Case 1 of Proposition 3.

vi

vj

vk
vl

vm

Figure 21: Case 2 of Proposition 3.

2. dj = 4, a vertex vi adjacent to vj has already been assigned to V1 (resp., V2), while
the other three adjacent vertices vk, vl, vm have not yet been assigned (Figure 21).
If vj is assigned to V1 (resp., V2), due to Lemma 2, vk, vl, vm must be assigned
to V2 (resp., V1); else, vj is assigned to V2 (resp., V1). This can be seen as a binary
branching where, either a vertex vj is assigned, or 4 vertices (vj, vk, vl, vm) are
assigned. Then, T (n) � T (n−1)+T (n−4)+O(p(n)), i.e., T (n) = O∗(1.3803n).

3. dj = 3, two vertices vi, vk adjacent to vj have already been assigned to different
sets of the partition (V1, V2), while the third adjacent vertex vl has not yet been
assigned and dl > 3 (Figure 22). Then, due to Lemma 2, if vj is assigned to V1

(resp., V2), vl must be assigned to V2 (resp., V1). This can be seen as a binary
branching where, in both cases, 2 vertices (vj, vl) are assigned and the same time
complexity O∗(1.4142n) of case 1 holds.

4. dj = 3, a vertex vi adjacent to vj has already been assigned to V1 (resp., V2), while
the other two adjacent vertices vk and vl have not yet been assigned. We assume,
without loss of generality, that dk � dl and that dl = 4 (or else this case has already

201

Exploiting dominance conditions for computing worst-case time upper bounds [...]

vi

vj

vk

vl

Figure 22: Case 3 of Proposition 3.

been handled). Notice that no vertices adjacent to vl have already been assigned, or
else we get back to cases 1 or 2 applied to vertex vl. The following subcases must
be considered.

vi

vj

vk vl

vq vr vs

Figure 23: Case 4a of Proposition 3.

(a) vl is adjacent (apart from vj) to vq, vr, vs all unassigned (Figure 23). A com-
posite branching can be applied. If vj is assigned to V1 (resp., V2), vertices vk

and vl must be assigned (due to Lemma 2) to V2 (resp., V1). Else, vj is as-
signed to V2 (resp., V1). Then, if vl is assigned to V2 (resp., V1), vk, vq, vr, vs

must all be assigned to V1 (resp., V2) due to Lemma 2, else vl is assigned to V1

(resp., V2). This can be seen as a composite branching where, either 3 vertices
(vj, vk, vl) are assigned, or 6 vertices (vj, vk, vl, vq, vr, vs) are assigned, or 2
vertices (vj, vl) are assigned. Then, T (n) � T (n − 2) + T (n − 3) + T (n −
6) + O(p(n)), i.e., T (n) = O∗(1.4037n).

202

Annales du LAMSADE n˚4-5

vi

vj

vk

vl

vq vr

Figure 24: Case 4b of Proposition 3.

(b) vl is adjacent (apart from vj) to vk, vq, vr all unassigned (Figure 24). A com-
posite branching can be applied. If vj is assigned to V1 (resp., V2), then, due to
Lemma 2, vertices vk and vl must be assigned to V2 (resp., V1) and vertices vq

and vr must be assigned to V1 (resp., V2). Else, vj is assigned to V2 (resp., V1).
This can be seen as a branching where, either 1 vertex (vj) is assigned, or 5
vertices (vj, vk, vl, vq, vr) are assigned. Then, T (n) � T (n− 1) + T (n− 5) +
O(p(n)), i.e., T (n) = O∗(1.3248n).

Putting things together, the global worst case complexity is O∗(1.4142n).

3.5 The MAX CUT-5 problem

In this section, we deal with graphs with maximum degree five. The following result
holds.

Proposition 4. Algorithm SOLVE-MAX-CUT optimally solves MAX CUT-5 with time-
complexity O∗(1.6430n).

Proof. For dmax = 5, the relevant branching cases for a given vertex vj in the application
of SOLVE-MAX-CUT are those mentioned previously in Propositions 2 and 3, plus all
cases related to the presence of vertices with degree five. Notice that, for dj = 5, if at
least three vertices adjacent to vj have been assigned to V1 (resp., V2), then vj can be
assigned without branching (due to Lemma 2) to V2 (resp., V1). The following further
cases must be taken into account.

203

Exploiting dominance conditions for computing worst-case time upper bounds [...]

vi

vj

vk vl vm

vq

Figure 25: Case 1 of Proposition 4.

1. dj = 5, four vertices vi, vk, vl, vm adjacent to vj have already been equally parti-
tioned between V1 and V2, while the fifth adjacent vertex vq has not yet been as-
signed (Figure 25). Then, a branching on vertex vj can be applied. If vj is assigned
to V1 (resp., V2), due to Lemma 2, vq must be assigned to V2 (resp., V1). This can
be seen as a binary branching where, in both cases, 2 vertices (vj, vq) are assigned
and the same time complexity O∗(1.4142n) of case 1 in Proposition 3 holds.

vi

vj

vk
vl

vm vq

Figure 26: Case 2 of Proposition 4.

2. dj = 5, three vertices vi, vk, vl adjacent to vj have already been assigned with vi, vk

assigned to V1 (resp., V2) and vl assigned to V2 (resp., V1), while the other two
adjacent vertex vm, vq have not yet been assigned (Figure 26). Then, a branching on
vertex vj can be applied. If vj is assigned to V1 (resp., V2), due to Lemma 2, vm, vq

must be assigned to V2 (resp., V1), else vj is assigned to V2 (resp., V1). This can
be seen as a binary branching where, either a vertex vj is assigned, or 3 vertices
(vj, vm, vq) are assigned. Then, T (n) � T (n − 1) + T (n − 3) + O(p(n)), i.e.,
T (n) = O∗(1.4657n).

3. dj = 5, two vertices vi, vk adjacent to vj have already been assigned to V1 (resp., V2),
while the other three adjacent vertex vl, vm, vq have not yet been assigned (Fig-
ure 27). Then, a branching on vertex vj can be applied. If vj is assigned to V1

204

Annales du LAMSADE n˚4-5

vi

vj

vk

vl vm vq

Figure 27: Case 3 of Proposition 4.

(resp., V2), due to Lemma 2, vl, vm, vq must be assigned to V2 (resp., V1), else vj

is assigned to V2 (resp., V1). This can be seen as a binary branching where, either
a vertex vj is assigned, or 4 vertices (vj, vl, vm, vq) are assigned and the same time
complexity O∗(1.3803n) of case 2 in Proposition 3 holds.

vi

vj

vk

vl vm vq

Figure 28: Case 4 of Proposition 4.

4. dj = 5, two vertices vi, vk adjacent to vj have already been assigned to different
sets of the partition (V1, V2), while the other three adjacent vertex vl, vm, vq have
not yet been assigned (Figure 28). A composite branching can be applied. If vj

and vl are both assigned to the same set of the partition, say V1 (resp., V2), then, due
to Lemma 2, vm, vq must both be assigned to the other set of the partition, say V2

(resp., V1); else, if vj is assigned to V1 (resp., V2) and vl is assigned to V2 (resp., V1),
then, if vm is assigned to V1 (resp., V2), vq must be assigned to V2 (resp., V1), else vm

is assigned to V2 (resp., V1). This can be seen as a composite branching where,
four children nodes are generated assigning four vertices (vj, vl, vm, vq) and two
children nodes are generated assigning three vertices (vj, vl, vm). Then, T (n) �
2T (n − 3) + 4T (n − 4) + O(p(n)), i.e., T (n) = O∗(1.6430n).

205

Exploiting dominance conditions for computing worst-case time upper bounds [...]

vi

vj

vk
vl vm

vq

Figure 29: Case 5 of Proposition 4.

5. dj = 5, a vertex vi adjacent to vj has already been assigned to V1 (resp., V2),
while the other four adjacent vertices vk, vl, vm, vq have not yet been assigned (Fig-
ure 29). A composite branching can be applied. If vj and vk are both assigned
to V1 (resp., V2), due to Lemma 2, vl, vm, vq must all be assigned to V2 (resp., V1);
else, if vj is assigned to V1 (resp., V2) and vk is assigned to V2 (resp., V1), then,
if vl is assigned to V1 (resp., V2), vm and vq must be assigned to V2 (resp., V1);
else, if vj is assigned to V1 (resp., V2), vk is assigned to V2 (resp., V1) and vl is
assigned to V2 (resp., V1), then, either vm is assigned to V1 (resp., V2), and vq

is assigned to V2 (resp., V1) or vm is assigned to V2 (resp., V1) and nothing is
derived with respect to vq; else, vj is assigned to V1 (resp., V2). This can be
seen as a composite branching where, three children nodes are generated assign-
ing five vertices (vj, vk, vl, vm, vq), a child node is generated assigning four vertices
(vj, vk, vl, vm), and another child node is generated assigning one vertex (vj). Then,
T (n) � T (n− 1) + T (n− 4) + 3T (n− 5) + O(p(n)), i.e., T (n) = O∗(1.6406n).

vi

vj

vk vl

Figure 30: Case 6 of Proposition 4.

206

Annales du LAMSADE n˚4-5

6. dj = 3, a vertex vi adjacent to vj has already been assigned to V1 (resp., V2), while
the other two adjacent vertices vk and vl have not yet been assigned (Figure 30). We
assume, without loss of generality, that dk � dl and that dl > 4 (or else, this case
has already been handled). Then, a branching on vertex vj can be applied. If vj is
assigned to V1 (resp., V2), due to Lemma 2, vk, vl must be assigned to V2 (resp., V1),
else vj is assigned to V2 (resp., V1). This can be seen as a binary branching where,
either a vertex vj is assigned, or 3 vertices (vj, vk, vl) are assigned and the same
time complexity O∗(1.4657n) of case 2 holds.

Putting things together, the global worst case complexity is O∗(1.6430n).

3.6 MAX CUT-6 problem

We finally deal with graphs with maximum degree six. In what follows, we prove the
following result.

Proposition 5. Algorithm SOLVE-MAX-CUT optimally solves MAX CUT-6 with time-
complexity O∗(1.6430n).

Proof. For dmax = 6, the relevant branching cases for a given vertex vj in the application
of SOLVE-MAX-CUT are those mentioned previously, in Propositions 2 and 3 and 4, plus
all cases related to the presence of vertices with degree six. Notice that also for dj = 6,
if at least three vertices adjacent to vj have been assigned to V1 (resp., V2), then vj can
be assigned without branching (due to Lemma 2) to V2 (resp., V1). The following further
cases must be taken into account.

vi

vj

vk vl vm

vq

vr

Figure 31: Case 1 of Proposition 5.

1. dj = 6, four vertices vi, vk, vl, vm adjacent to vj have already been equally parti-
tioned between V1 and V2, while the other two adjacent vertices vq, vr have not yet

207

Exploiting dominance conditions for computing worst-case time upper bounds [...]

been assigned (Figure 31). Then, a branching on vertex vj can be applied. If vj is
assigned to V1 (resp., V2), due to Lemma 2, vq, vr must be assigned to V2 (resp., V1),
else vj is assigned to V2 (resp., V1). This can be seen as a binary branching where,
either a vertex vj is assigned, or 3 vertices (vj, vq, vr) are assigned and the same
time complexity O∗(1.4657n) of case 2 in Proposition 4 holds.

vi

vj

vk
vl

vm vq vr

Figure 32: Case 2 of Proposition 5.

2. dj = 6, three vertices vi, vk, vl adjacent to vj have already been assigned with vi, vk

assigned to V1 (resp., V2) and vl assigned to V2 (resp., V1), while the other three adja-
cent vertex vm, vq, vr have not yet been assigned (Figure 32). Then, a branching on
vertex vj can be applied. If vj is assigned to V1 (resp., V2), due to Lemma 2, vm, vq, vr

must be assigned to V2 (resp., V1), else vj is assigned to V2 (resp., V1). This can
be seen as a binary branching where, either a vertex vj is assigned, or 4 vertices
(vj, vm, vq, vr) are assigned and the same time complexity O∗(1.3803n) of case 2 in
Proposition 3 holds.

vi

vj

vk

vl vm vq vr

Figure 33: Case 3 of Proposition 5.

3. dj = 6, two vertices vi, vk adjacent to vj have already been assigned to V1 (resp., V2),
while the other four adjacent vertex vl, vm, vq, vr have not yet been assigned (Fig-
ure 33). Then, a branching on vertex vj can be applied. If vj is assigned to V1

208

Annales du LAMSADE n˚4-5

(resp., V2), due to Lemma 2, vl, vm, vq, vr must be assigned to V2 (resp., V1), else vj

is assigned to V2 (resp., V1). This can be seen as a binary branching where, either a
vertex vj is assigned, or 5 vertices (vj, vl, vm, vq, vr) are assigned and the same time
complexity O∗(1.3248n) of case 4b in Proposition 3 holds.

vi

vj

vk

vl vm vq vr

Figure 34: Case 4 of Proposition 5.

4. dj = 6, two vertices vi, vk adjacent to vj have already been assigned to different sets
of the partition (V1, V2), while the other four adjacent vertices vl, vm, vq, vr have not
yet been assigned (Figure 34). A composite branching can be applied. If vj and vl

are both assigned to V1 (resp., V2), then, due to Lemma 2, vm, vq, vr must all be
assigned to V2 (resp., V1); else, if vj, vm are assigned to V1 (resp., V2) and vl is as-
signed to V2 (resp., V1), vq, vr must both be assigned to V2 (resp., V1). Else, if vj, vq

are assigned to V1 (resp., V2) and vl, vm are assigned to V2 (resp., V1), vr must be as-
signed to V2 (resp., V1); else, either vj is assigned to V1 (resp., V2) and vl, vm, vq

are assigned to V2 (resp., V1), or vj is assigned to V2 (resp., V1). This can be
seen as a composite branching where, three children nodes are generated assign-
ing five vertices (vj, vl, vm, vq, vr) a child node is generated assigning four vertices
(vj, vl, vm, vq) and another child node is generated assigning one vertex (vj). Hence,
the same time complexity O∗(1.6406n) of case 5 in Proposition 4 holds.

5. dj = 6, a vertex vi adjacent to vj has already been assigned to V1 (resp., V2),
while the other five adjacent vertices vk, vl, vm, vq, vr have not yet been assigned
(Figure 35). A composite branching can be applied. If vj and vk are both assigned
to V1 (resp., V2), then, due to Lemma 2, vl, vm, vq, vr must all be assigned to V2

(resp., V1); else, if vj, vl are assigned to V1 (resp., V2) and vk is assigned to V2

(resp., V1), vm, vq, vr must all be assigned to V2 (resp., V1). Else, if vj, vm are
assigned to V1 (resp., V2) and vk, vl are assigned to V2 (resp., V1), vq, vr must both be
assigned to V2 (resp., V1); else, if vj, vq are assigned to V1 (resp., V2) and vk, vl, vm

are assigned to V2 (resp., V1), vr must be assigned to V2 (resp., V1); else, either vj

is assigned to V1 (resp., V2) and vk, vl, vm, vq are assigned to V2 (resp., V1), or vj

is assigned to V2 (resp., V1). This can be seen as a composite branching where,

209

Exploiting dominance conditions for computing worst-case time upper bounds [...]

vi

vj

vk
vl vm vq

vr

Figure 35: Case 5 of Proposition 5.

four children nodes are generated assigning six vertices (vj, vk, vl, vm, vq, vr) a child
node is generated assigning five vertices (vj, vk, vl, vm, vq) and another child node is
generated assigning one vertex (vj). Then, T (n) � T (n− 1) + T (n− 5) + 4T (n−
6) + O(p(n)), i.e., T (n) = O∗(1.5751n).

Putting things together, we notice that all cases related to the presence of vertices with
degree six are not worse than the worst-case for dmax = 5. Hence, also here the global
worst case complexity is, as in Proposition 4, O∗(1.6430n).

4 Conclusion

We have presented an analysis for the worst-case complexity of two search-tree based
algorithms for the MIN 3-SET COVERING problem and the MAX CUT-3 problem, strongly
based on simple dominance conditions. We point out that these conditions allow not only
to prune search-tree nodes corresponding to strictly dominated partial solutions, but also
to break ties among equivalent partial solutions (see, for instance, Lemma 4). This second
aspect is probably the most rewarding in terms of worst-case complexity analysis. Thanks
to the dominance conditions used here, the derived upper-time bounds for both MIN 3-SET

COVERING and MAX CUT-3 are competitive with the state of the art available bounds.

This approach seem easily extendable to other bounded combinatorial optimization
problems. For instance, we notice that a straightforward (improvable) analysis along the
lines of the above ones, leads to an O∗(1.1679n) time bound for minimum vertex covering
in graphs with maximum degree 3. This bound, even though dominated by the ones
in [1, 4], O∗(1.1252n) and O∗(1.152n), respectively, already dominates the one in [3].

210

Annales du LAMSADE n˚4-5

References

[1] R. Beigel. Finding maximum independent sets in sparse and general graphs. In
Proc. Symposium on Discrete Algorithms, SODA, pages 856–857, 1999.

[2] C. Berge. Graphs and hypergraphs. North Holland, Amsterdam, 1973.

[3] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further
improvements. J. Algorithms, 41:280–301, 2001.

[4] J. Chen, L Liu, and W. Jia. Improvement on vertex cover for low-degree graphs.
Networks, 35:253–259, 2000.

[5] D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction. In Proc. Symposium on Discrete Algorithms, SODA, pages 329–337,
2001.

[6] S. S. Fedin and A. S. Kulikov. A 2|E|/4-time algorithm for max-
cut. Journal of Mathematical Sciences. To appear. Available at
http://logic.pdmi.ras.ru/k̃ulikov/maxcut_e.ps.gz

[7] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: domination – a
case study. Reports in Informatics 294, Department of Informatics, University of
Bergen, 2005. To appear in the Proceedings of ICALP’05.

[8] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory
of NP-completeness. W. H. Freeman, San Francisco, 1979.

[9] J. Gramm, E. A. Hirsch, R. Niedermaier, and P. Rossmanith. Worst-case upper
bounds for Max2Sat with an application to MaxCut. Discrete Appl. Math., 130:139–
155, 2003.

[10] F. Grandoni. A note on the complexity of minimum dominating set. J. Discr. Algo-
rithms, 2005. To appear.

[11] A. D. Scott and G. B. Sorkin. Faster algorithms for MAX CUT and MAX CSP, with
polynomial expected time for sparse instances. In Proc. RANDOM’03, volume 2764
of Lecture Notes in Computer Science, pages 382–395. Spinger-Verlag, 2003.

[12] A. D. Scott and G. B. Sorkin. Solving sparse semi-random instances of Max-Cut
and Max-CSP in linear expected time. Research Report 23417 (W0411-056), IBM
Research division, Thomas J. Watson Researcc Center, 2004.

211

Exploiting dominance conditions for computing worst-case time upper bounds [...]

[13] G. J. Wœginger. Exact algorithms for NP-hard problems: a survey. In M. Juenger,
G. Reinelt, and G. Rinaldi, editors, Combinatorial Optimization - Eureka! You
shrink!, volume 2570 of Lecture Notes in Computer Science, pages 185–207.
Springer-Verlag, 2003.

212

