Federico Della Croce
email: federico.dellacroce@polito.it

Vangelis Th Paschos
email: paschos@lamsade.dauphine.fr

Exploiting dominance conditions for computing worst-case time upper bounds in bounded combinatorial optimization problems: application to MIN SET COVERING and MAX CUT 1

Keywords: Worst-case complexity, Exact algorithm, MIN SET COVERING, MAX CUT

In the design of branch and bound methods for NP-hard combinatorial optimization problems, dominance conditions have always been applied. In this work we show how the use of dominance conditions within search tree algorithms can lead to non trivial worst-case upper time bounds for the considered algorithms on bounded combinatorial optimization problems. We consider here the MIN 3-SET COVERING problem and the MAX CUT problem in graphs maximum degree three, four, five and six. Combining dominance conditions and intuitive combinatorial arguments, we derive two exact algorithms with worst-case complexity bounded above by p • O(1.4492 n) for the former, and

, respectively, the latter problems, where p(•) and p i (•), i = 1, . . . , 6, denote some polynomials and n is the number of subsets for MIN 3-SET COVERING and the number of vertices of the input-graph for MAX CUT.

Introduction

The design of exact methods for NP-hard combinatorial optimization problems has always been a challenging issue. Among the existing exact methods, search tree algorithms and in particular branch and bound approaches have been widely applied. A branch and bound algorithm builds and explores a search tree, thus enumerating the solutions space. In order to reduce the computational burden, several techniques can be applied to prune some branches of the search tree and to avoid the enumeration of known non-optimal solutions. A usual technique is to consider dominance conditions while branching from a node. Dominance conditions can be typically derived by comparing two nodes of the search tree, namely two partial solutions of the given problem where the two nodes share some common features.

In this work we study the application of dominance conditions within search tree algorithms in the context of worst-case analysis of exact algorithms. Let T (•) be a superpolynomial and p(•) be a polynomial, both on integers. In what follows, using notations in [START_REF] Woeginger | Exact algorithms for NP-hard problems: a survey[END_REF], for an integer n, we express running-time bounds of the form p(n).T (n) as O * (T (n)), the asterisk meaning that we ignore polynomial factors. We denote by T (n) the worst-case time required to exactly solve the considered combinatorial optimization problem with n variables. We recall (see, for instance, [START_REF] Eppstein | Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction[END_REF]) that, if it is possible to bound above T (n) by a recurrence expression of the type T (n) T (nr i) + O(p(n)), we have T (nr i) + O(p(n)) = O * (α(r 1 , r 2 , . . .) n) where α(r 1 , r 2 , . . .) is the largest zero of the function f (x) = 1x -r i .

A combinatorial problem will be called bounded, if some parameter of its instance (e.g., the maximum degree of the input-graph, when dealing with graph-problems, or the maximum set-cardinality, when dealing with problems on set-systems) is bounded above by a fixed constant. We show that, for two bounded combinatorial optimization problems (MIN 3-SET COVERING where each subset has maximum cardinality three and MAX CUT in graphs with maximum degree three, four, five and six, respectively, denoted by MAX CUT-3, MAX CUT-4, MAX CUT-5 and MAX CUT-6, respectively, in what follows), the combination of dominance conditions and intuitive combinatorial arguments within exact search tree algorithms leads to non trivial upper-time bounds for both algorithms. Indeed, for MIN 3-SET COVERING an upper-time bound O * (1.4492 n) is derived, while, for MAX CUT-3, MAX CUT-4, MAX CUT-5 and MAX CUT-6, upper-time bounds O * (1.2920 n), O * (1.4142 n), O * (1.6430 n) and O * (1.6430 n), respectively are derived. For the former problem, the derived bound is, to our knowledge, the best known until now. For the latter problems, even if the yielded bounds are not the best known, they are competitive with respect to the known bounds. the best bound for that problem. (notice, for instance, that the bound of [START_REF] Fomin | Measure and conquer: domination -a case study[END_REF] for f i = 2, u i ∈ U , and d j = 3, for any S j ∈ S corresponds to O * (1.2301 (5/2)) ≈ O * (1.6782 n)).

Consider, the following algorithm, denoted by SOLVE-3-SET-COVERING:

• repeat until possible:

1. for any unassigned subset S j test if the preprocessing induced by items 1, 2 and 3 reduces the size of the instance;

2. select for branching the unassigned subset whose branching induces the minimum worst-case complexity (in case of tie select the subset with smallest index).

Dominance conditions

The following straightforward lemma holds, inducing some useful domination conditions for the solutions of MIN SET COVERING.

Lemma 1. There exists at least one optimal solution of MIN SET COVERING where 1. for any subset S j with d j = 2 containing elements u i , u p , if S j double-hits S k , then S j is excluded from S (in case also d k = 2, then it is immaterial to exclude either S j or S k);

2. for any subset S j with d j = 2 containing elements u i , u p , if S j is included in S , then all subsets S k hitting S j are excluded from S ;

3. for any subset S j with d j = 3 containing elements u i , u p , u q , where S j double-hits another subset S k with d k = 3 on u i and u p , if S j is included in S then S k must be excluded from S and viceversa;

4. for any subset S j with d j = 3 containing elements u i , u p , u q , if S j is included in S , then either all subsets S k hitting S j on element u i are excluded from S , or all subsets S k hitting S j on elements u p and u q are excluded from S .

Proof.

1. Notice that the configuration implied by item 1 cannot occur thanks to the first hypothesis (item 1 in Section 2.1) on the form of the MIN SET COVERING-instances dealt.

2. Assume, without loss of generality, that S j hits S k on u i and S l on u p . Suppose by contradiction that the optimal solution S includes S j and S k . Then, it cannot include also S l or else it would not be optimal as a better cover would be obtained by excluding S j from S . On the other hand, suppose that S includes S j , S k but does not include S l . Then, an equivalent optimal solution can be derived by swapping S j with S l .

For items 3 and 4, the same kind of analysis as for item 2 holds.

The worst-case upper-time bound for MIN 3-SET COVERING

The objective of this section is to show the following result.

Proposition 1. Algorithm SOLVE-3-SET-COVERING optimally solves MIN 3-SET COV- ERING within time O * (1.4492 n).
Proof. The algorithm either detects by means of item 1 a subset S j to be immediately included in (excluded from) S or an element u i to be ignored (correspondingly reducing the degree of several subsets), or applies a branching on subset S j , where the following exhaustive relevant branching cases may occur.

1. d j = 2: then no double-hitting occurs to S j or else, due to Lemma 1, S j can be excluded from s without branching. The following subcases occur.

(a) S j contains elements u i , u k with f i = f k = 2 where S j hits S l on u i and S m on u k . Due to Lemma 1, if S j is included in S , then both S l and S m must be excluded from S ; alternatively, S j is excluded from S and, correspondingly, both S l and S m must be included in S to cover elements u i , u k . This can be seen as a binary branching where, in both cases, three subsets (S j , S l , S m) are fixed. Then,

T (n) 2T (n -3) + O(p(n))
, where the term T (n -3) measures the time for solving the same problem with n-3 subsets. Correspondingly, we have

T (n) = O * (α n),
where α is the largest real root of the equation α 3 = 2, i.e., α ≈ 1.2599, implying a time complexity of O * (1.2599 n).

(b) S j contains elements u i , u k with f i = 2 and f k 3, where S j hits S l on u i and S m , S p on u k . Due to Lemma 1, if S j is included in S , then S l , S m , S p must be excluded from S ; alternatively, S j is excluded from S and, correspondingly, S l must be included in S to cover element u i . This can be seen as a binary branching where either 2 subsets (S j , S l), or 4 subsets (S j , S l , S m , S p) are fixed; hence,

T (n) T (n -2) + T (n -4) + O(p(n)). This results in a time-complexity of O * (1.2721 n).
(c) S j contains elements u i , u k with f i 3 and f k 3 where S j hits S l , S m on u i and S p , S q on u k . Due to Lemma 1, if S j is included in S , then S l , S m , S p , S q must be excluded from S ; alternatively, S j is excluded from S . This can be seen as a binary branching where either 1 subset (S j) is fixed, or 5 subsets (S j , S l , S m , S p , S q) are fixed and, hence,

T (n) T (n -1) + T (n -5) + O(p(n)).
This results in a time-complexity of O * (1.3248 n).

2. d j = 3 (that is, there does not exist S k ∈ S such that d k = 2) with S j doublehitting one or more subsets. Notice that if S j double-hits S k on elements u i , u l , then f i 3 and f l 3 due to the preprocessing step 1 of the algorithm. The following exhaustive subcases may occur.

(a) S j double-hits at least 3 subsets S k , S l , S m . Due to Lemma 1, if S j is included in S then S k , S l , S m must be excluded from S ; alternatively, S j is excluded from S . This can be seen as a binary branching where either 1 subset (S j) is fixed, or 4 subsets (S j , S k , S l , S m) are fixed and hence, T (n)

T (n -1) + T (n -4) + O(p(n)). This results in a time-complexity of O * (1.3803 n).
(b) S j double-hits 2 subsets S k , S l and hits at least one more subset S m (we assume that S j hits S m on element u i). Due to Lemma 1, if S j is included in S , then S k , S l must be excluded from S and a further branching on subset S m with d m = 2 can be applied (as u i is already covered by S j) where, in the worst case, subcase 1c holds; alternatively, S j is excluded from S ; this can be seen as a binary branching where either 1 subset (S j) is fixed, or 3 subsets (S j , S k , S l) are fixed and a branching of type 1c on subset S m with n = n -3 variables holds. Then T (n) T (n -1) + T (n -1) + T (n -

5) + O(p(n)) = T (n -1) + T (n -4) + T (n -8) + O(p(n)).
This results in a time-complexity of O * (1.4271 n).

(c) S j contains elements u i , u k , u l and double-hits one subset S k on elements u i , u k .

The following exhaustive subcases must be considered.

i. f i 3, f k 3, f l = 2 with u i contained at least by S j , S k , S m , u k contained at least by S j , S k , S p and u l contained by S j , S q . A composite branching can be devised:

• either S j and S q are included in S and, due to Lemma 1, S k , S m , S p must be excluded from S , • or S j is included in S and S q is excluded from S and, correspondingly, S k must be excluded from S , • or S j is excluded from S and, correspondingly, S q must be included in S . Then, T (n) T (n -2) + T (n -3) + T (n -5) + O(p(n)). This results in a time-complexity of O * (1.4292 n).

ii. f i = 3, f j = 3, f l 3 with u i contained by S j , S k , S m , u k contained by S j , S k , S p and u l contained at least by S j , S q , S r . A composite branching can be devised:

• either S j and S k are excluded from S and (to cover u i and u k) S m , S p must be included in S , • or S j is included in S and (due to Lemma 1) either S k , S q , S r are excluded from S or S k , S m , S p are excluded from S , • or S k is included in S and (due to Lemma 1) either S j , S m , S p are excluded from S or S j , S λ , S µ are excluded from S , where S λ , S µ are the subsets hitting S k on another element (recall

f k = 3) u v . This would induce T (n) 5T (n -4) + O(p(n))
, but in all subcases a consequent branching on an unassigned subset (any of those hitting a subset just included in S) having (therefore) cardinality 2 holds where, in the worst case, subcase 1c holds. Then, T (n) 5T (n -5) + 5T (n -9) + O(p(n)). This results in a time-complexity of O * (1.4389 n).

iii. f i = 3, f j 4, f l 3, with u i contained by S j , S k , S m , u k contained at least by S j , S k , S p , S q and u l contained at least by S j , S r , S u . A composite branching can be devised:

• either S j and S k are excluded from S and (to cover u i) S m must be included in S , • or S j is included in S and (due to Lemma 1) either S k , S p , S q are excluded from S or S k , S m , S r , S u are excluded from S , • or S k is included in S and (due to Lemma 1) either S j , S p , S q are excluded from S or S j , S m , S λ , S µ are excluded from S , where S λ , S µ are the subsets hitting S k on another element (recall

f k = 3) u v . This would induce T (n) T (n -3) + 2T (n -4) + 2T (n -5) + O(p(n)),
but in all subcases a consequent branching on an unassigned subset (any of those hitting a subset just included in S) having (therefore) cardinality 2 holds where, in the worst case, subcase 1c holds. Then,

T (n) T (n -4) + 2T (n -5) + 2T (n -6) + T (n -8) + 2T (n -9) + 2T (n - 10) + O(p(n)). This results in a time-complexity of O * (1.4331 n). iv. f i 4, f j 4, f l 3,
with u i contained at least by S j , S k , S m , S p , u k contained at least by S j , S k , S q , S r and u l contained at least by S j , S u , S v . A composite branching on subset S j can be devised (due to Lemma 1):

• S j is included in S , S k , S m , S p are excluded from S and a further branching on subset S q can be applied with d q = 2 (as u k is already covered by S j), • or S j is included in S , S k , S q , S r , S q , S v are excluded from S and a further branching on subset S m can be applied with d m = 2 (as u i is already covered by S j),

• or S j is excluded from S . This can be seen as a composite branch where either 1 or 4 or 6 subsets have been included in or excluded from S that is T (n)

T (n -1) + T (n-4)+T (n-6)+O(p(n)), where however, in the latter two branches a consequent branching on an unassigned subset having cardinality 2 holds where, in the worst case, subcase 1c holds. Then, T (n)

T (n -1) + T (n -5) + T (n -7) + T (n -9) + T (n -11 + O(p(n)). This results in a time-complexity of O * (1.4343 n).
3. d j = 3 and no double-hitting occurs to S j (nor to any other subset) that contains elements u i , u k , u l . The following subcases occur.

(a) f i = f k = f l = 2 with u i contained by S j , S k , u k contained by S j , S l and u l contained by S j , S m . A binary branching on S j can be devised: either S j is excluded from S and then (to cover

u i , u k , u l) S k , S l , S m must be included in S , or S j is included in S . This would induce T (n) T (n -1) + T (n - 4) + O(p(n))
, but in all subcases, a consequent branching on an unassigned subset (any of those hitting a subset just included in S) having (therefore) cardinality 2 holds where, in the worst case, subcase 1c holds. Then,

T (n) T (n -2) + T (n -5) + T (n -6) + T (n -9) + O(p(n)). This results in a time-complexity of O * (1.3515 n). (b) f i = f k = 2
, f l 3 with u i contained by S j , S k , u k contained by S j , S l and u l contained at least by S j , S m , S p . A composite branching on S j can be devised:

• either S j is excluded from S and then (to cover u i , u k) S k , S l must be included in S , • or S j is included in S and S k , S l are excluded from S , • or S j is included in S and S m , S p are excluded from S . This would induce T (n) 3T (n -3) + O(p(n)), but in all subcases, a consequent branching on an unassigned subset (any of those hitting a subset just included in S) having (therefore) cardinality 2 holds where, in the worst case, subcase 1c holds. Then,

T (n) 3T (n -4) + 3T (n -8) + O(p(n)). This results in a time-complexity of O * (1.3954 n). (c) f i = 2, f k 3, f l 3, with u i contained by S j , S k , u k contained by S j , S l , S m ,
and u l contained at least by S j , S p , S q . A composite branching on S j can be devised: either S j is excluded from S and then (to cover u i) S k must be included in S , or S j is included in S and S k , S l , S m are excluded from S , S j is included in S and S p , S q are excluded from S . This would induce T (n)

T (n -2) + T (n -3) + T (n -4) + O(p(n))
, but in all subcases, a consequent branching on an unassigned subset (any of those hitting a subset just included in S) having (therefore) cardinality 2 holds where, in the worst case, subcase 1c holds. Then,

T (n) T (n -3) + T (n -4) + T (n -5) + T (n - 7) + T (n -8) + T (n -9) + O(p(n)).
This results in a time-complexity of O * (1.4066 n).

(d) f i = 3, f k 3, f l 3 with u i contained by S j , S k , S l , u k contained by S j , S m , S p and u l contained at least by S j , S q , S r . Also, both S k and S l have degree 3 and all elements contained by S k or S l have frequency at least 3 or else subcase 3c would hold either on subset S k or on subset S l . A composite branching can be devised:

• either S j is included in S and then either S k , S l are excluded from S , or S m , S p , S q and S r are excluded from S , • or S j is excluded from S , S k is included in S and there are at least 5 other subsets hitting S k and, hence, either two of these subsets are excluded from S or three of these subsets are excluded from S , • or S j , S k are excluded from S , S l is included in S (to cover u i) and there are at least 4 other subsets hitting S k and, hence, either two of these subsets are excluded from S , or the other two of these subsets are excluded from S .

This would induce

T (n) T (n -3) + T (n -4) + 4T (n -5) + O(p(n))
, but in all subcases, a consequent branching on an unassigned subset (any of those hitting a subset just included in S) having (therefore) cardinality 2 holds where, in the worst case, subcase 1c holds. Then,

T (n) T (n -4) + T (n - 5) + 4T (n -6) + T (n -8) + T (n -9) + 4T (n -10) + O(p(n)). This results in a time-complexity of O * (1.4492 n). (e) f i 4, f k 4, f l 4, u i is contained by S j , S k , S l , S m , u k is contained by S j , S p , S q , S
r and u l is contained at least by S j , S t , S u , S v . A composite branching on S j can be devised:

• either S j is excluded from S ,
• or S j is included in S , S k , S l , S m are excluded from S and a further branching on subset S p can be applied with d p = 2 (as u k is already covered by S j), • or S j is included in S , S p , S q , S r , S t , S u , S w are excluded from S and a further branching on subset S m can be applied with d m = 2 (as u i is already covered by S j).

This can be seen as a composite branch where either 1 or 4 or 7 subsets have been included in or excluded from S that is

T (n) T (n -1) + T (n -4) + T (n -7) + O(p(n))
, where however, in the latter two branches a consequent branching on an unassigned subset having cardinality 2 holds where, in the worst case, subcase 1c holds. Then,

T (n) T (n -1) + T (n -5) + T (n - 8) + T (n -9) + T (n -12) + O(p(n)). This results in a time-complexity of O * (1.4176 n).
In all, the overall worst-case complexity for MIN 3-SET COVERING is O * (1.4492 n).

3 The MAX CUT problem

Preliminaries

In MAX CUT, we are given a graph G(V, E) with |V | = n vertices v 1 , . . . , v n and |E| = m edges. The goal is to find a partition of V into two subsets V 1 and V 2 that maximizes the number of edges between V 1 and V 2 . Here, we consider the restricted case where all vertices have maximum degree d max 6.

We denote by d j the degree of vertex v j and by N (v j) the set of vertices (neighborhood) adjacent to v j (in other words,

d j = |N (v j)|).
The best known and most recent upper time-bound for MAX CUT-3 with bounded degree is, to our knowledge, the one of [START_REF] Scott | Solving sparse semi-random instances of Max-Cut and Max-CSP in linear expected time[END_REF] (see also [START_REF] Scott | Faster algorithms for MAX CUT and MAX CSP, with polynomial expected time for sparse instances[END_REF]) where, a worst-case complexity of O * (2 min((m-n)/2,m/5)) is obtained. This bound dominates the recent bounds O * (2 m/4) by [START_REF] Fedin | A 2 |E|/4 -time algorithm for maxcut[END_REF] and O * (2 m/3) by [START_REF] Gramm | Worst-case upper bounds for Max2Sat with an application to MaxCut[END_REF]. In what follows, we propose a search tree-based algorithm with worst-case time-complexity which is interestingly competitive with respect to the state of the art ([?, 11, 6, 9]).

Dominance conditions

We assume, without loss of generality, that vertex v 1 is assigned to V 1 . Also, with respect to the worst-case analysis, we assume without loss of generality, that the input-graph G is connected. The following straightforward lemma holds. Lemma 2. There exists at least one optimal solution of MAX CUT where, for any vertex

v j = v 1 assigned to V 1 (resp., V 2), at least (d j + 1)/2 vertices v i ∈ N (v j), for d j odd, and at least d j /2 vertices v i ∈ N (v j), for d j even, are assigned to V 2 (resp., V 1).
Proof. For d j odd, if less than (d j + 1)/2 vertices are assigned to V 2 (resp., V 1), then moving j to V 2 (resp., V 1), would improve solution. On the other hand, for d j even, if less than d j /2 vertices are assigned to V 2 (resp., V 1), then moving j to V 2 (resp., V 1), would again improve (or at least not worsen) the solution.

Remark 1. For d j even and the vertices

v i ∈ N (v j) equally distributed between V 1 and V 2 , it is immaterial to assign v j to V 1 or V 2 .
Consider solving MAX CUT by means of a search tree approach. Suppose that at some point a branching is considered related to a vertex v j and that all (nearly all) of its adjacent vertices v i (v i ∈ N (v j)) have already been assigned. We denote by S j (V k) the set of vertices adjacent to vertex v j and assigned to set V k , j = 1, . . . , n, k = 1, 2; namely,

S j (V k) = {i : v i ∈ N (v j) ∩ V k }.
Then, using Lemma 2, the following lemma holds. Lemma 3. Consider any vertex v j such that:

1. all v i ∈ N (v j) have already been assigned and d j is odd; 2. all v i ∈ N (v j) have already been assigned and d j is even;

3. all but one v i ∈ N (v j) have already been assigned and d j is even. For all of the cases above, there exists at least one optimal solution with the assignment of v j uniquely determined as follows:

1. (item 1 holds) if |S j (V 1)| (d j + 1)/2, then v j is assigned to V 2 , else it is assigned to V 1 ; 2. (item 2 holds) (a) if |S j (V 1)| > d j /2, then v j is assigned to V 2 , (b) if |S j (V 1)| < d j /2, then v j is assigned to V 1 , (c) if |S j (V 1)| = |S j (V 2)| = d j /2, it is immaterial to assign v j to V 1 or V 2 ; 3. (item 3 holds) if |S j (V 1)| d j /2, then v j is assigned to V 2 , else it is assigned to V 1 .
Proof. Due to Lemma 2 and Remark 1, the proof of items 1 and 2 above, is immediate.

For item 3, let v k ∈ N (v j) be the unassigned vertex. If |S j (V 1)| d j /2
, whatever the assignment of v k , either the condition of item 2a, or the condition of item 2c hold and hence there exists at least an optimal solution with v j assigned to V 2 . Analogously, if

|S j (V 1)| d j /2 -1
, whatever the assignment of v k , either the condition of case 2b, or the condition of case 2c hold and hence there exists at least an optimal solution with v j assigned to V 1 . Remark 2. Since the graph is connected, it is always possible to devise a tree-search algorithm in which we always branch on a vertex v j that is adjacent to at least another vertex v i which has already been assigned to one of the sets of the partition

(V 1 , V 2).
Consider an optimal search tree algorithm for MAX CUT, denoted by SOLVE-MAX-CUT where, at any node of the tree, a decision is taken on the assignment of a vertex either to V 1 or to V 2 . Algorithm SOLVE-MAX-CUT works as follows:

• select arbitrarily vertex v 1 and assign it to V 1 ;

• apply a search tree algorithm to assign the remaining vertices according to the following rule: select for branching the unassigned vertex whose branching induces the minimum worst-case complexity and, in case of tie, the unassigned vertex with minimum degree (in case of further tie select the vertex with smallest index).

When we consider for branching in SOLVE-MAX-CUT a given vertex v j and d max = 3, either d j 2 and, due to Lemma 3 and Remark 2, v j can be assigned without branching, or d j = 3. The following dominance condition holds. Proof. It is immediate to see that for both configurations exactly three edges belong to the cut.

v 1 (V 1) v 2 (V 1) v 3 (V 2) v 4 (V 2) v 5 (V 1) v 6 (V 2) (a) v 1 (V 1) v 4 (V 2) v 5 (V 1) v 6 (V 2) v 2 (V 2) v 3 (V 1) (b)

The MAX CUT-3 problem

We now prove the following result dealing with MAX CUT-3.

Proposition 2. Algorithm SOLVE-MAX-CUT optimally solves MAX CUT-3 with worstcase time-complexity O * (1.2920 n).

Proof. The relevant branching cases for a given vertex v j in the application of SOLVE-MAX-CUT are those with d j = 3, or else no branching occur. Let v i , v k and v l be the corresponding adjacent vertices. Recall that, from Remark 2, at least one vertex v i has already been assigned. Also, from Lemma 3, no branching occurs if all adjacent vertices v i , v k and v l have already been assigned. Finally, from Lemma 2, no branching occurs if two of the adjacent vertices have already been assigned to the same set of the partition

(V 1 , V 2).
Then, the following relevant cases may occur.

1. d j = 3, two vertices v i , v k adjacent to v j have already been assigned to different sets of the partition (V 1 , V 2), while the third adjacent vertex v l has not yet been assigned. Then, the following exhaustive subcases may hold. (a) d l = 3, v l is adjacent to vertex v j and to other two vertices v m , v q both unassigned (see Figure 2, where black circles represent vertices assigned to V 1 , black rectangles represent vertices assigned to V 2 and white circles represent yet unassigned vertices). Due to Lemma 2, if at least one of v m , v q is assigned to

v i v j v k v l v m v q
V 1 (resp., V 2), we can arbitrarily assign v l to V 2 (resp., V 1) and v j to V 1 (resp., V 2). Alternatively, both vertices v m , v q are assigned to V 2 (resp., V 1)
and hence we can assign v l to V 1 (resp., V 2) and v j to V 2 (resp., V 1). This can be seen as a binary branching where either 2 vertices (v j , v l), or 4 vertices (v j , v l , v m , v q) are assigned. Then, T (n) T (n-2)+T (n-4)+O(p(n)), where the terms T (n -2) and T (n -4) measure the time for solving the same case with n -2 and n -4 unassigned vertices, respectively. Correspondingly, we have

T (n) = O * (1.2721 n).
(b) d l = 3, v l is adjacent to vertex v j and to other two vertices v m , v q , where at least one of them (say v m , where v m may possibly coincide with v i or v k) has

v i v j v k v l v m v q Figure 3: Case 1b of Proposition 2.
already been assigned (Figure 3). Then, whatever will be the assignment of (c) d l = 2 (Figure 4). Then, v l is adjacent to vertex v j and to another vertex v m which has not yet been assigned (or else v l would have already been assigned earlier without branching). If we assign v m to V 2 (resp., V 1), then v l must be assigned to V 1 (resp., V 2) and v j to V 2 (resp., V 1). In other words, we can branching on vertex v m and, for both branches, correspondingly, fix the assignment of vertices v j , v l , v m all together. This can be seen as a binary branching where, in both cases, three vertices (v j , v l , v m) are assigned and, hence, (d) d l = 1 (Figure 5). Then, v j can be assigned to V 1 and v l to V 2 without branching (actually, it is immaterial to assign v j to V 1 or V 2 , provided that v l is assigned to the opposite set of the partition).

v q , if v m is assigned to V 2 (resp., V 1), v l can be assigned to V 1 (resp., V 2) and v j to V 2 (resp., V 1) without branching. v i v j v k v l v m
T (n) 2T (n -3) + O(p(n)), i.e., T (n) = O * (1.2599 n). v i v j v k v l
2. d j = 3, a vertex v i adjacent to v j has already been assigned to V 1 (resp., V 2), while the other two adjacent vertices v k and v l have not yet been assigned. We assume, without loss of generality, that d k d l . The following subcases must be considered. 6). A branching on vertex v j can be applied. Either v j is assigned to V 1 (resp., V 2) and correspondingly vertices v k and v l must be assigned, due to Lemma 2, to V 2 (resp., V 1), or v j is assigned to V 2 (resp., V 1) and, correspondingly, vertices v k and v l must be assigned, due to Lemma 2, to V 1 (resp., V 2). This can be seen as a binary branching where, in both cases, 3 vertices (v j , v k , v l) are fixed and the same time-complexity O * (1.2599 n) of case 1c holds. adjacent to vertex v l has already been assigned while the other has not yet been assigned (Figure 7). We assume without loss of generality that v m has already been assigned. Notice that, if v m has been assigned to V 2 (resp., V 1), no branching occurs, due to Lemma 4. We assume then that v m has already been assigned to V 1 (resp., V 2). A branching on vertex v j can be applied. If v j is assigned to V 1 (resp., V 2), vertices v k , and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1) while vertex v q must be assigned (due to Lemma 4) to V 1 (resp., V 2). Else, v j is assigned to V 2 (resp., V 1) and, correspondingly, v k can be assigned to V 1 . This can be seen as a branching where, either 2 vertices (v j , v k), or 4 vertices (v j , v k , v l , v q) are assigned and the same time-complexity O * (1.2721 n) of case 1a holds. (c) d k = d l = 3, v k and v l are not adjacent and one of the vertices (v m , v q) adjacent to vertex v l has already been assigned, while the other has not yet been assigned (Figure 8). Also, the vertices (v r , v s) adjacent to vertex v k have not yet been assigned. We assume without loss of generality that v m has already been assigned. Notice that, if v m has been assigned to V 2 (resp., V 1), no branching occurs due to Lemma 4. We assume, then, that v m has already been assigned to V 1 (resp., V 2). A branching on vertex v j can be applied. If v j is assigned to V 1 (resp., V 2), vertices v k , v l must be assigned (due to Lemma 2) to V 2 (resp., V 1) and vertices v q , v r , v s must be assigned (due to Lemma 4) to V 2 (resp., V 1). Else, v j is assigned to V 2 (resp., V 1). This can be seen as a branching where, either (d) d k = d l = 3, v k and v l are not adjacent and one of the vertices (v m , v q) adjacent to vertex v l has already been assigned while the other has not yet been assigned (Figure 9). We assume without loss of generality that v m has already been assigned. Notice that, if v m has been assigned to V 2 (resp., V 1), no branching occurs, due to Lemma 4. We assume, then, that v m has already been assigned to V 1 (resp., V 2). Also, v k is adjacent (apart from v j) to two vertices v r and v s where vertex v r has already been assigned while v s has not yet been assigned. Notice that, if v r has been assigned to V 2 (resp., V 1), no branching occurs, due to Lemma 4. We assume, then, that v r has already been assigned to V 1 (resp., V 2). Finally, notice that v m and v r may well coincide.

v i v j v k v l Figure 6: Case 2a of Proposition 2. (a) 1 d k d l 2 (Figure
v i v j v k v l v m v q
v i v j v k v l v m v q v r v s
1 vertex (v j) is assigned, or 6 vertices (v j , v k , v l , v q , v r , v s) are assigned. Then, T (n) T (n -1) + T (n -6) + O(p(n)), i.e., T (n) = O * (1.2852 n). v i v j v k v l v m v q v r v s
A composite branching can be applied. If v j is assigned to V 1 (resp., V 2), then v k , v l must be assigned (due to Lemma 2) to V 2 (resp., V 1) and v q , v s must be assigned (due to Lemma 4) to V 1 (resp., V 2). Else, v j is assigned to V 2 (resp., V 1): then, either v q is assigned to V 1 (resp., V 2) and, correspondingly, v l is assigned to V

2 (resp., V 1), v k to V 1 (resp., V 2) and v s to V 2 (resp., V 1); or v q is assigned to V 2 (resp., V 1
) and v l is assigned to V 1 (resp., V 2): but then for this latter case a branching on vertex k can be applied where two of its adjacent vertices (v j , v r) have already been assigned and, in the worst case, subcase 1a holds. Putting things together, this can be seen as a composite branching where, either 5 vertices (v j , v k , v l , v q , v s) are assigned, or 5 vertices (v j , v k , v l , v s , v q) are assigned, or three vertices (v j , v l , v q) are assigned and a branching of type 1a on vertex v k with n = n -3 variables holds. Then,

T (n) 2T (n-5)+2T (n -3)+O(p(n)) = 3T (n-5)+T (n-7)+O(p(n)).
Correspondingly, we have (e) d k = d l = 3, v k and v l are not adjacent and one of the vertices (v m , v q) adjacent to vertex v l has already been assigned while the other has not yet been assigned (Figure 10). We assume, without loss of generality, that v m has already been assigned. Notice that, if v m has been assigned to V 2 (resp., V 1), no branching occurs, due to Lemma 4. We assume then that v m has already been assigned to V 1 (resp., V 2). Also, v k is adjacent (apart from v j) to v q and to another unassigned vertex v r . A composite branch, first on vertex v j and then on vertex v q can be applied. If v j is assigned to V 1 (resp., V 2), vertices v k , and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1) and vertices v q , v r must be assigned (due to Lemma 4) to V 1 (resp., V 2). Else, v j is assigned to V 2 (resp., V 1) and, if v q is assigned to V 2 (resp., V 1), then v k and v l must be assigned to V 1 (resp., V 2), else v q is assigned to V 1 (resp., V 2) and, consequently, v l must be assigned to

T (n) = O * (α n), i.e., α ≈ 1.2886, implying a time complexity of O * (1.2920 n). v i v j v k v l v m v q v r
V 2 (resp., V 1), v k to V 1 (resp., V 2) and v r to V 2 (resp., V 1
). This can be seen as a branching with three children nodes where, either 5 vertices (v j , v k , v l , v q , v r), or 4 vertices (v j , v k , v l , v q), or 5 vertices (v j , v k , v l , v q , v r) are assigned. Then, adjacent to vertex v l has already been assigned while the other has not yet been assigned (Figure 11). We assume without loss of generality that v m has already been assigned. Notice that, if v m has been assigned to V 2 (resp., V 1), no branching occurs, due to Lemma 4. We assume, then, that v m has already been assigned to V 1 (resp., V 2). Also, v k is adjacent (apart from v j) to v q and to another vertex v r that has already been assigned. Notice that, if v r has been assigned to V 2 (resp., V 1), no branching occurs, due to Lemma 4. We assume, then, that v r has already been assigned to V 1 (resp., V 2). Finally, notice that v m and v r may well coincide. We observe that v j , v q must be assigned to the same set of the partition. Indeed, if v j is assigned to V 1 (resp., V 2), v q cannot be assigned to V 2 (resp., V 1) due to Lemma 4; on the other hand, if v q is assigned to V 1 (resp., V 2), then v k and v l must be assigned to V 2 (resp., V 1) and, correspondingly, v j cannot be assigned to V 2 (resp., V 1). Summarizing, either v j and v q are assigned to V 1 and, correspondingly, v k , v l are assigned to V 2 , or v j and v q are assigned to V 2 and, correspondingly, v k , v l are assigned to V 1 . This can be seen as a binary branching where, in both cases, 4 vertices

T (n) T (n -4) + 2T (n -5) + O(p(n)), i.e., T (n) = O * (1.2672 n). v i v j v k v l v m v q v r
(v j , v k , v l , v q) are fixed. Then, T (n) 2T (n -4) + O(p(n)), i.e., T (n) = O * (1.1892 n). (g) 1 d k d l = 3, v l is adjacent to v k
and to another vertex v m (that may eventually coincide with v i) that has already been assigned (Figure 12). If v m has been assigned to V 2 (resp., V 1), no branching occurs, as v j must be assigned to V 2 (resp., V 1), or else, v k , v l and v m would all be assigned to V 2 (resp., V 1), (resp., V 2) as they cannot be assigned to different sets of the partition(due to Lemma 4), nor they can both be assigned to V 2 (resp., V 1) due to Lemma 2 applied to vertex v l . Else, v j is assigned to V 2 (resp., V 1) and correspondingly v k can be assigned to to V 1 (resp., V 2). This can be seen as a branching where, either 2 vertices (v j , v k), or 5 vertices (v j , v k , v l , v m , v q) are assigned. Then, (i) d k = d l = 3, vertex v l is not adjacent to v k but is adjacent to vertices v m and v q both unassigned (Figure 14). Vertex v k is adjacent to other two vertices v r , v s both unassigned. A branching on vertex v j can be applied. If v j is assigned to V 1 (resp., V 2), vertices v k and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1), and vertices v m , v q , v r , v s must be assigned to V 1 (resp., V 2) due to Lemma 4. Else, v j is assigned to V 2 (resp., V 1). This can be seen as a branching where, either

T (n) T (n -2) + T (n -5) + O(p(n)), i.e., T (n) = O * (1.1939 n). v i v j v k v l v m v q v r v s
1 vertex (v j) is assigned, or 7 vertices (v j , v k , v l , v m , v q , v r , v s) are assigned. Then, T (n) T (n -1) + T (n -7) + O(p(n)), i.e., T (n) = O * (1.2555 n). (j) d k = d l = 3, vertex v l is not adjacent to v k but is adjacent to vertices v m
and v q both unassigned (Figure 15). Vertex v k is adjacent to vertex v q and to another vertex v r also unassigned. A branching on vertex v j can be applied. If v j is assigned to V 1 (resp., V 2), vertices v k and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1), and vertices v m , v q , v r must be assigned to V 1 (resp., V 2) due to Lemma 4. Else, v j is assigned to V 2 (resp., V 1). This can be seen as a branching where, either

1 vertex (v j) is assigned, or 6 vertices (v j , v k , v l , v m , v q , v r) are assigned. Then, T (n) T (n -1) + T (n -6) + O(p(n)) and the same time-complexity O * (1.2852 n) of case 2c holds. (k) d k = d l = 3, vertex v l is not adjacent to v k but is adjacent to vertices v m and v q
both unassigned (Figure 16). Vertex v k is also adjacent to vertices v m and v q .

v i v j v k v l v m v q v r
v i v j v k v l v m v q Figure 16: Case 2k of Proposition 2.
Notice that v j and v k cannot be assigned to the same set of the partition, or else v l , v m , v q would all be assigned to the other set of the partition violating Lemma 2. Analogously, v j and v l cannot be assigned to the same set of the partition. But then, if

v j is assigned to V 1 (resp., V 2), correspondingly, v k , v l are assigned to V 2 (resp., V 1) and v m , v q are assigned to V 1 (resp., V 2); else, v j is assigned to V 2 (resp., V 1), v k , v l are assigned to V 1 (resp., V 2) and v m , v q are assigned to V 2 (resp., V 1
). This can be seen as a binary branching where, in both cases,

5 vertices (v j , v k , v l , v m , v q) are assigned. Then, T (n) 2T (n - 5) + O(p(n)), i.e., T (n) = O * (1.1487 n). (l) d k = 2, d l = 3, v l is adjacent to v k and to another vertex v m that
has not yet been assigned (Figure 17). If v j is assigned to V 1 (resp., V 2), vertices v k and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1), and correspondingly vertex v m must be assigned to V 1 (resp., V 2). But an equivalent solution is obtained by simply swapping the assignment of vertices v j , v k . Hence, for this subcase, v j can be assigned to V 2 (resp., V 1) without branching.

v i v j v k v l v m
v i v j v k v l v m v q Figure 18: Case 2m of Proposition 2. (m) d k = d l = 3, v k is adjacent to v l and to an unassigned vertex v q , v l is adjacent to v k and to an unassigned vertex v m , v m = v q (Figure 18). If v j is assigned to V 1 (resp., V 2)
, vertices v k and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1), and correspondingly vertices v m and v q must be assigned to V 1 (resp., V 2). But an equivalent solution is obtained by simply swapping the assignment of vertices v j , v k . Hence, for this subcase, v j can be assigned to V 2 (resp., V 1) without branching.

(n) d k = d l = 3, v k is adjacent to v l and both v k and v l are adjacent to another unassigned vertex v m (Figure 19). If v j is assigned to V 1 (resp., V 2), vertices v k and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1), and, correspond- ingly, vertex v m must be assigned to V 1 (resp., V 2). But an equivalent solution is obtained by simply swapping the assignment of vertices v j , v k . Hence, for this subcase, v j can be assigned to V 2 (resp., V 1) without branching.

v i v j v k v l v m
Putting things together, the global worst-case complexity for MAX CUT-3 with maximum degree three is O * (1.2920 n).

The MAX CUT-4 problem

We now deal with graphs of maximum degree four. For this case, the following proposition holds. Proof. For d max = 4, the relevant branching cases for a given vertex v j in the application of SOLVE-MAX-CUT are those mentioned in the proof of Proposition 2 plus all cases related to the presence of vertices with degree four. The following further cases must be taken into account.

1. d j = 4, two vertices v i , v k adjacent to v j have already been assigned to different sets of the partition (V 1 , V 2), while the other two adjacent vertices v l , v m have not yet been assigned (Figure 20). Then, a branching on vertex v l can be applied. If v l is assigned to V 1 (resp., V 2), due to Lemma 2, v j must be assigned to V 2 (resp., V 1). This can be seen as a binary branching where, in both cases, 2 vertices (v j , v l) are assigned. Then, 2. d j = 4, a vertex v i adjacent to v j has already been assigned to V 1 (resp., V 2), while the other three adjacent vertices v k , v l , v m have not yet been assigned (Figure 21). If v j is assigned to V 1 (resp., V 2), due to Lemma 2, v k , v l , v m must be assigned to V 2 (resp., V 1); else, v j is assigned to V 2 (resp., V 1). This can be seen as a binary branching where, either a vertex v j is assigned, or 4 vertices (v j , v k , v l , v m) are assigned. Then, T (n) T (n-1)+T (n-4)+O(p(n)), i.e., T (n) = O * (1.3803 n).

T (n) 2T (n -2) + O(p(n)), i.e., T (n) = O * (1.4142 n). v i v j v k v l v m
v i v j v k v l v m
3. d j = 3, two vertices v i , v k adjacent to v j have already been assigned to different sets of the partition (V 1 , V 2), while the third adjacent vertex v l has not yet been assigned and d l > 3 (Figure 22). Then, due to Lemma 2, if v j is assigned to V 1 (resp., V 2), v l must be assigned to V 2 (resp., V 1). This can be seen as a binary branching where, in both cases, 2 vertices (v j , v l) are assigned and the same time complexity O * (1.4142 n) of case 1 holds.

4. d j = 3, a vertex v i adjacent to v j has already been assigned to V 1 (resp., V 2), while the other two adjacent vertices v k and v l have not yet been assigned. We assume, without loss of generality, that d k d l and that d l = 4 (or else this case has already been handled). Notice that no vertices adjacent to v l have already been assigned, or else we get back to cases 1 or 2 applied to vertex v l . The following subcases must be considered. (a) v l is adjacent (apart from v j) to v q , v r , v s all unassigned (Figure 23). A composite branching can be applied. If v j is assigned to V 1 (resp., V 2), vertices v k and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1). Else, v j is assigned to V 2 (resp., V 1). Then, if v l is assigned to V 2 (resp., V 1), v k , v q , v r , v s must all be assigned to V 1 (resp., V 2) due to Lemma 2, else v l is assigned to V 1 (resp., V 2). This can be seen as a composite branching where, either 3 vertices (v j , v k , v l) are assigned, or 6 vertices (v j , v k , v l , v q , v r , v s) are assigned, or 2 vertices (v j , v l) are assigned. Then, (b) v l is adjacent (apart from v j) to v k , v q , v r all unassigned (Figure 24). A composite branching can be applied. If v j is assigned to V 1 (resp., V 2), then, due to Lemma 2, vertices v k and v l must be assigned to V 2 (resp., V 1) and vertices v q and v r must be assigned to V 1 (resp., V 2). Else, v j is assigned to V 2 (resp., V 1). This can be seen as a branching where, either 1 vertex (v j) is assigned, or 5

v i v j v k v l
v i v j v k v l v q v r v s
T (n) T (n -2) + T (n -3) + T (n - 6) + O(p(n)), i.e., T (n) = O * (1.4037 n). v i v j v k v l v q v r
vertices (v j , v k , v l , v q , v r) are assigned. Then, T (n) T (n -1) + T (n -5) + O(p(n)), i.e., T (n) = O * (1.3248 n).
Putting things together, the global worst case complexity is O * (1.4142 n).

The MAX CUT-5 problem

In this section, we deal with graphs with maximum degree five. The following result holds. Proof. For d max = 5, the relevant branching cases for a given vertex v j in the application of SOLVE-MAX-CUT are those mentioned previously in Propositions 2 and 3, plus all cases related to the presence of vertices with degree five. Notice that, for d j = 5, if at least three vertices adjacent to v j have been assigned to V 1 (resp., V 2), then v j can be assigned without branching (due to Lemma 2) to V 2 (resp., V 1). The following further cases must be taken into account.

v i v j v k v l v m v q Figure 25: Case 1 of Proposition 4.
1. d j = 5, four vertices v i , v k , v l , v m adjacent to v j have already been equally partitioned between V 1 and V 2 , while the fifth adjacent vertex v q has not yet been assigned (Figure 25). Then, a branching on vertex v j can be applied. If v j is assigned to V 1 (resp., V 2), due to Lemma 2, v q must be assigned to V 2 (resp., V 1). This can be seen as a binary branching where, in both cases, 2 vertices (v j , v q) are assigned and the same time complexity O * (1.4142 n) of case 1 in Proposition 3 holds.

v i v j v k v l v m v q Figure 26: Case 2 of Proposition 4.
2. d j = 5, three vertices v i , v k , v l adjacent to v j have already been assigned with v i , v k assigned to V 1 (resp., V 2) and v l assigned to V 2 (resp., V 1), while the other two adjacent vertex v m , v q have not yet been assigned (Figure 26). Then, a branching on vertex v j can be applied.

If v j is assigned to V 1 (resp., V 2), due to Lemma 2, v m , v q must be assigned to V 2 (resp., V 1), else v j is assigned to V 2 (resp., V 1
). This can be seen as a binary branching where, either a vertex v j is assigned, or 3 vertices (v j , v m , v q) are assigned. Then, T (n)

T (n -1) + T (n -3) + O(p(n)), i.e., T (n) = O * (1.4657 n).
3. d j = 5, two vertices v i , v k adjacent to v j have already been assigned to V 1 (resp., V 2), while the other three adjacent vertex v l , v m , v q have not yet been assigned (Figure 27). Then, a branching on vertex v j can be applied. 5. d j = 5, a vertex v i adjacent to v j has already been assigned to V 1 (resp., V 2), while the other four adjacent vertices v k , v l , v m , v q have not yet been assigned (Figure 29). A composite branching can be applied. If v j and v k are both assigned to

If v j is assigned to V 1 v i v j v k v l v m v q
V 1 (resp., V 2), due to Lemma 2, v l , v m , v q must all be assigned to V 2 (resp., V 1); else, if v j is assigned to V 1 (resp., V 2) and v k is assigned to V 2 (resp., V 1), then, if v l is assigned to V 1 (resp., V 2), v m and v q must be assigned to V 2 (resp., V 1); else, if v j is assigned to V 1 (resp., V 2), v k is assigned to V 2 (resp., V 1) and v l is assigned to V 2 (resp., V 1), then, either v m is assigned to V 1 (resp., V 2)
, and v q is assigned to V 2 (resp., V 1) or v m is assigned to V 2 (resp., V 1) and nothing is derived with respect to v q ; else, v j is assigned to V 1 (resp., V 2). This can be seen as a composite branching where, three children nodes are generated assigning five vertices (v j , v k , v l , v m , v q), a child node is generated assigning four vertices (v j , v k , v l , v m), and another child node is generated assigning one vertex (v j). Then, 6. d j = 3, a vertex v i adjacent to v j has already been assigned to V 1 (resp., V 2), while the other two adjacent vertices v k and v l have not yet been assigned (Figure 30). We assume, without loss of generality, that d k d l and that d l > 4 (or else, this case has already been handled). Then, a branching on vertex v j can be applied. If v j is assigned to V 1 (resp., V 2), due to Lemma 2, v k , v l must be assigned to V 2 (resp., V 1), else v j is assigned to V 2 (resp., V 1). This can be seen as a binary branching where, either a vertex v j is assigned, or 3 vertices (v j , v k , v l) are assigned and the same time complexity O * (1.4657 n) of case 2 holds.

T (n) T (n -1) + T (n -4) + 3T (n -5) + O(p(n)), i.e., T (n) = O * (1.6406 n). v i v j v k v l
Putting things together, the global worst case complexity is O * (1.6430 n).

MAX CUT-6 problem

We finally deal with graphs with maximum degree six. In what follows, we prove the following result. Proof. For d max = 6, the relevant branching cases for a given vertex v j in the application of SOLVE-MAX-CUT are those mentioned previously, in Propositions 2 and 3 and 4, plus all cases related to the presence of vertices with degree six. Notice that also for d j = 6, if at least three vertices adjacent to v j have been assigned to V 1 (resp., V 2), then v j can be assigned without branching (due to Lemma 2) to V 2 (resp., V 1). The following further cases must be taken into account. 1. d j = 6, four vertices v i , v k , v l , v m adjacent to v j have already been equally partitioned between V 1 and V 2 , while the other two adjacent vertices v q , v r have not yet been assigned (Figure 31). Then, a branching on vertex v j can be applied. If v j is assigned to V 1 (resp., V 2), due to Lemma 2, v q , v r must be assigned to V 2 (resp., V 1), else v j is assigned to V 2 (resp., V 1). This can be seen as a binary branching where, either a vertex v j is assigned, or 3 vertices (v j , v q , v r) are assigned and the same time complexity O * (1.4657 n) of case 2 in Proposition 4 holds. 2. d j = 6, three vertices v i , v k , v l adjacent to v j have already been assigned with v i , v k assigned to V 1 (resp., V 2) and v l assigned to V 2 (resp., V 1), while the other three adjacent vertex v m , v q , v r have not yet been assigned (Figure 32). Then, a branching on vertex v j can be applied. If v j is assigned to V 1 (resp., V 2), due to Lemma 2, v m , v q , v r must be assigned to V 2 (resp., V 1), else v j is assigned to V 2 (resp., V 1). This can be seen as a binary branching where, either a vertex v j is assigned, or 4 vertices (v j , v m , v q , v r) are assigned and the same time complexity O * (1.3803 n) of case 2 in Proposition 3 holds. 3. d j = 6, two vertices v i , v k adjacent to v j have already been assigned to V 1 (resp., V 2), while the other four adjacent vertex v l , v m , v q , v r have not yet been assigned (Figure 33). Then, a branching on vertex v j can be applied. If four children nodes are generated assigning six vertices (v j , v k , v l , v m , v q , v r) a child node is generated assigning five vertices (v j , v k , v l , v m , v q) and another child node is generated assigning one vertex (v j). Then, T (n) T (n -1) + T (n -5) + 4T (n -6) + O(p(n)), i.e., T (n) = O * (1.5751 n).

v i v j v k v l v m v q v r
v i v j v k v l v m v q v r
v i v j v k v l v m v q v r
v j is assigned to V 1 v i v j v k v l v m v q v r
Putting things together, we notice that all cases related to the presence of vertices with degree six are not worse than the worst-case for d max = 5. Hence, also here the global worst case complexity is, as in Proposition 4, O * (1.6430 n).

Conclusion

We have presented an analysis for the worst-case complexity of two search-tree based algorithms for the MIN 3-SET COVERING problem and the MAX CUT-3 problem, strongly based on simple dominance conditions. We point out that these conditions allow not only to prune search-tree nodes corresponding to strictly dominated partial solutions, but also to break ties among equivalent partial solutions (see, for instance, Lemma 4). This second aspect is probably the most rewarding in terms of worst-case complexity analysis. Thanks to the dominance conditions used here, the derived upper-time bounds for both MIN 3-SET COVERING and MAX CUT-3 are competitive with the state of the art available bounds.

This approach seem easily extendable to other bounded combinatorial optimization problems. For instance, we notice that a straightforward (improvable) analysis along the lines of the above ones, leads to an O * (1.1679 n) time bound for minimum vertex covering in graphs with maximum degree 3. This bound, even though dominated by the ones in [START_REF] Beigel | Finding maximum independent sets in sparse and general graphs[END_REF][START_REF] Chen | Improvement on vertex cover for low-degree graphs[END_REF], O * (1.1252 n) and O * (1.152 n), respectively, already dominates the one in [START_REF] Chen | Vertex cover: further observations and further improvements[END_REF].

Figure 1 : 4 .

 14 Figure 1: Comparing two configurations with six vertices

Figure 2 :

 2 Figure 2: Case 1a of Proposition 2.

Figure 4 :

 4 Figure 4: Case 1c of Proposition 2.

Figure 5 :

 5 Figure 5: Case 1d of Proposition 2.

Figure 7 :

 7 Figure 7: Case 2b of Proposition 2.

Figure 8 :

 8 Figure 8: Case 2c of Proposition 2.

Figure 9 :

 9 Figure 9: Case 2d of Proposition 2.

Figure 10 :

 10 Figure 10: Case 2e of Proposition 2.

Figure 11 :

 11 Figure 11: Case 2f of Proposition 2.

Figure 14 :

 14 Figure 14: Case 2i of Proposition 2.

Figure 15 :

 15 Figure 15: Case 2j of Proposition 2.

Figure 17 :

 17 Figure 17: Case 2l of Proposition 2.

Figure 19 :

 19 Figure 19: Case 2n of Proposition 2.

Proposition 3 .

 3 Algorithm SOLVE-MAX-CUT optimally solves MAX CUT-4 with timecomplexity O * (1.4142 n).

Figure 20 :

 20 Figure 20: Case 1 of Proposition 3.

Figure 21 :

 21 Figure 21: Case 2 of Proposition 3.

Figure 22 :

 22 Figure 22: Case 3 of Proposition 3.

Figure 23 :

 23 Figure 23: Case 4a of Proposition 3.

Figure 24 :

 24 Figure 24: Case 4b of Proposition 3.

Proposition 4 .

 4 Algorithm SOLVE-MAX-CUT optimally solves MAX CUT-5 with timecomplexity O * (1.6430 n).

Figure 29 :

 29 Figure 29: Case 5 of Proposition 4.

Figure 30 :

 30 Figure 30: Case 6 of Proposition 4.

Proposition 5 .

 5 Algorithm SOLVE-MAX-CUT optimally solves MAX CUT-6 with timecomplexity O * (1.6430 n).

Figure 31 :

 31 Figure 31: Case 1 of Proposition 5.

Figure 32 :

 32 Figure 32: Case 2 of Proposition 5.

Figure 33 :

 33 Figure 33: Case 3 of Proposition 5.

Figure 35 :

 35 Figure 35: Case 5 of Proposition 5.

 [START_REF] Beigel | Finding maximum independent sets in sparse and general graphs[END_REF]Research performed while the first author was in visit at the LAMSADE on a research position funded by the CNRS

violating Lemma 2. We assume, then, that v m has already been assigned to V 1 (resp., V 2). But then a branching on v k can be applied. If v k is assigned to V 1 (resp., V 2), vertices v j and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1). If v k is assigned to V 2 (resp., V 1), then vertices v j , v l must be assigned to different sets of the partition

Putting things together, this can be seen as a binary branching where, in both cases, 3 vertices (v j , v k , v l) are assigned and the same time-complexity O * (1.2599 n) of case 1c holds.

and v q both unassigned (Figure 13). A branching on vertex v j can be applied. If v j is assigned to V 1 (resp., V 2), vertices v k and v l must be assigned (due to Lemma 2) to V 2 (resp., V 1), and vertices v m and v q must be assigned to (resp., V 2), due to Lemma 2, v l , v m , v q must be assigned to V 2 (resp., V 1), else v j is assigned to V 2 (resp., V 1). This can be seen as a binary branching where, either a vertex v j is assigned, or 4 vertices (v j , v l , v m , v q) are assigned and the same time complexity O * (1.3803 n) of case 2 in Proposition 3 holds. 4. d j = 5, two vertices v i , v k adjacent to v j have already been assigned to different sets of the partition (V 1 , V 2), while the other three adjacent vertex v l , v m , v q have not yet been assigned (Figure 28). A composite branching can be applied. If v j and v l are both assigned to the same set of the partition, say V 1 (resp., V 2), then, due to Lemma 2, v m , v q must both be assigned to the other set of the partition, say

). This can be seen as a composite branching where, four children nodes are generated assigning four vertices (v j , v l , v m , v q) and two children nodes are generated assigning three vertices (v j , v l , v m). Then,

(resp., V 2), due to Lemma 2, v l , v m , v q , v r must be assigned to V 2 (resp., V 1), else v j is assigned to V 2 (resp., V 1). This can be seen as a binary branching where, either a vertex v j is assigned, or 5 vertices (v j , v l , v m , v q , v r) are assigned and the same time complexity O * (1.3248 n) of case 4b in Proposition 3 holds. 4. d j = 6, two vertices v i , v k adjacent to v j have already been assigned to different sets of the partition (V 1 , V 2), while the other four adjacent vertices v l , v m , v q , v r have not yet been assigned (Figure 34). A composite branching can be applied. If v j and v l are both assigned to V 1 (resp., V 2), then, due to Lemma 2, v m , v q , v r must all be assigned to V 2 (resp., V 1); else, if v j , v m are assigned to V 1 (resp., V 2) and v l is assigned to V 2 (resp., V 1), v q , v r must both be assigned to V 2 (resp., V 1). Else, if v j , v q are assigned to V 1 (resp., V 2) and v l , v m are assigned to V 2 (resp., V 1), v r must be assigned to V 2 (resp., V 1); else, either v j is assigned to V 1 (resp., V 2) and v l , v m , v q are assigned to V 2 (resp., V 1), or v j is assigned to V 2 (resp., V 1). This can be seen as a composite branching where, three children nodes are generated assigning five vertices (v j , v l , v m , v q , v r) a child node is generated assigning four vertices (v j , v l , v m , v q) and another child node is generated assigning one vertex (v j). Hence, the same time complexity O * (1.6406 n) of case 5 in Proposition 4 holds.

5. d j = 6, a vertex v i adjacent to v j has already been assigned to V 1 (resp., V 2), while the other five adjacent vertices v k , v l , v m , v q , v r have not yet been assigned (Figure 35). A composite branching can be applied. If v j and v k are both assigned to

) and v k , v l are assigned to V 2 (resp., V 1), v q , v r must both be assigned to V 2 (resp., V 1); else, if v j , v q are assigned to V 1 (resp., V 2) and v k , v l , v m are assigned to V 2 (resp., V 1), v r must be assigned to V 2 (resp., V 1); else, either v j is assigned to V 1 (resp., V 2) and v k , v l , v m , v q are assigned to V 2 (resp., V 1), or v j is assigned to V 2 (resp., V 1). This can be seen as a composite branching where,