Federico Della Croce

Marcin J Kaminski

Vangelis Th

Paschos

An exact algorithm for MAX-CUT in sparse graphs

come L'archive ouverte pluridisciplinaire

Background

There has recently been a growing interest in analysis of the worst-case complexity of many NP-hard problems. Unless P = NP, solving such problems requires superpolynomial time. Each problem in NP can be solved by a naive algorithm that exhaustively searches the solution space. However, for most of the problems more refined algorithms with better, but still exponential-time complexity, are known. 1 The work was done while the first author was visiting LAMSADE on a research position funded by CNRS and the second author was visiting LAMSADE being supported by DIMACS under the NSF grant INT03-39067 to Rutgers University. * D.A.I., Politecnico di Torino, Italy, federico.dellacroce@polito.it † RUTCOR, Rutgers University, USA, mkaminski@rutcor.rutgers.edu ‡ LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine, France paschos@lamsade.dauphine.fr Development of exact algorithms is mainly of theoretical interest but existence of fast exponential algorithms may also have practical importance. Today's computers are able to handle moderate size instances of NP-hard problems. However, even though one can afford to run an exponential-time algorithm, polynomial-space complexity is a must. Satisfiability, graph coloring and maximum independent set problem are among the problems that received much attention in the context of exact algorithms. In this paper we study another well-known NP-hard problem. Given an arbitrary graph with real weights assigned to its edges, the MAX-CUT problem asks to find a partition of vertices into two subsets such that the sum of weights of all the edges that have endpoints in two different parts of the partition is maximized. In unweighted case (i.e. all weights are positive and equal) the problem is often referred to as SIMPLE MAX-CUT.

Previous work

SIMPLE MAX-CUT was one of the first problems whose NP-hardness was established. However, there are classes of graphs as planar graphs, graphs with large girth ([START_REF] Poljak | Maximum cuts and large bipartite subgraphs[END_REF]), cographs and graphs with bounded treewidth ([START_REF] Bodlaender | On the complexity of the maximum cut problem[END_REF]), that admit polynomial-time solution of this problem.

On the other hand, SIMPLE MAX-CUT (and therefore MAX-CUT) remains NP-hard even if restricted to such classes as chordal, split, or 3-colorable graphs ([START_REF] Bodlaender | On the complexity of the maximum cut problem[END_REF]). As shown in [START_REF] Yannakakis | Node-and edge-deletion NP-complete problems[END_REF], the problem is NP-hard also in the class of graphs with bounded maximum degree ∆, if ∆ ≥ 3 (for ∆ ≤ 2 the problem becomes trivial).

The worst-case complexity of the MAX-CUT problem has been studied in few papers. The fastest algorithm for MAX-CUT in arbitrary graphs was proposed by Williams in [START_REF] Williams | A new algorithm for optimal constraint satisfaction and its implications[END_REF]. Unfortunately it requires exponential space. The algorithm runs in time O * (2 ωn/3) and uses O * (2 ωn/3) space, where in notation O * (•) polynomial multiplicative terms are omitted and ω < 2.376 is the matrix multiplication exponent (the product of two k×k matrices can be computed in time O(k ω)). Whether exists a polynomial-space algorithm that computes SIMPLE MAX-CUT and runs faster than the naive one of time complexity O * (2 n) is an open question listed in [START_REF] Woeginger | Space and time complexity of exact algorithms: some open problems[END_REF].

More algorithms has been developed for sparse graphs. In [START_REF] Gramm | Worst-case upper bounds for Max2Sat with an application to MaxCut[END_REF] the bound of O * (2 m/3) was obtained and then improved to O * (2 m/4) in [START_REF] Fedin | A 2 |E|/4 -time algorithm for max-cut[END_REF]. In [START_REF] Scott | Faster algorithms for MAX CUT and MAX CSP, with polynomial expected time for sparse instances[END_REF] (see also [START_REF] Scott | Solving sparse semi-random instances of Max-Cut and Max-CSP in linear expected time[END_REF]) an algorithm running in time O * (2 min((m-n)/2,m/5)) and polynomial space was proposed.

Our contribution

In this paper we develop a technique that seems to be a new approach to the MAX-CUT problem. The method consists in enumerating cuts in a subgraph H of G and then extending them in an optimal way to cuts in G. The technique is applied to graphs with bounded maximum degree and to general graphs. In both cases, we obtain an exponentialtime algorithm that uses polynomial space.

For weighted graphs with bounded maximum degree ∆, we present an algorithmic scheme that computes a maximum cut. For fixed ∆, the algorithm runs in time O * (2 (1-(2/∆))n) and polynomial space. The algorithm is faster than [START_REF] Gramm | Worst-case upper bounds for Max2Sat with an application to MaxCut[END_REF][START_REF] Fedin | A 2 |E|/4 -time algorithm for max-cut[END_REF], however for ∆ ≤ 7, the running time of our algorithm is dominated by the running time of [START_REF] Scott | Faster algorithms for MAX CUT and MAX CSP, with polynomial expected time for sparse instances[END_REF]. It is also slower than the exponential-space [START_REF] Williams | A new algorithm for optimal constraint satisfaction and its implications[END_REF] for ∆ < 10.

For general weighted graphs, we obtain an algorithm that computes a maximum cut and runs in time 2 mn/(m+n) . The running time of our algorithm dominates the running times of [START_REF] Gramm | Worst-case upper bounds for Max2Sat with an application to MaxCut[END_REF] and [START_REF] Fedin | A 2 |E|/4 -time algorithm for max-cut[END_REF] for m > 2n and m > 3n, respectively. If m < 7n/5 the algorithm is faster than [START_REF] Scott | Faster algorithms for MAX CUT and MAX CSP, with polynomial expected time for sparse instances[END_REF] and faster than the exponential-space [START_REF] Williams | A new algorithm for optimal constraint satisfaction and its implications[END_REF] for m < ωn/(3ω) < 3.808n.

The organization of the paper is as follows. The next section is a formal introduction and contains definitions used later. In Section 3 we study a modification of the MAX-CUT problem and develop our technique which is applied in Section 4 to graphs with bounded maximum degree and to general graphs in Section 5.

Introduction

We consider weighted, undirected, loopless graphs without multiple edges. In a graph G = (V, E, w), V is the vertex set of cardinality |V | = n, E is the edge set of cardinality |E| = m, and w : E → R is a weight function that assigns a real number w ij to each edge ij of G.

The number of edges incident to a vertex in a graph is called the degree of the vertex. The maximum degree of all the vertices of a graph is called the maximum degree of the graph and denoted by ∆. The average degree of a graph is the sum of degrees of all vertices of the graph divided by the number of vertices. The average degree is denoted by d. Notice that d = 2m/n. Given a subset U of vertices of V , the subgraph induced by the vertices in U is denoted by G

[U]. A cut C = (V 0 , V 1) in a graph is a partition of its vertex set V into two disjoint subsets V 0 and V 1 .
The weight w(C) of cut C is the sum of weights of all the edges that have their endpoints in two different parts of the cut. Notice that the characteristic vector of one of the parts, say V 0 , uniquely determines the partition.

For the purpose of this paper, we will think of a partition as an assignment of 0 -1 values to the vertices of the graph. Let x i be a Boolean variable which takes value 0,

if v i ∈ V 0 , and 1, if v i ∈ V 1 .
The weight of a cut in a graph G = (V, E, w) can be expressed as a pseudo-boolean function,

w(C) = ij∈E w ij (x i x j + x i x j) = i∈V w i x i -2 ij∈E w ij x i x j , (1)
where

w i = {i,j}∈E w ij . A maximum cut in a graph G is a cut of maximum weight.
Given a graph G as an input, the MAX-CUT problem asks to compute a cut in G that maximizes [START_REF] Bodlaender | On the complexity of the maximum cut problem[END_REF].

Notice that it is enough to consider only connected graphs as if the graph is not connected the MAX-CUT problem can be solved for each of its connected components separately.

It is easy to see that if the weights are restricted to be nonnegative real numbers, the MAX-CUT problem can be solved in polynomial time for the class of bipartite graphs.

Extending partial partition of vertices

In this section we consider a modification of the MAX-CUT problem. Suppose some of the vertices have already been partitioned into two subsets and now the problem is to find an optimal cut in the graph with respect to that pre-partition. We prove that if the graph induced by the vertices that have not yet been partitioned is bipartite, then the problem of finding an optimal extension of the partial partition can be solved in polynomial time. The algorithms presented in the next sections are based on this result.

Let U ⊂ V be a subset of vertices of G such that the subgraph G = G[U] induced by the vertices in U = V \ U is bipartite. Also, let (U 0 , U 1) be a partition of U into two subsets. Consider the problem of finding a partition

(V 0 , V 1) of V with U 0 ⊂ V 0 and U 1 ⊂ V 1 that maximizes (1).
The vertices in U have already been assigned to parts of the cut, thus variables x i , for i ∈ U , have their values fixed. There are four possible types of edges in the cut: with both endpoints in U , from U 0 to U , from U 1 to U , and with both endpoints in U . The problem of finding an optimal extension of pre-partition is now equivalent to maximizing the following pseudo-boolean function,

i∈U0 j∈U1 w ij + i∈U0 j∈U w ij x j + i∈U1 j∈U w ij x j + i∈U j∈U w ij (x i x j + x i x j) (2)
where all sums are taken over edges ij ∈ E of the graph G. Putting,

c ij = i∈U0 w ij - i∈U1 w ij + i∈U w ij
where all sums are again taken over edges ij ∈ E, and omitting the constant term, the problem is equivalent to finding a maximum of the function,

j∈U c ij x j -2 ij∈E w ij x i x j (3
)
where E is the edge set of the bipartite graph G . In other words, the problem of finding an optimal extension of pre-partition can be stated as the following integer quadratic program:

max i∈U c i x i -2 ij∈E w ij x i x j s.t. x i ∈ {0, 1} (4)
The standard linearization technique applied to (4) by introducing y ij = x i x j , yields the following linear program:

max i∈U c i x i -2 ij∈E w ij y ij s.t. y ij ≥ x i + x j -1 y ij ≥ 0 x i ∈ {0, 1} y ij ∈ {0, 1} (5)
It is easy to see that (4) and (5) are equivalent. They have the same optimal value and there is an easy correspondence between their solutions, namely y ij = x i x j .

Having modelled the original quadratic problem (4) as an integer linear program, let us study the continuous relaxation of (5):

max i∈U c i x i -2 ij∈E w ij y ij s.t. y ij ≥ x i + x j -1 x i ≥ 0 x j ≤ 1 y ij ≥ 0 y ij ≤ 1 (6)
Lemma 1. The constraint matrix of the linear program (6) is totally unimodular, i.e., determinant of every square submatrix of it equals 0 or ±1.

Proof. Let A be the constraint matrix of (6). It has |U |+|E | columns and 2|U |+3|E | rows and all its entries are either 0 or ±1. Let B be a edge-vertex incidence matrix of G . Notice that B is a submatrix of A. Moreover, any submatrix of A that has two non-zero entries in every row and every column has to be a submatrix of B.

Take any square k × k submatrix of A. We will prove the lemma by induction on k. Clearly, the result holds for k = 1. Now assume that all (k -1) × (k -1) submatrices of A are totally unimodular and consider matrix M which is a k × k submatrix of A.

If all entries of any row or column of M are 0, then det(M) = 0 and M is totally unimodular. If any row or column of M has a single non-zero element (±1), then using the expansion method for calculating determinant and the induction hypothesis, it is easy to see that det(M) is either 0 or ±1, and A is totally unimodular.

Suppose that each row and each column of M has at least two non-zero entries. Hence, M must be a submatrix of B but since B is an incidence matrix of a bipartite graph so is M . It is possible to partition columns of M into two parts, according to the partition of vertices of bipartite graph. Sum of the columns in each part yields a unit vector (each edge of the bipartite subgraph has one endpoint in each part) and that implies linear dependence of M , therefore det(M) = 0 and M is totally unimodular.

Theorem 2. Let U ⊂ V be such that the subgraph G = G[U] induced by the vertices in U = V \ U is bipartite and (U 0 , U 1) be a partition of U into two subsets, then the problem of finding a partition (V 0 , V 1) of V with U 0 ⊂ V 0 and U 1 ⊂ V 1 that maximizes (1) is polynomial-time solvable.
Proof. The problem of finding a partition (V 0 , V 1) of V with U 0 ⊂ V 0 and U 1 ⊂ V 1 that maximizes (1) can be modelled as the integer quadratic program (4) which is equivalent to [START_REF] Poljak | Maximum cuts and large bipartite subgraphs[END_REF]. Total unimodularity of the constraint matrix of (6) (by Lemma 1) implies the existence of an optimal 0 -1 solution of [START_REF] Sakai | A note on greedy algorithms for the maximum weighted indepedent set problem[END_REF]. Such solution can be found in polynomial time. Since the relaxation (6) of (5) has an optimal 0 -1 solution, therefore (4) can be solved in polynomial time.

In the previous section we mentioned that the MAX-CUT problem is polynomial-time solvable in the class of bipartite graphs if the weights are restricted to be nonnegative real numbers. Note that from Theorem 2 follows that the MAX-CUT problem can be solved in polynomial time in the class of bipartite graphs (possibly with negative weights).

Before we proceed to the next section, let us briefly describe the algorithmic technique we are going to apply. Given an induced bipartite subgraph G[B] of B, one can enumerate all partitions of V \ B and find an optimal extension of each such partition in polynomial time (by Theorem 2). The complexity of such technique is O * (2 |V \B|) and it strongly depends on the size of the bipartite subgraph that has to be constructed.

Algorithm for graphs with bounded maximum degree

In this section we present and analyze an algorithmic scheme A(∆). For a fixed integer ∆ (∆ ≥ 3), the scheme yields an algorithm whose input is a weighted graph G = (V, E, w) of maximum degree ∆ and the output a maximum cut in G with respect to the weight function w.

Step 1. If G is isomorphic to the complete graph on ∆ + 1 vertices, then let B be any pair of vertices and go to Step 3.

Step 2. ∆-color G. Let B be the union of 2 largest color classes of the coloring.

Step 3. Enumerate all partitions of elements of V \ B into two subsets (all 0 -1 assignments) and for each find an optimal extension of the partial partition.

Step 4. Find a cut C that has the largest weight among all checked in Step 3.

Return the cut C.

Theorem 3. For a integer ∆ (∆ ≥ 3), Algorithm A(∆) computes MAX-CUT in a graph G in time O * (2 (1-(2/∆))n
) and polynomial space.

Proof. Let us notice first that the algorithm indeed finds a maximum cut. It is clear that the induced subgraph G[B] is bipartite. Therefore, any partition of V \ B into two subsets can be extended to an optimal partition of V in polynomial time by Theorem 2. Clearly, by enumerating all partitions of V \ B and then extending each in optimal way, one finds a maximum cut in G.

The enumeration of partitions in

Step 3 is the bottleneck of the algorithm; it needs exponential time O * (2 |V \B|). Other steps can be performed in linear time. It is clear for Steps 1 and 4, and the linear time algorithm for Step 2 is given in [START_REF] Lovász | Three short proofs in graph theory[END_REF]. Notice, that the algorithm can be implemented in such a way that it uses only polynomial space.

Suppose that the input graph is isomorphic to the complete graph on ∆ + 1 vertices. The number of partitions that are enumerated in Step 3 is 2 n-2 but since ∆ = O(n) the claimed running time follows. Now suppose that the input graph G is not isomorphic to the complete graph on ∆ + 1 vertices. Then, by the Brooks' Theorem G is ∆ colorable. Clearly, the union of two largest color classes have size at least 2n/∆ and |V \ B| ≤ n(1 -(2/∆)). The number of partitions that are enumerated in Step 3 is 2 (1-(2/∆))n and the claimed running time follows.

Algorithm for general graphs

Let us notice that in the algorithm presented in the previous section, the assumption of bounded maximum degree is needed only to obtain an induced bipartite graph. Now we relax this assumption and study the complexity of the method in general graphs. Let us formalize that as an algorithm B. The input of B is a weighted graph G = (V, E, w) and the output is a maximum cut in G with respect to the weight function w.

Step 1. Find a maximal independent set I 0 in G.

Step 2. Find a maximal independent set I 1 in G[V \ I 0]. Let B be the union of I 0 and I 1 .

Step 3. Enumerate all partitions of elements of V \ B into two subsets (all 0 -1 assignments) and for each find an optimal extension of the partial partition.

Step 4. Find a cut C that has the largest weight among all checked in Step 3.

Return the cut C.

To complete the description of the algorithm, we need to provide a procedure that finds an induced bipartite subgraphs in Steps 1 and 2.

From Turan's theorem follows that the size of a maximum independent set is at least n/(d + 1) and as shown in [START_REF] Sakai | A note on greedy algorithms for the maximum weighted indepedent set problem[END_REF], there is a linear-time algorithm that constructs an independent set of at least that size. As the time complexity of B depends on |B|, we need to give a lower bound on the size of bipartite subgraph B. The proof of this theorem is similar to the proof of Theorem 3 and will be omitted.

Claim 4 .Theorem 5 .

 45 The set B of vertices constructed in Step 2 of Algorithm B has size at least 2/(d+ 2). Proof. Let i = |I 0 | and m be the number of edges of the subgraph G[I 0 ∪ I 1]. If i ≥ 2n/(d + 2), then |B| ≥ 2n/(d + 2) and the claim follows. Suppose i < 2n/(d + 2). The average degree d in the graph G[V -I 0] is d = 2(m-m)/(n-i). Notice that m ≥ n-i since I 0 is an independent set. Hence, d ≤ 2n/(ni) -2 and since i < 2n/(d + 2), then d < d. From that, follows that |B| = i + (ni)/(d + 1) ≥ 2n/(d + 2).Having established the lower-bound on the size of B, we can claim the running time of Algorithm B. Notice that 2/(d + 2) = n/(n + m) and n -|B| ≤ mn/(m + n). Algorithm B computes MAX-CUT in a graph G with n vertices and m edges in time O * (2 mn/(m+n)), and polynomial space.