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An exact algorithm for MAX-CUT in sparse
graphs1

Federico Della Croce∗, Marcin. J. Kaminski†, Vangelis. Th. Paschos‡

Abstract

The MAX-CUT problem consists in partitioning the vertex set of a weighted graph
into two subsets. The objective is to maximize the sum of weights of those edges that
have their endpoints in two different parts of the partition. MAX-CUT is a well known
NP-hard problem and it remains NP-hard even if restricted to the class of graphs with
bounded maximum degree ∆ (for ∆ ≥ 3). In this paper we study exact algorithms
for the MAX-CUT problem. Introducing a new technique, we present an algorithmic
scheme that computes maximum cut in weighted graphs with bounded maximum
degree. Our algorithm runs in time O∗(2(1−(2/∆))n). We also describe a MAX-CUT

algorithm for general weighted graphs. Its time complexity is O∗(2mn/(m+n)). Both
algorithms use polynomial space.

1 Background

There has recently been a growing interest in analysis of the worst-case complexity
of many NP-hard problems. Unless P �= NP, solving such problems requires super-
polynomial time. Each problem in NP can be solved by a naive algorithm that exhaus-
tively searches the solution space. However, for most of the problems more refined algo-
rithms with better, but still exponential-time complexity, are known.
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grant INT03-39067 to Rutgers University.
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An exact algorithm for MAX-CUT in sparse graphs

Development of exact algorithms is mainly of theoretical interest but existence of fast
exponential algorithms may also have practical importance. Today’s computers are able
to handle moderate size instances of NP-hard problems. However, even though one can
afford to run an exponential-time algorithm, polynomial-space complexity is a must.

Satisfiability, graph coloring and maximum independent set problem are among the
problems that received much attention in the context of exact algorithms. In this paper we
study another well-known NP-hard problem. Given an arbitrary graph with real weights
assigned to its edges, the MAX-CUT problem asks to find a partition of vertices into two
subsets such that the sum of weights of all the edges that have endpoints in two different
parts of the partition is maximized. In unweighted case (i.e. all weights are positive and
equal) the problem is often referred to as SIMPLE MAX-CUT.

1.1 Previous work

SIMPLE MAX-CUT was one of the first problems whose NP-hardness was established.
However, there are classes of graphs as planar graphs, graphs with large girth ([5]),
cographs and graphs with bounded treewidth ([1]), that admit polynomial-time solution
of this problem.

On the other hand, SIMPLE MAX-CUT (and therefore MAX-CUT) remains NP-hard
even if restricted to such classes as chordal, split, or 3-colorable graphs ([1]). As shown
in [11], the problem is NP-hard also in the class of graphs with bounded maximum de-
gree ∆, if ∆ ≥ 3 (for ∆ ≤ 2 the problem becomes trivial).

The worst-case complexity of the MAX-CUT problem has been studied in few papers.
The fastest algorithm for MAX-CUT in arbitrary graphs was proposed by Williams in [9].
Unfortunately it requires exponential space. The algorithm runs in time O∗(2ωn/3) and
uses O∗(2ωn/3) space, where in notation O∗(·) polynomial multiplicative terms are omit-
ted and ω < 2.376 is the matrix multiplication exponent (the product of two k×k matrices
can be computed in time O(kω)). Whether exists a polynomial-space algorithm that com-
putes SIMPLE MAX-CUT and runs faster than the naive one of time complexity O∗(2n) is
an open question listed in [10].

More algorithms has been developed for sparse graphs. In [3] the bound of O∗(2m/3)
was obtained and then improved to O∗(2m/4) in [2]. In [7] (see also [8]) an algorithm
running in time O∗(2min((m−n)/2,m/5)) and polynomial space was proposed.

1.2 Our contribution

In this paper we develop a technique that seems to be a new approach to the MAX-
CUT problem. The method consists in enumerating cuts in a subgraph H of G and then
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extending them in an optimal way to cuts in G. The technique is applied to graphs with
bounded maximum degree and to general graphs. In both cases, we obtain an exponential-
time algorithm that uses polynomial space.

For weighted graphs with bounded maximum degree ∆, we present an algorithmic
scheme that computes a maximum cut. For fixed ∆, the algorithm runs in time O∗(2(1−(2/∆))n)
and polynomial space. The algorithm is faster than [3, 2], however for ∆ ≤ 7, the running
time of our algorithm is dominated by the running time of [7]. It is also slower than the
exponential-space [9] for ∆ < 10.

For general weighted graphs, we obtain an algorithm that computes a maximum cut
and runs in time 2mn/(m+n). The running time of our algorithm dominates the running
times of [3] and [2] for m > 2n and m > 3n, respectively. If m < 7n/5 the algorithm is
faster than [7] and faster than the exponential-space [9] for m < ωn/(3 − ω) < 3.808n.

The organization of the paper is as follows. The next section is a formal introduction
and contains definitions used later. In Section 3 we study a modification of the MAX-CUT

problem and develop our technique which is applied in Section 4 to graphs with bounded
maximum degree and to general graphs in Section 5.

2 Introduction

We consider weighted, undirected, loopless graphs without multiple edges. In a
graph G = (V,E,w), V is the vertex set of cardinality |V | = n, E is the edge set of
cardinality |E| = m, and w : E → R is a weight function that assigns a real number wij

to each edge ij of G.

The number of edges incident to a vertex in a graph is called the degree of the vertex.
The maximum degree of all the vertices of a graph is called the maximum degree of the
graph and denoted by ∆. The average degree of a graph is the sum of degrees of all
vertices of the graph divided by the number of vertices. The average degree is denoted
by d. Notice that d = 2m/n. Given a subset U of vertices of V , the subgraph induced by
the vertices in U is denoted by G[U ].

A cut C = (V0, V1) in a graph is a partition of its vertex set V into two disjoint
subsets V0 and V1. The weight w(C) of cut C is the sum of weights of all the edges that
have their endpoints in two different parts of the cut. Notice that the characteristic vector
of one of the parts, say V0, uniquely determines the partition.

For the purpose of this paper, we will think of a partition as an assignment of 0 − 1
values to the vertices of the graph. Let xi be a Boolean variable which takes value 0,
if vi ∈ V0, and 1, if vi ∈ V1. The weight of a cut in a graph G = (V,E,w) can be
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expressed as a pseudo-boolean function,

w(C) =
∑
ij∈E

wij (xixj + xixj) =
∑
i∈V

wixi − 2
∑
ij∈E

wijxixj, (1)

where wi =
∑

{i,j}∈E wij . A maximum cut in a graph G is a cut of maximum weight.

Given a graph G as an input, the MAX-CUT problem asks to compute a cut in G that
maximizes (1).

Notice that it is enough to consider only connected graphs as if the graph is not con-
nected the MAX-CUT problem can be solved for each of its connected components sepa-
rately.

It is easy to see that if the weights are restricted to be nonnegative real numbers, the
MAX-CUT problem can be solved in polynomial time for the class of bipartite graphs.

3 Extending partial partition of vertices

In this section we consider a modification of the MAX-CUT problem. Suppose some of
the vertices have already been partitioned into two subsets and now the problem is to find
an optimal cut in the graph with respect to that pre-partition. We prove that if the graph
induced by the vertices that have not yet been partitioned is bipartite, then the problem
of finding an optimal extension of the partial partition can be solved in polynomial time.
The algorithms presented in the next sections are based on this result.

Let U ⊂ V be a subset of vertices of G such that the subgraph G′ = G[U ′] induced
by the vertices in U ′ = V \ U is bipartite. Also, let (U0, U1) be a partition of U into
two subsets. Consider the problem of finding a partition (V0, V1) of V with U0 ⊂ V0

and U1 ⊂ V1 that maximizes (1).

The vertices in U have already been assigned to parts of the cut, thus variables xi,
for i ∈ U , have their values fixed. There are four possible types of edges in the cut: with
both endpoints in U , from U0 to U ′, from U1 to U ′, and with both endpoints in U ′. The
problem of finding an optimal extension of pre-partition is now equivalent to maximizing
the following pseudo-boolean function,

∑
i∈U0
j∈U1

wij +
∑
i∈U0
j∈U ′

wijxj +
∑
i∈U1
j∈U ′

wijxj +
∑
i∈U ′
j∈U ′

wij (xixj + xixj) (2)

where all sums are taken over edges ij ∈ E of the graph G. Putting,

cij =
∑
i∈U0

wij −
∑
i∈U1

wij +
∑
i∈U ′

wij
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where all sums are again taken over edges ij ∈ E, and omitting the constant term, the
problem is equivalent to finding a maximum of the function,

∑
j∈U ′

cijxj − 2
∑
ij∈E′

wijxixj (3)

where E ′ is the edge set of the bipartite graph G′. In other words, the problem of find-
ing an optimal extension of pre-partition can be stated as the following integer quadratic
program:

max
∑
i∈U ′

cixi − 2
∑
ij∈E′

wijxixj

s.t. xi ∈ {0, 1}

(4)

The standard linearization technique applied to (4) by introducing yij = xixj , yields the
following linear program:

max
∑
i∈U ′

cixi − 2
∑
ij∈E′

wijyij

s.t. yij ≥ xi + xj − 1
yij ≥ 0
xi ∈ {0, 1}
yij ∈ {0, 1}

(5)

It is easy to see that (4) and (5) are equivalent. They have the same optimal value and
there is an easy correspondence between their solutions, namely yij = xixj .

Having modelled the original quadratic problem (4) as an integer linear program, let
us study the continuous relaxation of (5):

max
∑
i∈U ′

cixi − 2
∑
ij∈E′

wijyij

s.t. yij ≥ xi + xj − 1
xi ≥ 0
xj ≤ 1
yij ≥ 0
yij ≤ 1

(6)

Lemma 1. The constraint matrix of the linear program (6) is totally unimodular, i.e.,
determinant of every square submatrix of it equals 0 or ±1.

Proof. Let A be the constraint matrix of (6). It has |U ′|+|E ′| columns and 2|U ′|+3|E ′|
rows and all its entries are either 0 or ±1. Let B be a edge-vertex incidence matrix of G′.
Notice that B is a submatrix of A. Moreover, any submatrix of A that has two non-zero
entries in every row and every column has to be a submatrix of B.
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Take any square k × k submatrix of A. We will prove the lemma by induction on k.
Clearly, the result holds for k = 1.

Now assume that all (k − 1) × (k − 1) submatrices of A are totally unimodular and
consider matrix M which is a k × k submatrix of A.

If all entries of any row or column of M are 0, then det(M) = 0 and M is totally
unimodular. If any row or column of M has a single non-zero element (±1), then using
the expansion method for calculating determinant and the induction hypothesis, it is easy
to see that det(M) is either 0 or ±1, and A is totally unimodular.

Suppose that each row and each column of M has at least two non-zero entries.
Hence, M must be a submatrix of B but since B is an incidence matrix of a bipartite
graph so is M . It is possible to partition columns of M into two parts, according to the
partition of vertices of bipartite graph. Sum of the columns in each part yields a unit vec-
tor (each edge of the bipartite subgraph has one endpoint in each part) and that implies
linear dependence of M , therefore det(M) = 0 and M is totally unimodular.

Theorem 2. Let U ⊂ V be such that the subgraph G′ = G[U ′] induced by the vertices
in U ′ = V \ U is bipartite and (U0, U1) be a partition of U into two subsets, then the
problem of finding a partition (V0, V1) of V with U0 ⊂ V0 and U1 ⊂ V1 that maximizes (1)
is polynomial-time solvable.

Proof. The problem of finding a partition (V0, V1) of V with U0 ⊂ V0 and U1 ⊂ V1 that
maximizes (1) can be modelled as the integer quadratic program (4) which is equivalent
to (5). Total unimodularity of the constraint matrix of (6) (by Lemma 1) implies the
existence of an optimal 0 − 1 solution of (6). Such solution can be found in polynomial
time. Since the relaxation (6) of (5) has an optimal 0 − 1 solution, therefore (4) can be
solved in polynomial time.

In the previous section we mentioned that the MAX-CUT problem is polynomial-time
solvable in the class of bipartite graphs if the weights are restricted to be nonnegative real
numbers. Note that from Theorem 2 follows that the MAX-CUT problem can be solved in
polynomial time in the class of bipartite graphs (possibly with negative weights).

Before we proceed to the next section, let us briefly describe the algorithmic technique
we are going to apply. Given an induced bipartite subgraph G[B] of B, one can enumerate
all partitions of V \B and find an optimal extension of each such partition in polynomial
time (by Theorem 2). The complexity of such technique is O∗(2|V \B|) and it strongly
depends on the size of the bipartite subgraph that has to be constructed.
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4 Algorithm for graphs with bounded maximum degree

In this section we present and analyze an algorithmic scheme A(∆). For a fixed inte-
ger ∆ (∆ ≥ 3), the scheme yields an algorithm whose input is a weighted graph G =
(V,E,w) of maximum degree ∆ and the output a maximum cut in G with respect to the
weight function w.

Step 1. If G is isomorphic to the complete graph on ∆+1 vertices, then let B be any
pair of vertices and go to Step 3.

Step 2. ∆-color G. Let B be the union of 2 largest color classes of the coloring.

Step 3. Enumerate all partitions of elements of V \ B into two subsets (all 0 − 1
assignments) and for each find an optimal extension of the partial partition.

Step 4. Find a cut C that has the largest weight among all checked in Step 3.
Return the cut C.

Theorem 3. For a fixed integer ∆ (∆ ≥ 3), Algorithm A(∆) computes MAX-CUT in a
graph G in time O∗(2(1−(2/∆))n) and polynomial space.

Proof. Let us notice first that the algorithm indeed finds a maximum cut. It is clear that
the induced subgraph G[B] is bipartite. Therefore, any partition of V \B into two subsets
can be extended to an optimal partition of V in polynomial time by Theorem 2. Clearly,
by enumerating all partitions of V \ B and then extending each in optimal way, one finds
a maximum cut in G.

The enumeration of partitions in Step 3 is the bottleneck of the algorithm; it needs
exponential time O∗(2|V \B|). Other steps can be performed in linear time. It is clear for
Steps 1 and 4, and the linear time algorithm for Step 2 is given in [4]. Notice, that
the algorithm can be implemented in such a way that it uses only polynomial space.

Suppose that the input graph is isomorphic to the complete graph on ∆ + 1 vertices.
The number of partitions that are enumerated in Step 3 is 2n−2 but since ∆ = O(n) the
claimed running time follows.

Now suppose that the input graph G is not isomorphic to the complete graph on ∆+1
vertices. Then, by the Brooks’ Theorem G is ∆ colorable. Clearly, the union of two
largest color classes have size at least 2n/∆ and |V \ B| ≤ n(1 − (2/∆)). The number
of partitions that are enumerated in Step 3 is 2(1−(2/∆))n and the claimed running time
follows.
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5 Algorithm for general graphs

Let us notice that in the algorithm presented in the previous section, the assumption
of bounded maximum degree is needed only to obtain an induced bipartite graph. Now
we relax this assumption and study the complexity of the method in general graphs. Let
us formalize that as an algorithm B. The input of B is a weighted graph G = (V,E,w)
and the output is a maximum cut in G with respect to the weight function w.

Step 1. Find a maximal independent set I0 in G.

Step 2. Find a maximal independent set I1 in G[V \ I0]. Let B be the union of I0

and I1.

Step 3. Enumerate all partitions of elements of V \ B into two subsets (all 0 − 1
assignments) and for each find an optimal extension of the partial partition.

Step 4. Find a cut C that has the largest weight among all checked in Step 3.
Return the cut C.

To complete the description of the algorithm, we need to provide a procedure that finds
an induced bipartite subgraphs in Steps 1 and 2.

From Turan’s theorem follows that the size of a maximum independent set is at
least n/(d + 1) and as shown in [6], there is a linear-time algorithm that constructs an
independent set of at least that size. As the time complexity of B depends on |B|, we need
to give a lower bound on the size of bipartite subgraph B.

Claim 4. The set B of vertices constructed in Step 2 of Algorithm B has size at least 2/(d+
2).

Proof. Let i = |I0| and m′ be the number of edges of the subgraph G[I0 ∪ I1]. If i ≥
2n/(d + 2), then |B| ≥ 2n/(d + 2) and the claim follows. Suppose i < 2n/(d + 2). The
average degree d′ in the graph G[V −I0] is d′ = 2(m−m′)/(n−i). Notice that m′ ≥ n−i
since I0 is an independent set. Hence, d′ ≤ 2n/(n − i) − 2 and since i < 2n/(d + 2),
then d′ < d. From that, follows that |B| = i + (n − i)/(d′ + 1) ≥ 2n/(d + 2).

Having established the lower-bound on the size of B, we can claim the running time
of Algorithm B. Notice that 2/(d + 2) = n/(n + m) and n − |B| ≤ mn/(m + n).

Theorem 5. Algorithm B computes MAX-CUT in a graph G with n vertices and m edges
in time O∗(2mn/(m+n)), and polynomial space.

The proof of this theorem is similar to the proof of Theorem 3 and will be omitted.
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