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Restricted Classes of Utility Functions for
Simple Negotiation Schemes:

Sufficiency, Necessity, and Maximality
Yann Chevaleyre∗, Ulle Endriss†, Nicolas Maudet∗

Résumé
Dans ce papier, nous étudions les propriétés d’un cadre abstrait de négociation

dans lequel les agents négocient à propos de l’allocation de ressources discrètes.
Dans la mesure où l’atteinte d’une allocation optimale peut nécessiter l’utilisation de
transactions extrêmement complexes, on s’intéresse à l’identification de classes de
fonctions d’utilité permettant de garantir une issue optimale à la négociation, même
si celle-ci est conduite à l’aide uniquement de transactions simples impliquant une
seule ressource à chaque fois. On montre que la classe des fonctions modulaires n’est
pas seulement suffisante (lorsque les paiements compensatoires sont permis), mais
aussi maximale. Un résultat similaire est proposé dans le cadre des négociations sans
paiements compensatoires.

Mots-clefs : Allocation de Ressources Distribuée, Négociation Automatique

Abstract

We investigate the properties of an abstract negotiation framework where agents
autonomously negotiate over allocations of discrete resources. In this framework,
reaching an optimal allocation potentially requires very complex multilateral deals.
Therefore, we are interested in identifying classes of utility functions such that any
negotiation conducted by means of deals involving only a single resource at at time
is bound to converge to an optimal allocation whenever all agents model their pref-
erences using these functions. We show that the class of modular utility functions is
not only sufficient (when side-payments are allowed) but also maximal in this sense.
A similar result is proven in the context of negotiation without money.
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1 Introduction

The problem ofdiscrete resource allocation has recently received much attention from the
artificial intelligence community. A large amount of this work is focused oncombinato-
rial auctions [5]. In this case, the allocation procedure is centralised, and the so-called
winner determination problem consists in determining the allocation of resources max-
imising the auctioneer’s revenue.

A different perspective is taken when one assumes that the allocation process is truly
distributed, in the sense that agents autonomously negotiate over the bundles of resources
they hold. This assumption is justified in many applications where no central authority
can be relied on to decide upon the allocation of resources. In this case, the system
designer will typically seek to set up the system in such way that it guarantees desirable
properties, without directly interfering in the negotiation process itself. In this paper we
will make use of such an abstract negotiation framework investigated by a number of
authors [12, 7, 6].

To make things more precise, we assume a set of negotiating agents populating the
system, and we model their preferences (over different bundles of resources) by means of
utility functions. In order to pursue their own interests, agents agree on deals benefitting
themselves but without planning ahead (i.e. they are both rational and myopic), thereby
modifying the allocation of resources. From a global point of view, the quality of an
allocation reflects the overall performance of the system, and the designer will naturally
seek to ensure that negotiation converges towards an optimal allocation.

Section 2 introduces the negotiation framework used in this paper. As we shall recall
in Section 3, it is known that very complex multilateral deals are potentially required
to reach an optimal allocation. When deals are restricted (e.g. to a limited number of
resources), it is only possible to guarantee an optimal outcome by also restricting the
negotiation process to agents whose preferences have certain properties. In this paper,
we study the conditions under which negotiation conducted by means of the simplest
deals, involving one item at a time (or1-deal negotiation for short) still allows us to reach
an optimal allocation. Section 5 generalises a result from the literature and shows that
modelling preferences withmodular utility functions is a sufficient condition. However,
modularity is not anecessary condition. This is demonstrated in Section 6.2 by means of
a counterexample. We also show that there can beno condition on utility functions that
would be both necessary and sufficient for optimal allocations to be negotiable by means
of rational 1-deals. The main contribution of this paper is to show that the class of modular
utility functions ismaximal, in the sense that no class strictly including the modular utility
functions would still be sufficient for 1-deal negotiation. The proof detailed in Section 7
shows that, given any non-modular utility function, it is always possible to construct a
modular utility function and select a scenario where the optimal allocation cannot be
reached by 1-deals. Section 8 concludes.
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2 Myopic Negotiation Over Resources

In this section, we introduce the decentralised negotiation framework used throughout
this paper and report a number of known technical results. In this framework, a finite set
of agents negotiate over a finite set of discrete (i.e. non-divisible) resources. A resource
allocation is a partitioning of the resources amongst the agents (that is, every resource has
to be allocated to one and only one agent). As an example, the allocationA defined by
A(i) = {r1} andA(j) = {r2, r3} would allocate resourcer1 to agenti, while resources
r2 andr3 would be owned by agentj.

We are going to model the preferences of agents by means ofutility functions map-
ping bundles of resources to real numbers. Assuming that agents are only concerned with
resources they personally own, we will use the abbreviationui(A) for ui(A(i)), repre-
senting the utility value assigned by agenti to the bundle it holds for allocationA. The
parameters of a negotiation problem are summarised in the following definition:

Definition 1 (Negotiation problems) A negotiation problem is a tuple P = 〈R,A,U , A0〉,
where

• R is a finite set of indivisible resources;

• A = {1, . . . , n} is a finite set of agents (n ≥ 2);

• U = 〈u1, . . . , un〉 is a vector of utility functions, such that for all i ∈ A, ui is a
mapping from 2R to R;

• A0 : A → 2R is an (initial) allocation.

Agents may agree on adeal to exchange some of the resources they possess. It transforms
the current allocation of resourcesA into a new allocationA′; that is, we can define a deal
as a pairδ = (A,A′) of allocations (withA �= A′).

We should stress that this is amultilateral negotiation framework. A single deal may
involve the displacement of any number of resources between any number of agents.
An actual implementation of this abstract framework may, however, not allow for the
same level of generality. Sandholm [12] has proposed a typology of different types of
deals, such asswap deals involving an exchange of single resources between two agents
or cluster deals involving the transfer of a set of items from one agent to another. The
simplest type of deals are those involving only a single resource (and thereby only two
agents).

Definition 2 (1-deals) A 1-deal is a deal δ = (A,A′) resulting in the reallocation of
exactly one resource.
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The above is a condition on thestructure of a deal. Other conditions relate to theac-
ceptability of a deal to a given agent. We assume that agents arerational in the sense
of aiming to maximise their individual welfare. Furthermore, agents are assumed to be
myopic. This means that agents will not accept deals that would reduce their level of
welfare, not even temporarily, because they are either not sufficiently able to plan ahead
or not willing to take the associated risk (see also [12] for a justification of such an agent
model in the context of multiagent resource allocation).

2.1 Negotiating With Money

In the first variant of this framework, we will permit agents to enhance deals withmone-
tary side payments, in order to compensate other agents for a possible loss in utility. This
can be modelled using apayment function p : A → R. Such a function has to satisfy
the side constraint

∑
i∈A p(i) = 0, i.e. the overall amount of money in the system re-

mains constant. Ifp(i) > 0, then agenti pays the amount ofp(i), while p(i) < 0 means
that it receives the amount of−p(i). The following rationality criterion will define the
acceptability of deals:

Definition 3 (Individual rationality) A deal δ = (A,A′) is rational iff there exists a
payment function p such that ui(A

′) − ui(A) > p(i) for all i ∈ A, except possibly
p(i) = 0 for agents i with A(i) = A′(i).

From a system designer’s perspective, we are interested in assessing the well-being of the
whole society, orsocial welfare [1], which is often defined as the sum of utilities of all
the agents.

Definition 4 (Social welfare) The social welfare sw(A) of an allocation A is defined as
follows:

sw(A) =
∑
i∈A

ui(A)

This is theutilitarian definition of social welfare. While this is the definition usually
adopted in the multiagent systems literature [14], we should stress that also several of
the other notions of social welfare developed in the social sciences (e.g. egalitarian social
welfare [1]) do have potential applications in the context of multiagent resource alloca-
tion.

We conclude this background section by recalling two important results [12, 7]: the
first one makes explicit the connection between the local decisions of agents and the
global behaviour of the system, and the second one is the fundamental convergence theo-
rem for this negotiation framework.

148



Annales du LAMSADE n˚4-5

Lemma 1 (Individual rationality and social welfare) A deal δ = (A,A′) is rational iff
sw(A) < sw(A′).

Theorem 1 (Maximising social welfare) Any sequence of rational deals will eventually
result in an allocation of resources with maximal social welfare.

The main significance of this latter result, beyond the equivalence of rational deals and
social welfare-increasing deals stated in Lemma 1, is thatany sequence of deals satisfying
the rationality criterion will eventually converge to an optimal allocation. There is no need
for agents to consider anything but their individual interests. Every single deal is bound
to increase social welfare and there are no local minima.

2.2 Negotiating Without Money

What happens if we donot allow agents to enhance deals withmonetary side payments
(or explicit utility transfers), in order to compensate other agents for a possible loss in
utility? In this context, we shall assume that agents arecooperatively rational in the sense
of accepting deals that may not result in astrict increase in personal welfare, with the
further condition that at least one agent will strictly benefit from the deal.

Definition 5 (Cooperative rationality) A deal δ = (A,A′) is called cooperatively ra-
tional iff ui(A) ≤ ui(A

′) for all i ∈ A and there exists an agent j ∈ A such that
uj(A) < uj(A

′).

Note that we havesw(A) < sw(A′) for any dealδ = (A,A′) that is cooperatively
rational, butnot vice versa. Clearly, in this general setting, it is not possible to guarantee
that agents will eventually reach a socially optimal allocation of resources. It is not hard
to show, though, that a Pareto optimal allocation can always be reached (recall that the
number of allocations is finite). This holds when any type of deals are allowed. Only the
slightest restriction on the number of agents and/or resources allowed to be involved in a
deal would prevent this result [7].

To compensate for this, one possible solution is to also restrict the class of utility
functions at hand when representing the preferences of agents. More precisely, we will
investigate in this paper the sufficiency of a given class of utility functions when only the
simplest deals are allowed, in the sense that forany set of utility functions{u1, . . . , un}
drawn from this class,any sequence of rational one-resource-at-a-time deals will even-
tually result in an allocation of resources with maximal social welfare. For the sake of
brevity, we say from now on that such a classpermits 1-deals. We will then ask the ques-
tion of the necessity of this class of utility functions, and give a general argument that will
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motivate us to investigate instead the maximality property of this class. The classes of
utility functions we will be interested in are the classes ofmodular functions with shared
α, β-values functions, orMα,β functions for short.

3 Reachability For Restricted Classes of Utility Functions

While Theorem 1 shows that, in principle, it is always possible to negotiate an allocation
of resources that is optimal from a social point of view, deals involving any number of
agents and resources may be required to do so [12, 7]. In particular, the most basic type of
deal, which involves moving a single resource from one agent to another and which is the
type of deal implemented in most systems realising a kind ofContract Net protocol [13],
is certainlynot sufficient for negotiation between agents that are not only rational but also
myopic.

This has first been shown by Sandholm [12] and is best explained by means of an
example.2 Let A = {1, 2, 3} andR = {r1, r2, r3}. Suppose the utility functions of these
agents are defined as follows (over singleton sets):

u1({r1}) = 5 u1({r2}) = 1 u1({r3}) = 0
u2({r1}) = 0 u2({r2}) = 5 u2({r3}) = 1
u3({r1}) = 1 u3({r2}) = 0 u3({r3}) = 5

Furthermore, for any bundleR not listed above, supposeui(R) = 0 for all i ∈ A. Let
A0 with A0(1) = {r2}, A0(2) = {r3} andA0(3) = {r1} be the initial allocation,i.e.
sw(A0) = 3. The optimal allocation would beA∗ with A∗(1) = {r1}, A∗(2) = {r2} and
A∗(3) = {r3}, which yields a social welfare of15. All other allocations have lower social
welfare thanA∗. Hence, starting fromA0, the dealδ = (A0, A

∗) would be the only deal
increasing social welfare. By Lemma 1,δ would also be the only rational deal. This deal,
however, involves all three resources and affects all three agents. In particular,δ is not
a 1-deal. Hence, if we choose to restrict ourselves torational deals, then 1-deals are not
sufficient to negotiate allocations of resources with maximal social welfare.

Of course, for some particular negotiation problems, rational 1-dealswill be sufficient.
The difficulty lies in recognising the problems where this is so. Closely related to this
issue, Dunneet al. [6] have shown that, given two allocationsA andA′ with sw(A) <
sw(A′), the problem of checking whether it is possible to reachA′ from A by means of a
sequence of rational 1-deals is NP-hard in the number of resources in the system.

The structural complexity of deals required to be able to guarantee socially optimal
outcomes partly stems from the generality of the framework. In particular, so far we have

2A methodology for constructing such examples is easily generated from the proof of the result on the
insufficiency of any kind of structurally limited class of deals given by Endrisset al. [7].
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made no assumptions on the structure of utility functions used by the agents to model
their preferences. By introducing restrictions on the class of admissible utility functions,
it may be possible to ensure convergence to an allocation with maximal social welfare by
means of simpler deals. In this paper, we are interested in characterising more precisely
those classes of utility functions that permit 1-deal negotiation.

Definition 6 (1-deal negotiation from a class C) Given a class C of utility functions and
a number n of agents, C is said to permit 1-deal negotiation iff any sequence of rational
1-deals will eventually result in an allocation of resources with maximal social welfare
whenever all utility functions {u1, . . . , un} are drawn from C.

Under this perspective, a relevant result is due to Endrisset al. [7], who show that
rational 1-deals are sufficient to guarantee outcomes with maximal social welfare in case
all agents useadditive utility functions.3 We are going to prove a slight generalisation of
this result in the next section.

4 Modular Utility Functions and Variants

We are now going to define the class ofmodular utility functions. This is an important
(see e.g. [11]), albeit simple, class of functions that can be used in negotiation domains
where there are no synergies (neither complementaries nor substitutables) between differ-
ent resources.

Definition 7 (Modular utility) A utility function u is modular iff the following holds for
all bundles R1, R2 ⊆ R:

u(R1 ∪ R2) = u(R1) + u(R2) − u(R1 ∩ R2) (1)

The class of modular functions includes the aforementioned additive functions. This may
be seen as follows. LetR be any non-empty bundle of resources and letr ∈ R. Then
equation (1) impliesu(R) = u(R \ {r}) + [u({r}) − u({ })]. If we apply this step
recursively for every resource inR, then we end up with the following equation:

u(R) = u({ }) +
∑
r∈R

[u({r}) − u({ })] (2)

That is, in caseu({ }) = 0, the utility assigned to a set will be the sum of utilities assigned
to its members (i.e. u will be additive). Clearly, equation (2) also implies equation (1),i.e.
the two characterisations of the class of modular utility functions are equivalent.

3A utility function is additive iff the utility assigned to a set of resources is always the sum of utilities
assigned to its members.

151



Restricted Classes of Utility Functions for Simple Negotiation Schemes [...]

We now introduce a restriction on the class of modular utility functions, namely the
classes ofmodular functions with shared α, β-values (or Mα,β for short). Intuitively,
Mα,β classes are suited in domains where agents can only like, dislike, or possibly be
indifferent with regards to resources of the system. The key point is thatagents all agree
on the values they may assign to each single resource. Mα,β functions hence define a
set of classes, each class being parametrized by the vectors of possible values assigned
to each resource. An example ofMα,β class would beM−1,+1 where agents simply
assign -1 to each resource they dislike, +1 to each resource they like, and 0 when they are
indifferent as to whether holding the resource or not.

Definition 8 (modular functions with shared α, β-values) A set of utility functions u1...un

is modular with sharedα, β-valuesiff
• there exists a list of coefficients α = (αr1 , . . . , αr|R|) ∈ R+|R|

,

• there exists a list of coefficients β = (βr1 , . . . , βr|R|) ∈ R−|R|
, and

• for each utility function ui there exist two sets S+
i , S−

i ⊆ R with S+
i ∩ S−

i = { }, such
that ∀R ⊆ R, ui(R) = ui({ }) +

∑
r∈R∩S+

i
αr +

∑
r∈R∩S−

i
βr

By extension, given two lists of coefficientsα ∈ R+|R|
, β ∈ R−|R|

, the classMα,β is
defined as the biggest set of modular functions withshared α, β-values.

Consider for instance the classM(2,1),(−20,−7) over resourcesr1, r2, and letu1 andu2

be two utility functions drawn from this class such thatu1({ }) = u2({ }) = 0, S+
1 =

{r1}, S−
1 = {r2}, S+

2 = {r2}, andS−
2 = { }. Then, the values ofu1 andu2 are as shown

in the following table:

R u1(R) u2(R)

{ } 0 0
{r1} 2 0
{r2} -20 1

{r1, r2} -18 1

5 Sufficient Classes of Utility Functions

5.1 Framework With Money

It turns out that in domains where all utility functions are modular, it is always possible
to reach a socially optimal allocation by means of a sequence of rational deals involving
only a single resource each. This is a slight generalisation of a result proved by Endrisset
al. [7], and our proof closely follows theirs.
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Theorem 2 (Negotiation in modular domains) The class M of modular utility func-
tions permits 1-deal negotiation.

Proof. By Lemma 1, any rational deal results in a strict increase in social welfare. To-
gether with the fact that the number of distinct allocations is finite, this ensures that there
can be no infinite sequence of rational deals (termination). It therefore suffices to show
that for any allocation that does not have maximal social welfare there still exists a rational
1-deal that would be applicable.

We are going to use the alternative characterisation of modular utility functions given
by equation (2). For any allocationA, let fA be the function mapping each resourcer to
the agenti that holdsr in situationA. Then, for modular domains, the formula for social
welfare (see Definition 4) can be rewritten as follows:

sw(A) =
∑
i∈A

ui({ }) +
∑
r∈R

u′
fA(r)({r})

with u′
i(R) = ui(R) − ui({ }). Now assume we have reached an allocation of resources

A that does not have maximal social welfare,i.e. there exists another allocationA′ with
sw(A) < sw(A′). Considering the above definition of social welfare and observing that∑

i∈A ui({ }) is a constant that is independent of the current allocation, this implies that at
least one resourcer must satisfy the inequationu′

fA(r)({r}) < u′
fA′ (r)({r}), i.e. the agent

owningr in allocationA values that resource less than the agent owning it in allocation
A′. But then the 1-deal consisting of passingr from agentfA(r) to agentfA′(r) would
already increase social welfare and thereby be rational. �

Like Theorem 1, the above establishes an important convergence result towards a global
optimum by means of decentralised negotiation between self-interested agents. In addi-
tion, provided all utility functions are modular, convergence can be guaranteed by means
of a much simpler negotiation protocol, which only needs to cater for agreements on
1-deals (rather than multilateral deals over sets of resources).

5.2 Framework Without Money

We are now going to prove a similar result in the variant of our framework that does not
allow for side-payments.

Theorem 3 (Sufficiency) Given two vectors α ∈ R+|R|
, β ∈ R−|R|

, the class Mα,β of
modular functions with shared α, β-values permits 1-deals.

Proof. Any rational deal results in a strict increase in social welfare. Together with the
fact that the number of distinct allocations is finite, this ensures that there can be no
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infinite sequence of rational deals (termination). It therefore suffices to show that for
any allocation that does not have maximal social welfare there still exists a cooperative
rational one-resource-at-a-time deal that would be applicable. If an allocationA does not
have maximal social welfare then it must be the case that some agenti holds a resource
r and that there is another agentj in the system such thatui({r}) < uj({r}. That is,
either (i) some agenti holds a resourcer with ui({r})− ui({ }) = 0, and there is another
agentj in the system withuj({r}) − ui({ }) = αr, or (ii) some agenti holds a resource
r with ui({r}) − ui({ }) = βr, and there is another agentj in the system such that either
(iia) uj({r}) − uj({ }) = 0, or (iib) uj({r}) − uj({ }) = αr > ui({r}). In every case,
passingr from i to j would be a cooperatively rational deal, so either negotiation has not
yet terminated or we are in situation with maximal social welfare. � �

6 Necessity Issues

6.1 Modularity Is Not Necessary

In the previous section we have introduced a class of utility functions (namely modular
functions) such that it is possible to guarantee that sequences of rational 1-deals with side-
payments will converge to an allocation with maximal social welfare under the condition
that all agents’ utilities belong to this class. A similar result has been proven in the
framework without money, when all agents’ utility functions belong to a proper subclass
of modular functions (modular functions with sharedα, β-values). A natural question to
ask would then be whether belonging to these classes is also anecessary condition to
guarantee convergence in the respective frameworks.

It turns out that this is not the case, in both cases. We demonstrate this by means of the
following example. SupposeR = {r1, r2} and there are two agents with utility functions
u1 andu2:

u1({ }) = 0 u2({ }) = 0
u1({r1}) = 10 u2({r1}) = 10
u1({r2}) = 10 u2({r2}) = 10
u1({r1, r2}) = 0 u2({r1, r2}) = 0

The situation is as follows: each agent is willing to hold a single resource, and has no
preference as to which resource it actually holds. None of these functions is modular.
The optimal allocations are the allocation where each agent holds one resource. Further-
more, as may easily be checked, any1-deal that involves moving a single resource from
agent 2 to agent 1 is rational. Hence, rational1-deals are sufficient to move to the optimal
allocation for this scenario, despite the functions not being modular.
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6.2 There Is No Sufficient And Necessary Class

In fact, it is possible to show that there can be no class of utility functions that would
be both sufficient and necessary in this sense. It suffices to produce two concrete utility
functionsu1 andu2 such that(i) both of them would guarantee convergence if all agents
were using them, and(ii) there is a scenario where some agents are usingu1 and others
u2 and convergence is not guaranteed. This is so, because assuming that a necessary and
sufficient class exists,(i) would imply that bothu1 andu2 belong to that class, while
(ii) would entail the contrary. We give two such functions for the case of two agents and
two resources (the argument is easily augmented to the general case):

u1({ }) = 0 u2({ }) = 0
u1({r1}) = 1 u2({r1}) = 5
u1({r2}) = 2 u2({r2}) = 5
u1({r1, r2}) = 3 u2({r1, r2}) = 5

The functionu1 is modular,i.e. all agents using that function is a sufficient condition
for guaranteed convergence to an optimal allocation by means of rational 1-deals (The-
orem 1). Clearly, convergence is also guaranteed if all agents are usingu2. However,
if the first agent usesu1 and the secondu2, then the allocationA with A(1) = {r1}
and A(2) = {r2} is not socially optimal and the only deal increasing social welfare
(and thereby, the only rational deal) would be to swap the two resources simultaneously.
Hence, no condition on all agents’ utility functions can be both sufficient and necessary
to guarantee convergence to an optimal allocation by means of rational 1-deals alone.

6.3 Checking a Necessary and Sufficient Condition on Sets of Utility
Functions is Intractable

In the previous section, we showed there are no class of utility functions that would be
both sufficient and necessary to permit 1-deal negotiation. A natural question therefore
arises : is there a simple necessary and sufficient condition onsets of utility functions
instead ofclasses of utility functions, which permits 1-deal negotiation? Such a condition
can be expressed as a decision problem over the set of utility functions, as follows:

Definition 9 (1-deal negotiation from a set {u1, . . . , un}) Given a set {u1, . . . , un} of
utility functions, this set is said to be permit 1-deal negotiation iff with n agents shar-
ing these utility functions, any sequence of rational 1-deals will eventually result in an
allocation of resources with maximal social welfare.

We will show here that under a few restrictions, the above decision problem is co-NP-
hard. This means that a necessary and sufficient condition on sets of utilities would be
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intractable to check. In other words, such a condition would not be as simple as those
used in previous section (e.g. modularity).

First note that such a hardness result necessarily depends on the representation lan-
guage used for the utility functions. Recently, Dunne showed that for utility functions
represented with SLP (Straight Line Programs), checking if sets of utilities permit 1-deal
negotiation was co-NP-hard. Here, instead of showing a similar result for another partic-
ular representation, we will define some general restrictions on representation languages
under which the hardness results hold.

First of all, let us define two general restrictions on representation languages, the first
of which is related to the hardness of solving a decision problem (calledutility improve-
ment) defined as follows, and the second of which is concerned with the structure of the
languages (calledr-composition).

Definition 10 (Utility Improvement) Given a utility u represented with a representation
language REP ′, and given a set Q ⊆ R, the Utility Improvement (UI)problem is defined
as follows: check wether there exists Q′ ⊆ R such that u(Q′) > u(Q).

Clearly, the hardness of the UI problem is related to that of finding the maximum of the
functionu. Of course, the utility improvement decision problem is known to be NP-hard
for many representation languages, as detailed further.

Definition 11 (r-composition) Let REP and REP ′ be two representation languages
over utility functions. Let r ∈ R be a resource. Then, REP is said to be a r-composition
overREP ′ iff ∀u ∈ REP ′, ∀k ∈ R, the utilities v and v̄ defined below belong to REP
and the number of bits needed to represent both utilities is polynomially bounded by the
size of u:

v(R) =

{
u(R) − k if r ∈ R

0 otherwise
v̄(R) =

{
u(R) − k if r /∈ R

0 otherwise

For the sake of simplicity, we will say that a representationREP is r-composed iff there
exists a representationREP ′ over whichREP is ar-composition.

As many interesting representation languages arer-composed, the results presented
here are quite general. Let us briefly present some of these representation languages
commonly used in multiagent resource allocation. In the following,r is any resource
chosen amongR.

• Thek-additive representation [9] for k ≥ 3 is a r-composition over the(k − 1)-
additive representation. Intuitively,k-additive utility functions can be represented
by a multinomial of degreek [2]. Note that fork ≥ 2, the UI problem withk-
additive functions is NP-hard [4].
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• Posiforms of degree k [2] for k ≥ 3 arer-compositions over posiforms of degree
k − 1. This is a generalization ofk-additive forms, and thus fork ≥ 2, the UI
problem here is also NP-hard [4].

• Thebundle form representation [4] is also ar-composition over itself. It consists in
enumerating all bundles of resources for which the utility is not null. Again, it was
shown in [4] that the associated UI problem is NP-hard.

• The SLP (Straight Line Programs) representation [6] is ar-composition over itself.
Intuitively, SLP are computer programs without loops. Dunne showed that UI is
also NP-hard using this representation [6].

We can now present the main theorem of this section, lying on the above restrictions.

Theorem 4 Let REP be a representation language. If the following conditions hold, then
the problem of checking if a set of utilities {u1, . . . , un} represented with REP permits
1-deal negotiation is co-NP-hard, even with only two agents:

• there exists a representation REP ′ over which REP is a r-composition

• the UI problem with this representation REP ′ is NP-hard

• There exists a null valued utility function v0 in REP

Proof. Let 〈u,Q〉 be an instance of the UI problem over theREP ′ representation. Let us
show that this problem reduces to checking if sets of utilities permit 1-deal negotiation.

Let v0 be the null-valued utility function, let the set of agents beA = {1, 2}. Let us
introduce two utility functions:

v(R) =

{
u(R) − u(Q) if r1 ∈ R

0 otherwise
v̄(R) =

{
u(R) − u(Q) if r1 /∈ R

0 otherwise

Clearly, these two functions belong toREP, because of ther-composition property.
We can now define two negotiation problems. LetP (resp.P̄) be the problem of checking
if 1-deal negotiation is permitted, for two agents with utilitiesv andv0 (resp. v̄ andv0).
We will now show that if we can decide whether these problems permit 1-deal negotiation,
then we can immediately deduce the answer to the UI problem over〈u,Q〉.

First of all, note that if the answer to the UI problem over〈u,Q〉 is NO, then both
P andP̄ will permit 1-deal negotiation. In fact, if it is the case,0 is the highest value
the functionu can take, and moving resourcer1 from an agent to another inP or P̄ will
lead to an optimal allocation if the current allocation is not already optimal. Due to the
converse, we can deduce the following:
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• If eitherP or P̄ doesn’t permit 1-deal negotiation, then the answer to the UI prob-
lem is YES

Finally, note that in case where both problems do permit 1-deal negotiation, answering to
the UI problem is easy : consider indeed allocationA = 〈{ },R〉 (resp. Ā = 〈R, { }〉).
These allocations have a social welfare whose value isv(A)+v0(A) = v̄(Ā)+v0(Ā) = 0.
Clearly, the answer to the UI problem is YESiff there exists an allocationA′ such that
v(A′) > 0 or there exists an allocation̄A′ such that̄v(Ā′). Because of the property of
utilities permitting 1-deal negotiation, this is equivalent to finding whether there exists an
individually rational 1-dealδ = (A,A′) overP or δ̄ = (Ā, Ā′) overP̄. To summarize:

• If bothP andP̄ do permit 1-deal negotiation then consider allocationA = 〈{ },R〉
(resp. Ā = 〈R, { }〉). If there exists any individually rational 1-dealδ = (A,A′)
overP or δ̄ = (Ā, Ā′) overP̄, then the answer to the UI problem is YES, otherwise
it is NO.

�

Corollary 1 For any k ≥ 3 and n ≥ 2, the problem of checking whether the set {u1, . . . , un}
of utility functions permits 1-deal negotiation is co-NP-hard if these utilities are repre-
sented in k-additive form, posiforms of degree k, SLP, or bundle form.

To conclude this section, we could say that for many common expressive representation
languages, checking if sets of utilities permit 1-deal negotiation is intractable. Therefore,
searching for a condition over sets of utility functions is unrealistic.

As we have shown that no class of utility function was both sufficient and necessary,
and as, on top of that, we have just argued that checking conditions onsets of utility
functions was intractable in most cases, the best thing we can do is to investigate whether
some restricted classes of utility can be identified as beingmaximal.

7 Maximal Classes of Utility Functions

We are now going to prove one of the main results of this paper, namely the surprising fact
that the class of modular utility functions is not only sufficient for 1-deal negotiation with
money, but alsomaximal in the sense that no class of utility functions strictly including
the modular functions would still be sufficient for 1-deal negotiation. The significance
of this result can only be fully appreciated when considered together with the “negative”
result on necessary and sufficient conditions discussed in the previous section.

Before stating the main result, we prove the following auxiliary lemma:
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Lemma 2 (Alternative characterisation of modularity) A utility function u is modular
iff the following holds for all R ⊆ R and all r1, r2 ∈ R with r1, r2 �∈ R and r1 �= r2:

u(R∪{r1, r2}) = u(R∪{r1})+u(R∪{r2})−u(R) (3)

Proof. To show this, let us recall elementary facts about submodular functions. A function
v : R → R is submodular iff∀R1, R2 ⊆ R, v(R1)+v(R2) ≥ v(R1∪R2)+v(R1∩R2). It
is also known thatv is submodular iffv(R∪{r1})+v(R∪{r2}) ≥ v(R∪{r1, r2})−v(R)
for anyR ⊆ R, r1, r2 ∈ R\R, with r1 �= r2 [10, p.662]. Because a functionu is modular
iff both u and−u are submodular, the lemma holds. �

7.1 Framework With Money

We are now in a position to prove our theorem on the maximality of the class of modular
utility functions with respect to rational negotiation over one resource at a time:

Theorem 5 (Maximality) Let M be the class of modular utility functions. Then for any
class of utility functions F such that M ⊂ F , F does not permit 1-deal negotiation.

Proof. First observe that for|R| ≤ 1, any utility function is modular,i.e. the theorem
holds vacuously in these cases. Therefore, without loss of generality, from now on we
assume that there are at least two distinct resources in the system.

The proof is constructive. We will show that for any non-modular utility functionu1

on m resources, it is possible to construct a modular utility functionu2 (with ui ≡ 0 for
all other agentsi) and an initial allocation such that no optimal allocation can be reached
by means of 1-deals. This implies thatM∪ {u1} does not permit 1-deals.

Becauseu1 is non-modular, Lemma 2 can be applied in the following way: there exist
a bundleX and distinct resourcesr1, r2 /∈ X such thatε, defined as follows, is not equal
to 0:

ε = u1(X ∪ {r1}) + u1(X ∪ {r2}) − u1(X) − u1(X ∪ {r1, r2}) (4)

From now on,A12|, A|12, A1|2 andA2|1 will refer to allocations in whichr1 andr2 belong
to one of the first two agents, and in which resources inX are owned by1, and resources
in Y = R\(X ∪ {r1, r2}) by 2, as shown in the following table.

Agent 1 Agent 2

A12| {r1, r2} ∪ X Y
A|12 X {r1, r2} ∪ Y
A1|2 {r1} ∪ X {r2} ∪ Y
A2|1 {r2} ∪ X {r1} ∪ Y
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Figure 1: Values ofsw for the four allocations (caseε > 0).

Let us build a modular utility functionu2 defined as follows:∀R ∈ R,

u2(R) =
∑

r∈{r1,r2}∩R

αr +
∑

r∈R∩Y

ω −
∑

r∈R∩X

ω (5)

with ω = 14 × max |u1| + 1. Let Ω = u2(Y ) = |Y | × ω. As the rest of the proof shall
reveal, the value ofω has been chosen such that the social welfare of each of these four
allocations is greater than that of any other allocation. Of course, this will imply that the
optimal allocation has to be among these four. The values ofαr1 andαr2 will be chosen
later. The social welfare of each of these four allocations can then be written as follows:

sw(A|12) = Ω + αr1 + αr2 + u1(X)

sw(A12|) = Ω + u1(X ∪ {r1, r2})
sw(A1|2) = Ω + αr2 + u1(X ∪ {r1})
sw(A2|1) = Ω + αr1 + u1(X ∪ {r2})

It remains to be shown that depending on the value ofε, we can always choose an initial
allocation among these four and values ofαr1 andαr2 such that (1) this initial allocation
does not have optimal social welfare, (2) there is only one rational deal from this alloca-
tion, (3) this deal leads to the optimal allocation but however (4) this rational deal would
involve more than one resource. We will have to consider two cases for equation (4): the
case ofε > 0 and the case ofε < 0.

(1st case) Supposeε > 0. Let us chooseαr1 = u1(X ∪ {r1}) − u1(X) − ε
4

andαr2 =
u1(X ∪ {r1, r2}) − u1(X ∪ {r1}) + ε

4
.

Let us first show that the four allocations have a greater social welfare than any other.
With the help of equation (4), observe that both|αr1 | and|αr2| are less than3×max |u1|.
Thus, all four allocations have a social welfare of at leastΩ − |αr1| − |αr2| −max |u1| ≥
Ω − 7 × max |u1| > Ω − ω

2
. All other allocations have a social welfare lower than
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Figure 2: Values ofsw for the four allocations (caseε < 0).

Ω − ω + |αr1| + |αr2| + max |u1| ≤ Ω − ω + 7 × max |u1| < Ω − ω
2
. Thus, the social

welfare of each of the four allocations is greater than that of any other allocation.

Now let us show thatA2|1 is the optimal allocation, as illustrated in Figure 1. More
precisely, let us show thatsw(A|12) < sw(A1|2), that sw(A12|) < sw(A1|2) and that
sw(A1|2) < sw(A2|1). By substituting the values ofαr1 andαr2 and using equation (4),
the social welfare of each allocation can be written as follows:

sw(A|12) = Ω + u1(X ∪ {r1, r2})
sw(A12|) = Ω + u1(X ∪ {r1, r2})
sw(A1|2) = Ω + u1(X ∪ {r1, r2}) +

ε

4
sw(A2|1) = Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})

−u1(X) − ε

4

= Ω + u1(X ∪ {r1, r2}) +
3

4
ε

Here,A2|1 is clearly the optimal allocation. If we chooseA1|2 as the initial allocation, then
the only 1-deals involving resourcesr1 or r2 areδ(A1|2, A12|) andδ(A1|2, A|12). These
deals decrease social welfare, and thus are not individually rational by Lemma 1. Thus, it
is not possible to reach the optimal allocationA2|1 starting fromA1|2 using only 1-deals.

(2nd case) Supposeε < 0. Let us chooseα1 = u1(X ∪ {r1}) − u1(X) − ε
4

andα2 =
u1(X ∪ {r2}) − u1(X) − ε

4
.

Note that again, both|αr1| and |αr2 | are less than3 × max |u1|. Thus, by the same
argument as in the first case, the four allocations all have greater social welfare than any
other allocation.
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The optimal allocation is nowA12|. To see this, let us show thatsw(A1|2) < sw(A|12),
thatsw(A2|1) < sw(A|12), and thatsw(A|12) < sw(A12|) as illustrated in Figure 2.

sw(A|12) = Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})
−u1(X) − ε

2
sw(A12|) = Ω + u1(X ∪ {r1, r2})

= Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})
−u1(X) − ε

sw(A1|2) = Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})
−u1(X) − ε

4
sw(A2|1) = Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})

−u1(X) − ε

4

Here,A12| is clearly the optimal allocation. If we chooseA|12 as the initial allocation,
then the only 1-deals involvingr1 or r2 areδ(A|12, A1|2) andδ(A|12, A2|1). These deals
decrease social welfare, and thus are not individually rational by Lemma 1. Thus, it is not
possible to reach the optimal allocationA12| starting fromA|12 using only 1-deals. �

Why is this result significant? As argued earlier, while the full abstract negotiation frame-
work introduced at the beginning of this paper would be difficult to implement, designing
a system that only allows for pairs of agents to agree on deals over one resource at a time
is entirely feasible. As we would like to be able to guarantee socially optimal outcomes in
as many cases as possible, also for such a restricted negotiation system, we would like to
be able to identify the largest possible class of utility functions for which such a guarantee
can be given. However, our discussion in Section 6.2 has shown that there can be no class
of utility functions thatexactly characterises the class of negotiation problems for which
negotiating socially optimal allocations by means of rational 1-deals is always possible.
Still, thereare classes of utility functions that permit 1-deal negotiation. As shown by
Theorem 2, the class of modular functions is such a class and it is a very natural class to
consider. An obvious question to ask is therefore whether this class can be enlarged in
any way without losing the desired convergence property.

Our proof of Theorem 5 settles this question by giving a negative answer: For any
agent with a non-modular utility function there exist modular utility functions (for the
other agents) and an initial allocation such that rational 1-deals alone do not suffice to ne-
gotiate an allocation of resources with maximal social welfare. There may well be further
such classes (that are both sufficient and maximal), but the class of modular functions is
one that is particularly natural and useful in the context of modelling agent preferences.
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7.2 Framework Without Money

Can the result of the framework with money be translated in our framework without
money? We are now going to show that this is the case: any class of modular utility
functions withα, β shared values is not only sufficient for 1-deal negotiation, but also
maximal in the sense that no class of utility functions strictly including that class would
still be sufficient for 1-deal negotiation.

Theorem 6 (Maximality) Let Mα,β be a class of modular functions with shared α, β-
values. Then for any class of utility functions F such that Mα,β ⊂ F , F does not permit
1-deal negotiation.

Proof. The proof is constructive, and involves two agents. We will show that forany
functionu1 not belonging to the class of modular functions with sharedα, β-values, it is
possible to construct a modular utility functionu2 and to choose an initial allocation such
that the optimal allocation cannot be reached by means of cooperative rational 1-deals.
This will imply thatMα,β ∪ {u1} does not permit 1-deal negotiation.

First note that for any modular function with sharedα, β-values, iff∀X ⊂ R,∀r ∈
R\X : u(X∪{r}) = u(X)+v, with v ∈ {αr, 0, βr}. Letu1 be an arbitrary function, not
belonging to the classMα,β, that is, there existsX ⊂ R and a resourcer1 ∈ R\X such
thatu(X ∪ {r1}) = u(X) + v, with v �∈ {αr1 , 0, βr1}. (Recall thatαr1 > 0 andβr1 < 0).
Now, letu2 ∈ Mα,β defined as follows:∀R ∈ R :

u2(R) = u2({}) +
∑

r∈R∩X

βr +
∑

r∈R∩R\(X∪{r1})
αr +

∑
r∈R∩{r1}

z

with z to be chosen in{αr1 , βr1} We now consider the two allocations where agent 1
owns all resources inX, and agent 2 owns all resources inR\(X ∪{r1}). Amongst these
allocations, letAr1| (resp.A|r1) be the one where agent 1 (resp. agent 2) owns in addition
resourcer1. It remains to be shown that no cooperative 1-deal is possible. This can be
done by considering the different cases. We start by observing that agent1 cannot pass
a single resourcer ∈ X to agent 2 (becauseu2 would decrease of|βr|), and that agent 2
cannot pass a single resourcer ∈ R\(X ∪ {r1}) because in this caseu2 would decrease
of the valueαr. Let us now consider the case of 1-deals involving resourcer1. Note that
sw(Ar1|) − sw(A|r1) = v − z. There are now four different cases to consider depending
on the value ofv.
(case 1):v > αr1 . By choosingz = αr1 , we prevent agent 2 from passingr1 on to agent
1 (becauseu2 would decrease ofαr1), but still we havesw(Ar1|) > sw(A|r1) (because
v − z > 0).
(case 2):v < βr1 . By choosingz = βr1, we prevent agent 1 from passingr1 on to agent
2 (becauseu1 would decrease of|βr1 |), but still we havesw(Ar1|) < sw(A|r1) (because
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v − z < 0).
(case 3):0 < v < αr1. By choosingz = αr1, we havesw(Ar1|) < sw(A|r1) (because
v − z < 0), but still agent 1 cannot giver1 to agent 2 (becauseu1 would decrease ofv).
(case 4):βr1 < v < 0. By choosingz = βr1 , we havesw(Ar1|) > sw(A|r1) (because
v − z > 0), but still agent 2 cannot giver1 to agent 1 (becauseu2 would decrease of|v|).

�

8 Conclusion

This paper makes a contribution to the theoretical analysis of a negotiation framework
where rational but myopic agents agree on a sequence of deals regarding the reallocation
of a number of discrete resources. We have shown that the use ofmodular utility func-
tions to model agent preferences is asufficient condition, if side-payments are allowed,
to guarantee final allocations with maximal social welfare in case agents only negotiate
1-deals (involving one resource each). When no side-payments are permitted, any class
of Mα,β functions would be sufficient. We have then seen that this is, however, not a
necessary condition for optimal outcomes (being it with or without money) and, indeed,
there can be no condition on (individual) utility functions that would be both necessary
and sufficient in this sense. Furthermore, we have shown that, while a necessary and suf-
ficient condition on sets of utility functions obviously does exist, checking it is intractable
for most representations commonly used in multiagent resource allocation settings. We
have therefore concentrated on showing that the class of modular (resp. with sharedα, β
values) functions ismaximal in the framework with money (resp. without money),i.e. no
strictly larger class of functions would still permit an optimal allocation to be found by
means of rational 1-deals in all cases.

We consider this not only a surprising result, but also a useful characterisation of nego-
tiation domains that can be handled reliably using simple negotiation protocols, catering
only for Contract Net-like deals over single items between pairs of agents, rather than the
full range of multilateral deals forseen in the abstract framework. Such theoretical results
affect both the design of agents and of negotiation mechanisms. For instance, if a given
mechanism can only handle 1-deals, then it may be inappropriate to design myopic agents
with very rich preference structures to use such a mechanism.

In a companion paper [3], we prove a generalisation of Theorem 1 which shows that
rational deals involving at mostk resources each are sufficient for convergence to an opti-
mal allocation in case all utility functions areadditively separable with respect to a com-
mon partition ofR (i.e. synergies across different parts of the partition are not possible
and overall utility is defined as the sum of utilities for the different sets in the partition [8]),
and each set in this partition has at mostk elements. The arguments against the existence
of sufficient conditions for negotiation overk items at a time that are also necessary gen-
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eralise in the expected manner. An important issue that remains to be investigated in the
future therefore is to see whether it is possible to derive a similar maximality property as
the one proved in this paper for this richer class of utility functions.
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