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Abstract: In this paper, a realistic modeling of interferences forguency assignment in hertzian telecom-
munication networks is presented. In contrast with tradfitil interference models based only on binary
interference constraints involving two frequencies, theswv approach considers the case of cumulative
disruptions that are modeled through a unigue non-binamst@int. To deal with these complex constraints,
we propose extensions of classical integer linear programrformulations. On a set of realistic instances, we
propose hybrid constraint programming and large neighloarth search solution methods to solve minimum
interference and minimum span frequency assignment prabl#Ve compare their performances with those of
existing heuristics. Finally, we show how the end-user fiseom using the cumulative model instead of the
traditional one.

Keywords: Frequency Assignment, Cumulative Interference Congsaininear Programming, Constraint
Programming, Large Neighborhood Search.

1 Frequency assignment with cumulative interference constraints

This paper presents a frequency assignment problem (FA®) imertzian telecommunication network. The
network consists of geographic sites on which antennasigpéanted. Each antenna is connected to senders
and/or receivers. A given site may include several anterinas distinct geographic sites can be connected by
one or several unidirectional links. Each link is directeahfi the sender of an antenna located on the first site
to the receiver of an antenna located on the second one.

Let 7" denote the set of links. Frequency assignment aims at gigrepch link a frequency value which
guarantees a good communication quality.

Each linki € T is associated to a frequency domdinwhich defines the set of discrete frequencies that can
be allocated ta. These domains result from legal issues, hardware liroitatiand geographic equipments
localization.

Communication quality is evaluated through electromagrampatibility computations. Such compatibility
consists, for a given receiver, in taking into account thieént emissions of neighbor senders that may disrupt
it. For instance, the carrier to interference ratio (C/taxion) expresses an acceptable threshold between the
useful power received by the disrupted receiver and thevedgower coming from all neighbor senders.



Usually, the “right to disturb” (Aardaét al, 2003), defined through the C/I criterion, is equally dzited
among all the disrupters. Such a distribution allows to gfarm a situation withV senders disrupting a
receiver intoN binary situations with a single disrupter sender and a sidgdrupted receiver.

Let CEM,; denote the set of links pairs concerned by such binary irtenice constraints. Then, the classical
interference constraints can be expressed as follows:

|fi — fjl =i V(i,5) € CEMy (1)

whered;; is a minimal gap between frequengyallocated to link: and frequencyf; allocated to link;.

However, the uniform distribution assumption is made adicqy to practical solution issues without any real-
istic justification. In this paper, this simplification isajiped by considering a new model issued by the French
Armament Electronics Center (CELAR

Indeed, distance constraints (1) can be replaced by weakendre complex constraints which simultaneously
take theV disrupter links into account. Such realistic models havenbgtudied only recently in the literature.
For example, (Dunkiret al., 1998, Mannino and Sassano, 2003) consider a simplified Incodgpared to the
one presented here. The differences are explained below.

In this paper, we replace the distance matrix by a funciipnof N — IR such thatT;;(x) represents the
disruption of link;j on link : when| f; — f;| = =. Such a model allows to consider disruptions witk 1, which
is not the case of the model presented in (Mannino and Sas2@@8). Functiorl;;, called the perturbation
function, is positive, decreasing and tends to @ &screases, as shown in Figure 1.
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Figure 1: Example of a perturbation functid@gy

Another difference with the model considered in (Mannina &assano, 2003) concerns the influence of a
disrupter linkj # ¢, weighted by a multiplier\;; that takes into account the geographical distance and the
respective orientations of both disrupting and disrupteldsl Finally, only a subseP; of links (the ones that
are able to disrupt link) is involved in a cumulative constraint. Lé&t; denote an acceptable threshold for
the receiver of linki, computed according to the C/I criterion, and let CEt&note the set of disrupted links
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involved in a cumulative constraint. The new interferenoastraints are now expressed as follows:

S NgTy(Ifi — fi1) < Ai - Vie CEMy o
JEP;

More precisely, two cases have to be considered:

e The case where the disrupting senders are located on thessi@nas the disrupted receiver, (“near field”
disruptions). In this case, the constraints are kept in thari form (1).

e The case where the disrupting senders are not located orathe site as the disrupted receiver (“far
field” disruptions). In this case, new formulation (2) isahved.

In addition, other imperative binary constraints are cdesgd in the studied problem: these are fixed distance
(3) and forbidden distance (4) constraints. Such consgsamamed duplex constraints, appear between two
links connecting the same sites. ;Gnd Cl denote the sets of links pairs involved in each type of duplex
constraints, respectively.

|fi = fil =€ V(i,5) € Cly 3
|fi = fjl #ej V(i,j) € Cly (4)

The set of constraints defines an interference gréph- (7', F) where each node df’ represents a link
and each edg€, j) € E represents a (Cl or CEM) constraint between linkend j. Working on this graph
allows frequency assignment problems involving only byriaterference constraints to be represented as graph
coloring problems.

For a realistic problem, satisfying all interference coaisits (1) and (2) reveals itself impractical. Thus, a
solution approach consists in relaxing these constraimisrainimizing the weighted sum of their respective
violations. Such a problem is known as the minimum interieeefrequency assignment problem (MI-FAP).

When a solution can be found without violating any intenf@e constraint, a secondary objective is to minimize
the spani.e. the difference between the maximum and minimum assignegdémcies. This problem is denoted

as the minimum span frequency assignment problem (MS-FAP).

Because of the originality and practical importance of tleele involving cumulative interferences, the CELAR
organized, in 2002, a contest where three independent tharth$o solve the problem using three different
methods. The first objective was to find the best solution peetlEventually, it aimed at checking whether
the methods were able to take advantage of the flexibilipéhtced by the new model or, on the contrary, if
the model was too complex to be useful in practice. Relatedt wo classical frequency assignment problems
and other methods presented in the contest are describegkctio® 2. Integer programming and constraint
programming formulations of the frequency assignment jgrmbwith cumulative constraints are presented in
Sections 3 and 4, respectively. Section 5 presents thegiroinistances proposed by the CELAR as well as the
preprocessing technique, exact method and large neigbbdrsearch heuristic we propose. In Section 6, the
results of the large neighborhood search heuristic are aoedpwith the methods presented in the contest. The
interest of considering the new cumulative model is undediin Section 7. Concluding remarks are drawn in
Section 8.



2 State-of-the-art approachesfor frequency assignment and methods presented
inthe CELAR contest

Most of the approaches encountered in the literature ddahltive MI-FAP or the MS-FAP with binary inter-
ference constraints. A complete description of these ampres can be found in (Aardet al., 2003).

Due to the strong connections between graph coloring amgiémrcy assignment, many encountered methods
involve techniques that have been shown very effective eridimer problem class. These methods rank from
the simplest constructive algorithms to complex metalstios. Among the constructive methods, the gener-
alization of the DSATUR procedure (Brélaz, 1979) constisuthe basis of Costa’s work (Costa, 1993). Slight
modifications can be performed to tackle the specificity efMi-FAP (Borndorferet al,, 1998). The concept

of generalized saturation degree (Valenzusdlal., 1998) falls into this category. Other constructive method
are based on the analogy between graph coloring and freguessignment, like the generalized sequential
packing procedure (Sung and Wong, 1997). Local search appes (Borgne, 1994) and metaheuristics, like
genetic algorithms (Valenzuet al., 1998), are also based on graph coloring methodologies.

Integer linear programming formulations have been propdsefrequency assignment, but only for the binary
interference case (Aardat al., 2003). A constraint programming approach has been destribstricting also
to the binary case and for span minimization only (Walse®6)9

Local search constitutes a common approach for solvingafp)rfrequency assignment problems, as already
observed above for graph coloring based methods (Tsang@mib\uris, 1998). Standard metaheuristics have
also been developed, like simulated annealing (Knalma®®4) and tabu search (Capone and Trubian, 1999,
Hao, 1996). Under the category of evolutionary approachesetic algorithms (Cromptaet al., 1994, Kolen,
1999) and ant colony optimization methods (Maniezzo and@earo, 2000, Montemanet al., 2002) can be
found.

For problems involving cumulative interferences, a metiogy called Solve and Extend, has been applied in
(Smith, 1998) and (Mannino and Sassano, 2003). As alreadgrlimed in Section 1, the authors consider a
particular case of the model presented in this paper. Theepre is executed in two distinct phases. During
the first phase, a significant sub-problem is chosen and d¢&elve phase); then, it is extended in order to
obtain a solution to the global problem (Extend phase). T phase process is iterated until a stopping
criterion is met.

To solve the problem considered in this paper, three teams imecompetition in the context of the CELAR
contest. A simulated annealing procedure was designeddyg8ud and Berny, 2003), involving Gibbs sam-
pling for the choice of neighbor. The neighborhood was deflmeall the possible changes of a single frequency
value, each move being associated to a probability. ThegShimpling introduces a variant compared to the
traditional simulated annealing scheme. At each iteratibperforms an exhaustive search of the neighbor-
hood to possibly find an improving solution. The probaktistelection of the neighbor is performed only if
the best neighbor does not improve the best known solutioradtition, learning techniques are used: based
on statistics on the previously explored solutions, théabilities of all moves likely to lead to good solutions
are increased.

(Vlasak and Vasquez, 2003) tested the consistent neigbbdrtabu search method (CN-tabu) which obtained
excellent results for other frequency assignment problemee.g. (Vasquezet al, 2005). As CN-tabu solves
only search problems, a linear search from an upper boundrfermed for the two considered criteria. We
refer to (Vasquezt al, 2005) for a precise description of the CN-tabu method. ffedi from the classical
tabu search method on two main characteristics. First,dhech is performed on partial solutions, where only



a subset of frequencies are instantiated, satisfying alsttaints. A move consists in selecting an unassigned
frequency and fixing its value. This instantiation may leadh inconsistency and generate a conflict set of
frequencies that have to be unfixed by a repairing processnélghborhood of a partial solution is obtained by
considering all partial solutions that can be reached by sumove. The second main component of the CN-
tabu method is the use of specific local consistency chedkictgniques to compute efficiently which variables
have to be uninstanciated at each move.

In the remaining of the paper we describe the models and mgthiar team developed for this contest and we
compare the results of our best method with the ones dewlopéSarzeaud and Berny, 2003) and (Vlasak
and Vasquez, 2003).

3 Integer linear programming formulations

We propose two mixed integer linear programming (ILP) folations of the cumulative MI-FAP and MS-
FAP, respectively. Inspired by the classical ILP formuwas of the binary MS-FAP and MI-FAP (Aardel al,,
2003), we use variables indexed by the frequency value. &ar knk: € T and for each possible valuec F;
of f;, we introduce a binary variable;, equal to 1 if and only iff; = v.

Finding the optimal solution for MI-FAP consists in solvitige following integer linear program:

min (6% Z Cij + ﬂ Z di (5)
(4,5)eCEMy icCEM,
s-t Soxpp=1 VieT (6)
UGFi
Tiy < Lj(vtei) + Lj(v—eij) V(Z,]) € Cly,Vv € F; (7)
Tjtotey) T Tj(omeyy) T Tiv <1 Y(i,7) € Cla,Yv € F; (8)
Tiv + D, Ty <1+ Cij V(Z,j) € CEMy, Vv € Fipvijv 75 ] (9)
ue‘/ijv
S N Y TjowTjw < Ai+ M(1— x4, +d;) Vi€ CEMy, Yo € F, (10)
JEP; weF;
d; € {0, 1} Vi € CEMy (11)
Cij € {0, 1} V(Z,]) € CEM; (12)
zip € {0,1} Vie T,Vv € F; (13)

where

e Constraints (6) state that one and only one frequency has &ssigned to each link.

e Constraints (7) and (8) represent fixed distance constrg&Bjtand forbidden distance constraints (4),
respectively.

e Constraints (9) correspond to classic binary interferawestraints (1)V;;, denote the set of frequencies
u € F; such thatv — u| < d;5, i.e. assignments of; violating the constraint wheyf; = v. Hence for
a distance constraint (1), there are as many linear conttras possible valuesfor f; such that;;, is
non-empty. Binary variable;; indicates if the constraint is violated. Indeed, the dista®}; betweenf;
and f; is respected if and only i;; = 0.



e Constraints (10) correspond to cumulative interferenaestaints (2). Lefl};,,, = T;;(Jv — w|) denote
the interference value of link induced on link: if f; = v and f; = w. Then, the left member of the
constraint represents the sum of interferences oniliwken f; = v. If z;, = 0, the constraint is always
satisfied, provided that constahf is large enough. Binary variabl& allows to verify if the constraint
is violated. Ifx;, = 1 and if and only ifd; = 0, the constraint is satisfied and the interference sum is not
greater than the thresholy,.

e Objective function (5) aims at minimizing the weighted sufwiolated interference constraints, where
« is the weight of binary constraints CEMvhile (5 is the weight of cumulative constraints CEM

Settingc;; = 0,V(7,5) €CEM; andd; = 0, Vi eCEM;, the MS-FAP can be expressed as follows:

min fmax - fmin (14)
s-t (6)7 (7)7 (8)7 (9)7 (10)7 (13)
Smax 2> E VT4y VieT (15)
veF;
Jmin < Z V4y VieT (16)
veF;
fmam fmin > 0 (17)

Constraints (15) and (16) are used to compute the maximahanithal frequencies, respectively. Objective
function (14) corresponds to span minimization.

For both formulations, thbig M constraints (10) needed to represent the cumulative arentes are known
to give poor relaxations. For each cumulative constraistCEM; (2), there is a set of equivalent constraints
of cover inequalitieyielding better relaxations:

Tiw+ Y, Tjw <|P|+d;,VieT,Vv € F;,YP € P, (18)
(Jw)ep

whereP € P;, is a set of pairs (link, value) violating the cumulative cwaiit for f; = v. Because of their
exponential number, these constraints can be added only méeded, through a branch-and-cut technique.

As we know, the resulting integer linear programming foratian is intractable for practical problems, see e.g.
(Mehrotra and Trick, 1996). This is due to the possibly hugmant of integer variables and to the symmetry
of the formulation. Hence, the proposed model, even if ecdamy cutting plane techniques, can only be used
to solve small problems. Consequently, it is worth investiigg other exact and heuristic solution frameworks.

4 Constraint programming formulations

The constraint programming (CP) formulations of the MI-FARJ the MS-FAP are very close to the natural
ones. They are based on the following decision variables:

e f; forall i € T with domainF;. These variables represent the frequencies assigned liolkke



d;; for any links pair(4, j) involved in any Cl or CEM constraintd;; represents the gap value between the
frequencies assigned to linkandj.

t;; for any link pair (¢, j) involved in a cumulative constraint CEMt;; represents the discrete perturbation
function value.

c;j for all (7, j) € CEM; with domain{0, 1} represent (as in the ILP model) the violation indicatorshef t
corresponding binary interference constraints.

d; for all i € CEMy with domain{0, 1} represent (as in the ILP model) the violation indicators hef t
cumulative interference constraints.

The MI-FAP model can be expressed as follows:

min  « > ci;+08 Y d (29)
(4,/)eCEM; icCEM,
dij = €5 V(’L,j) e Cly (20)
dij 75 €ij V(’L,j) € Cly (21)
dij < 52']' = Cijj = 1 V(’L,j) € CEM; (22)
ZP )\ijtij >N =d; =1 Vi € CEM, (23)
JEL
dij = |fi = Jj (24)
tij = Tizldij) (25)

Constraints (22) and (23) represent the soft binary and tative interference constraints as “implication”
constraints. Constraints (25) force variabjgto be the element of an array (the perturbation functiongxed

by a finite-domain variable (here being the distarigg. Such constraints are commonly known as “Element”
constraints and were introduced in (Hentenryck and Carill®88).

The MS-FAP model can be expressed as follows, replacingceafitraints by hard constraints:

min fmax - fmzn (26)
> )\ijtij < A; Vi € CEM, (28)
JEP;
fmaw > fz VieT (29)
fmaw» fmm > 0 (31)

The use of such a CP model to solve realistic instances withestigated in Section 5.3.



5 Solution methods

The methods we propose to solve the cumulative frequendgremsnt problem follow a framework set by
the CELAR contest. After an initial preprocessing phase, dbarch is performed in two phases. First, the
methods aim at solving the MI-FAP. Second, and only when teeigus phase ends with a number of violated
constraints equal to 0, the MS-FAP is solved.

The problem instances proposed during the CELAR contegirageented in Section 5.1. The common prepro-
cessing phase is described in Section 5.2. Section 5.3nseadybrid constraint programming and combina-
torial optimization exact method. Section 5.4 is devoted karge neighborhood search heuristic.

5.1 TheCELAR instances

The CELAR generated 30 instances of the frequency assignpneblem with cumulative interference con-
straints, named FAPPG. These instances were generatedrildary applications issued dafa The CELAR
used the instances generated during the CALMA project (Goatdrial ALgorithms for Military Applications)
considering only classical interference constraints attdreled them to cumulative interferences. For details
about the CALMA project, refer to the “FAP web” sitat(t p: / / f ap. zi b. de) and (Aardalet al., 2002).
For a presentation of practical extensions of the CALMAanses (including the FAPPG instances), refer to
the “Frequency Assignment Problems” ditet p: / / ww. f ap. ema. fr.

As shown in Table 1, the instances are named wherex represents the instance number artie number of
links. The number of links varies from 16 to 2166. The numHeype (3) and (4) imperative constrain{&’( |
columns) varies from 10 to 1229. The number of binary interiee constraints (1)('z| columns) varies from
16 to 4155. Last, the number of cumulative interference tams (2) (C¢| columns) varies from 16 to 2015.

Additionally, we give the numbeK of connected components of the interference gr@plor each instance,
as each connected component corresponds to an independeortoblem, w.r.t. the MI-FAP.

instance| K [ |[C;] | [Cg| | |Cc| | instance] K | |C] | [Ck| | [Ccl || instance] K | |Ci] | [CE] | [Cc] |

010016 1 | 10 16 16 || 110164| 3 84 | 439 | 101 || 21.1088| 1 | 546 | 2789 | 1081
020018 1 | 11 24 18 || 120902 | 23 | 453 | 2354 | 572 || 220768| 2 | 386 | 1604 | 757
030066 2 | 35 | 100 | 50 || 13.0306| 2 155 | 1142 | 244 || 230034 | 1 19 53 24
040064 2 | 34 88 48 || 140194 1 99 587 | 163 || 240048 | 1 38 80 39
050064 1 | 34 80 64 | 152454 | 4 | 1229| 5135| 2015| 250106 | 1 68 181 | 63
060182 4 | 93 | 245 | 172 || 16.0038| 1 21 128 | 37 || 26,0140 2 85 | 219 | 83
07.0182| 4 | 93 | 245 | 172 || 170040| 1 22 92 36 || 270154 | 1 92 255 | 134
080608 | 20 | 306 | 812 | 484 || 180052| 1 28 116 | 42 | 280398| 9 | 199 | 821 | 340
09.1460| 65| 732 | 1862 | 1123 | 190770| 1 387 | 2276 770 || 290526 | 17 | 263 | 980 | 471
101698 | 73 | 851 | 705 | 1292 | 20.1930| 136 | 967 | 3896 | 1075|| 30.2166 | 46 | 1083 | 4155 | 1985

Table 1: Characteristics of the 30 CELAR instances

2The instances can be downloaded frdvnt p: / / www. f ap. ema. fr/ save. php/ fr/ Local / fap/ di r/i nst ances/
f apg/ ar chi ves/ bench_f appg. zi p, last visit July 2007



5.2 Preprocessing

For each linki € T, the frequency domain can be reduced by applying the foligwimple filtering rule:

v € Fj, if/EleFj:|fi—fj|:6ij:>Fi:E—’U

Applying this filtering rule trough a basic constraint prgp#ion algorithm for the imperative fixed distance
constraints (3) has a positive impact. On 14 of the 30 ingts)nthe percentage of values removed from the
links domains ranges from 2.07% to 33.33%. The impact is@albe significant on 6 instances where more
than 20% of the values are removed.

We also propose a special preprocessing taking jointly amtmount the cumulative constraints and the fixed
distance constraints (3). On one hand, the cumulative ontt depend on the distances betwgemnd

fj € P; foranyi € CEM,. On the other, the fixed distance constraints provide thetexauee;; of this
distance for any(i,j) € Cl;. Hence we can use these values directly in the cumulativet@nts where
pairs of frequencies linked with duplex constraints areinmed. This preprocessing is sufficient to prove that
instances 25 and 27 of Table 1 admit a lower bound of 2 violaetedulative constraints.

5.3 Hybrid constraint programming and combinatorial optimization exact method

The CP model presented in Section 4 can be solved throughesigya-purpose constraint programming solver
by specifying the branching rule while using the standandstaint propagation algorithms of the solver. A
simple branching rule consists in selecting the varighhith the smallest domain and exploring the values of
domainF; in an increasing order. For optimization under the CP fraor&wfeasibility problems are iteratively
solved by setting constraints on the objective functiomulgh linear or binary search, yielding a basic exact
method.

To enhance this CP-based method, we have coupled the solimg CP model with the solving of a relaxation
based on the concept of cliques in a constraint graph. Cerisglthe cumulative interference constraints (2),
we can derive binary interference constraints (1) as fatow

‘fz — fj‘ > Hel}]I\lf{e : /\Z‘jTIZ‘j(E) < Az} Vj c Pi,’i S CEM2 (32)

Using these constraints and the ones of GEMe build a constraint graph where the nodes representrike li
and the edges are the original binary interference comssrgil) and fixed distance constraints (3) plus the
inferred binary interference constraints (32). Each edgedighted by the distancie. the right-hand side of
the corresponding constraint. Considét-alique in the so-defined constraint graph. Solving anyxaian of
the traveling salesman problem in the clique gives a lowembdor the span criterion. Hence we can show
that the MS-FAP admits no solution when the lower bound isgrethan the difference between the largest
and the smallest frequency values of all frequency domaiihe perfect matching relaxation of the traveling
salesman problem is used to prune the search at each node@Ptkearch phase.

Though this hybrid method is not extremely effective, thiaxation based on the perfect matching was able
to find lower bounds for the number of violated constraintssome instances. Solutions with no violated
interference constraints and minimal span were found fetiaimces 1, 23 and 24 of Table 1.
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Table 2 summarizes the resulting non-zero lower boundshi®number of violated constraints. The optimal
solutions found for the span criterion by the hybrid methoeldisplayed in Table 3.

Instance|| 16 | 17| 19| 20 | 25| 27
LB MI 11241 2| 2

Table 2: Non zero lower bounds for the number of violated trairg#ts obtained by the combinatorial bound

Instance|| 1 23 | 24
opt span|| 548 | 380 | 410

Table 3: Optimal spans found by the hybrid method

5.4 A large neighborhood search heuristic

For most instances, the high number of variables and the riaaptodomains size do not allow the use of an
exact ILP or CP solution method. We propose a heuristic seheaised on the Large Neighborhood Search
(LNS) methodology. A preliminary version of this work wasepented in (Palpargt al, 2002). This LNS
method has shown its effectiveness and applicability gel@roblems. In particular, it has been able to find all
the solutions proved optimal by the hybrid CP method.

The method consists in generating and solving iteratively-groblems of the global problem. Regarding
frequency assignment problems, the idea is not entirely sisee a hybrid method called Solve and Extend
has previously been designed for a particular case of thelgmroconsidered in this paper Smihal., 1998,
Mannino and Sassano, 2003), see also Sections 1 and 2. Ith(8nal, 1998), a clique of levep in the
constraint graph is used to generate a first sub-problemhagisolved by a specific heuristic. The extension of
the partial solution obtained at the end of this first phasee¢omplete solution is then performed heuristically,
too. The process is iterated by adding each time verticesaxiimmal saturation to the initial cliqgue. In the
approach of (Mannino and Sassano, 2003), an implicit enatiarscheme is used to solve and extend the sub-
problems. The latter are obtained one from each other byngdiiks to an initial sub-problem considering
connectivity criteria in the constraint graph.

The method we present in this paper differs from the two cétbdve since we define a large neighborhood
search framework. The sub-problems are obtained roughbobsng the global problem after fixing a subset
of the decision variables to their current values. It folkothiat the “Extend” phase becomes trivial. It results a
local search procedure that explores iteratively largghmsbrhoods of the current solution.

For each phase of the optimization process, the algorithnksvan theX problemsP, ..., Pk, of respective
sizeny,...,ng, defined by the connected components of the interferengehgra Regarding interference
minimization (MI-FAP), solving independently each prablé’; is equivalent to solving the whole problem,
while this is not the case for span minimization (MS-FAP)csirthe objective function may relate to links
belonging to distinct connected components. Neverthelessause of the specific strategies involved in the
approach, the second phase of the optimization processasbalsed on this decomposition. The general
execution scheme, given in Figure 2, consists in generatiysolving, at each iteratios) K distinct sub-
problems. For each proble,, sub-problemSF;, of sizep;, < ny, is built using current solutiod”* " and
considering the current objective (interference or sp#ris then solved by an appropriate method in order to
obtain partial solutiorF’;. Then, the solutions of th& sub-problems are used to compute neighbor solution
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F*, from which the process is iterated. The algorithm, whidinmes final solutionF™, stops when a maximal
execution time MAXCPU is reached.

1. Perform the preprocessing phase.

2. Generate initial solutiodr” = (T, . .., Fy)! with the help of a greedy algorithm.

3F =Fs=1

4. Repeat

5. For each problen®;,

6. Generates P, from Ja considering current objective (MI-FAP or MS-FAP)
7. SolveS P to compute partial solutior’;..

8. F’ = (F},...,Fy)

9. UpdateF " if needed.

10. s=s+1
11. Until the CPU time reaches MAXPU

Figure 2: General algorithm of the LNS method

We describe in the following subsections each key point efaigorithm.

54.1 Generation of theinitial solution

For each problenP, a greedy algorithm is used to compute initial solutﬁ%. This heuristic comprises;,
steps. At each step, the most constrained link (i.e. the logieappears in the largest number of constraints)
is selected and assigned to the lowest possible frequeatyninimizes the objective function value. At each
step of the procedure, the problem is kept consistantthe value assigned to the selected link must satisfy the
imperative constraints.

5.4.2 Sub-problem generation

Each iterations of the LNS procedure (Figure 2) defines a sub-problef)’ per problempP, by defining a
subsetl; of “freed” links. The remaining links are assigned to theirrent frequency value in current solution
=s—1

F~ . The sub-problem lies in finding a value for the frequencyirtkd 7}, satisfying the problem constraints
and improving the considered objective.

The selection of the freed variables starts from a randombgen link, say/;’ = {:}. Inthe case of interference
minimization (MI-FAP), this link is assumed to belong to anstraint that is violated by the current solution.
Then, T} is extended by selecting every ligkinvolved in the same (CI or CEM) constraint @s.e. such that
vertices representingand; are adjacent in constraint gragh At the end of this step, if the sub-problem size
Pk Is not reached, the process is iterated starting from a liglaly included ir};. Figure 3 shows an execution
of the process. Starting from randomly chosen link 9, links@ 2, 3 and 12 are firstincludedTi}, in the given
order. Considering thai;, = 8, the process is iterated from the secondly included limk(§) and then from
link 10, included in third position irf}, which gives as a final freed links sub§gt= {9,8,10,2,3,12,7,11}.

Once subse}’ is defined, the (MI-FAP) sub-problem lies in finding a feasibbsignment to the freed links



12

Figure 3: Sub-problem selection process

subject to the following constraints under the CP formolati

a X B Y di<a YL &T+p X ! (33)
(1,j)eCEM, icCEM, (4,5)eCEM; icCEM,
(20), (21),(22),(23), (24), (25)
fi=ft Vi ¢ T; (34)

Obviously, fixed links constraints (34) impose reductionsreed links domains via problem constraints (20-
25) and objective improvement constraints (33).

In the case of the span minimization phase (MAS-FAP), sés&i@egies are involved in order to tackle prob-
lemsPy, ..., Px independently. Each of them consists in performing additi¢gheuristic) domain reductions
on freed links domains. Lef, = max;cr ff*1 and f_ = min;er ff*1 denote the maximum and minimum
assigned frequency values in the current solufion 1, respectively. The different strategies lie in modifying
heuristically the domains of the freed links variables, etegping on valueg,, f_ and subsef};. They are
described as follows:

¢ AllMax strategy. This strategy is employed when all linksigaed tof.; belong to7}}, and when at least
one link assigned tg_ does not. The lowest assigned frequency being fixed, reasgithe frequencies
of freed links in the interval = [f_, f [ is sufficient to obtain an improved span value. All valueg tha
do not belong td are consequently removed from the domains of the freed imkisbles.

¢ AllMin strategy. This is the symmetric strategy of AllMax. oains are reduced to the intenial=
]f*u er]

e NoMinMax strategy. This strategy is involved when at leatihk assigned tof,. and a link assigned
to f_ do not belong tdl};’. The span value can’t be improved by solving the sub-probléfowever,
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rearranging the frequencies in the interval= [f_, f1] can lead to an improvement of the solution in
subsequent steps and contribute to diversify the searcimadovalues are kept in this interval.

¢ AllMinMax strategy. This strategy is used when all linksigaged to f, and f_ belong to7;. Given
d_ = min;grs ff‘l — f-anddy = f, — max;¢rs ff‘l, any solution improving the span value can not
contain a link assigned outside the interyak [f_ — d, f+ + d_], which sets the domains of the freed

links variables.

All these strategies have to be coupled with appropriateativies. Hence, for the first three strategies, a so-
lution satisfying all interference and interval consttairs searched without optimizing any objective function,
while the last strategy involves the search of a minimal sgdation forS P}

It is worth noting that the heuristic domain reductions dftfiwvo strategies may suppress good or even optimal
solutions from the neighborhood. However, reducing thgimedrhood size contributes to make its exploration
easier and consequently allows to solve sub-problems waitiet subset§;’. Moreover, the diversity of the
strategies involved during the search, combined with adeterministic selection scheme of the freed links
may lead to reconsider previously ignored solutions.

5.4.3 Solving the sub-problems

Sub-problemS P; is solved by taking into account two criteria: the considesbjective and the global solution
strategies. Regarding the optimization parameter, it iglwooting that, due to the several domain reduction
strategies and objectives involved during the search,irgpla sub-problem does not necessarily lead to the
obtaining of an optimal solution, neither of an improved one

The global solution strategy defines the computing effaets$po find the neighbor solution: a heuristic provides
medium-quality solutions but in a very short time, while aa& method needs more computing time to obtain
high-quality solutions. The idea is to apply a heuristicesale when the current solution is likely to be easily
improved {.e. during the first iterations) and then apply an exact proceduporder to intensify the search.

The heuristic procedure is the greedy procedure present&édtion 5.4.1. In the case the method does not
provide an improved neighbor solution, the current solutiemains unchanged. However, we observed that
the greedy heuristic behaves effectively to improve mediurality solutions. Hence, the method is employed
at the beginning of the MI-FAP phase, in order to obtain glyieksolution of satisfying quality.

Once this solution is reached, another solution schemev@dvied to tackle the sub-problems, consisting of
a truncated exact CP-based procedure. The search is stapmbn as an improved or optimal solution is
found, or when a time limit{ is reached. This method allows to intensify the search ohtlighbor solution
as it spends more time to explore the neighborhood. The imieparameterH is used to tune effectively the
procedure: it is high for interference minimization or wh&MinMax strategy is active; on the contrary, it is
set to a low value for all other cases of span minimizatiomdrticular when NoMinMax strategy is employed.

6 Comparison of the methods proposed in the CELAR contest

Experiments have been conducted on a PC equipped with a 3500WH and 256 Mo RAM. As CP solver, we
used llog Solver 5.0. To establish a comparison, we have aogdghe LNS approach to the methods proposed
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for the CELAR contest: the Simulated Annealing method of£8aud, 2003) and the Tabu Search method of
(Vlasak and Vasquez, 2003), see Sections 1 and 2. To makeafaparison, all tests have been performed
by the CELAR following the same operating mode (1 hour of exiea time, same hardware). Table 4 gives
the results on the CELAR instances for all approaches ingerfinterference and span value. Columns LNS,
SA and TS give the results of the Large Neighborhood Seainoyldted Annealing and Tabu Search methods,
respectively. For each approach, we have reported thetsesltained for the two considered criteria. If the
interference value is greater than 0, it is reported in callMi-FAP and the associated span value is indicated
in parenthesis; on the contrary, if all electromagneticstints have been satisfied, the span value is reported
in column MS-FAP. Best solutions are displayed in bold.

instance LNS SA (Sarzeauet al) TS (Vlasaket al)
MI-FAP | MS-FAP || MI-FAP | MS-FAP || MI-FAP | MS-FAP

01 - 548 - 549 - 548
02 - 629 - 629 - 629
03 2 (599) - 2 (580) - 2 (623) -
04 - 520 - 520 - 519
05 - 599 - 623 - 676
06 - 718 - 718 - 758
07 6 (666) - 4 (698) - 8 (687) -
08 - 620 - 646 - 642
09 - 544 - 656 - 860
10 - 412 - 692 - 849
11 - 604 - 656 - 601
12 - 572 1 (639) - 2 (634) -
13 9 (399) - 6 (399) - 8 (380) -
14 - 398 - 360 - 354
15 31(399) - 73 (399) - 44 (399) -
16 46 (146) - 46 (146) - 46 (146) -
17 46 (99) - 45 (98) - 45 (98) -
18 - 404 1 (476) - - 408
19 4385 (492) - 4375 (496) - 3998 (496) -
20 150 (492) - 193 (496) - 152 (496) -
21 - 982 2 (964) - 4 (994) -
22 - 788 - 818 1 894
23 - 380 - 380 - 380
24 - 410 - 430 - 410
25 2* (540) - 2 (490) - 2* (540) -
26 - 480 1 (492) - - 480
27 2 (490) - 4 (490) - 2 (490) -
28 - 610 - 646 - 638
29 - 542 - 852 - 866
30 23 (912) - 27 (912) - 32 (912) -

Table 4: Computational results on the FAPPG CELAR instances

The LNS method is in general superior to the SA and TS methaitls,the notable exception of instance 19.
This particular instance is the only one involving differeveights in the expression of the sum of violated
constraints, which could explain the bad performance oflou® approach on it. Indeed, the sub-problems
selection process appears inadequate to this case, sihoesiinot take weights into account for the selection
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of the freed links. Another remark that can be raised fronséresults concerns the good behavior of the LNS
method on highly decomposable instances when minimizieggan criterion (interference free instances 8, 9,
10, 12 and 29). In this case, LNS significantly outperformesrigsults obtained by the two others approaches.
This tends to demonstrate the effectiveness of the neigjolodr reduction rules involved during the MS-FAP
phase. An interesting outcome could then consist in extgnthis methodology to non-decomposable in-
stances, which could be divided into several componentrd@ry connectivity criteria in the constraint graph.
This would allow the LNS method to work on smaller problemsinlyithe MS-FAP phase.

7 Comparison between traditional and cumulative formulations

An important objective of the study was to establish a comsparbetween the model including the cumulative
interference constraints, and the traditional model teataces these constraints by more constrained binary
interference constraints. Recall that the classical sgtation of the interference constraints can be obtained
by replacing all CEM constraints (2) by CEMconstraints (1), through a uniform distribution of the ‘igo
disrupt”™

Nijlfi = [l = ‘/Iﬁ; VjieFr (35)

In terms of span minimization, it is in theory always possilth find a solution for the problem with the
cumulative constraints at least as good as the best solotithe classical model. However, the objective of
the current study is to determine whether the methods aretalfind these solutions in a reasonable amount
of time. In other words, is the increase in complexity of thastraints balanced by the quality of the obtained
solutions?

From the CELAR instances, we generated the set of correspgimstances for the classical binary model. The
results displayed in Table 5 are obtained with the LNS methioa solution satisfies all CEM constraints, the
span value is indicated in column MS-FAP. Otherwise, therfetence value is displayed on column MI-FAP.
Values in parenthesis indicate the results obtained on thaehwith cumulative constraints. The experiments
have been conduced as described in Section 6.

The results show that the model with cumulative constrabtsins a larger number of interference free solu-
tions than the model with only binary interference consitisai Furthermore, for the interference free solutions,
the cumulative model yields significantly lower span valugBis clearly shows the benefit of introducing the
cumulative interference constraints for solving pradtioaguency assignment problems.

8 Conclusion

We have performed an experimental comparison of two modelsaveral methods to solve frequency assign-
ment problems with cumulative interferences.

The good behavior of the large neighborhood search apprteaats to prove that efficient methods can be
designed for this practical problem. Our study establishassuitable heuristics can take advantage of a direct
representation of the cumulative constraints, despitie doenplexity. Such a result is of practical importance
to solve real frequency assignment problems since one wmenéfit from switching, at least partially, to the
new model.
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| Instance| MI-FAP | MS-FAP | Instance] MI-FAP | MS-FAP |

01 - 571 (548) 16 57 (46) -
02 1 (0) - 17 55 (46) -
03 3(2) - 18 - 488 (404)
04 - 718 (520)|| 19 | 5629 (4385)| -
05 1 (0) - 20 178 (150) -
06 - (761) 718|| 21 24 (0) -
07 17 (6) - 22 10 (0) -
08 - 620 (620)| 23 - 380 (380)
09 - 650 (544)|| 24 - 440 (410)
10 - 500 (412)| 25 2(2) -
11 - 617 (604)|| 26 - 480 (480)
12 - 600 (572)| 27 2(2) -
13 13 (9) - 28 - 634 (610)
14 1 (0) - 29 - 548 (542)
15 | 31(31) - 30 27 (23) -

Table 5: Benefits of using the cumulative interference fdation

As suggested by our encouraging results, efficient com$tpgopagation for the cumulative interference con-
straints may besides improve the efficiency of the methodsiuke research direction may consist in designing
such propagation techniques.

Acknowledgments

The authors wish to thank Thierry Defaix from the CELAR foe theneration of the problem instances and the
organization of the contest.

References

K. Il. Aardal, C. A. J. Hurkens, J. K. Lenstra and S. R. TiouriAlgorithms for Radio Link Frequency Assign-
ment: The CALMA Project, Operations Research, 50(6):988;2002.

K. I. Aardal, C. P. M. van Hoesel, A. M. C. A. Koster, C. Manniand A. Sassano, Models and Solution
Techniques for the Frequency Assignment Problem, 40R;2Z64)317, 2003.

L. Borgne, Automatic frequency assignment for cellularwaks using local search heuristics, PhD thesis,
Uppsala University, 1994.

R. Borndorfer, A. Eisenblatter, M. Grotschel, A. Matrtifrequency assignment in cellular phone networks,
Annals of Operations Research, 76 :73-93, 1998.

D. Brélaz, New methods to color the vertices of a graph, Comigations of the ACM, 22 :251-256, 1979.

A. Capone, M. Trubian, Channel assignment problem in @allaystems: a new model and a tabu search



17

algorithm, IEEE Transactions on Vehicular Technology4381252-1260, 1999.

D. Costa, On the use of some known methods for t-coloring aplgs, Annals of Operations Research, 41
:343-358, 1993.

W. Crompton, S. Hurley, N. M. Stephens, A parallel genetgnathm for frequency assignment problems, in
proceedings of IMACS/IEEE International Symposium on &igProcessing, Robotics and Neural Networks,
81-84, Lille, France, 1994.

N. W. Dunkin, J. E. Bater, P. G. Jeavons and D. A. Cohen, Tosviligh Order Constraint Representations for
the Frequency Assignment Problem, CSD-TR-98-05, Royalodaly, University of London, Egham, Surrey,
UK, 1998.

J.-K. Hao, L. Perrier, Tabu search for the frequency asseagrproblem in cellular radio network, French
Workshop on Practical Solving of NP-Complete Problemsplifrance, March, 1996.

P. V. Hentenryck and J.-P. Carillon, Generality vs. Speityfican Experience with Al and OR Techniques,
National Conference on Atrtificial Intelligence (AAAI-88)988.

A. Knalmann, A. Quellmalz, Solving the frequency assignbqgoblem with simulated annealing, IEEE con-
ference publication, 396 :233-240, 1994.

A. W. J. Kolen, A genetic algorithm for frequency assignmdigchnical report, Universiteit Maastricht, 1999.

V. Maniezzo, A. Carbonaro, An ANTS heuristic for the frequgrassignment problem, Future Generation
Computer Systems, 16 :927-935, 2000.

C. Mannino, A. Sassano, An Enumerative Algorithm for thegeiency Assignment Problem, Discrete Applied
Mathematics, 129(1) :155-169, 2003.

A. Mehrotra and M. A. Trick, A column generation approach goaph coloring, INFORMS Journal on Com-
puting, 8(4):344-354, 1996.

R. Montemanni, D. H. Smith, S. M. Allen, An ANTS algorithm fthre minimum span frequency assignment
with multiple interference, IEEE transactions on Vehiculachnology, 51(5) :949-953, 2002.

M. Palpant, C. Artigues, P. Michelon, A heuristic for solgithe frequency assignment problem, in proceedings
of the XI Latin-Iberian American Congress of Operations &ash (CLAIO), Concepcibn, Chile, 2002.

0. Sarzeaud and A. Berny, Allocation de frequences paartdionnage de Gibbs, recuit simulé et appren-
tissage par renforcement, in proceedings of the fifth cemieg of the French OR society, ROADEF’2003,
Avignon, France, 116-117, 2003.

D. H. Smith, S. Hurley, S. U. Thiel, Improving heuristics fibre frequency assignment problem, European
Journal of Operational Research, 107 :220-229, 1994.

C. W. Sung, W. S. Wong, Sequential packing algorithm for clehassignment under cochannel and adjacent-
channel interference constraints, IEEE transactions dricuéar Technology, 46(3) :676-686, 1997.

E. Tsang, C. Voudouris, Solving the radio link assignmewbfgm using guided local search, in proceedings
of NATO Symposium on Radio Length Frequency Assignmentbéig, Denmark, 1998.

C. Valenzuela, S. Hurley, D. H. Smith, A permutation basedegje algorithm for minimum span frequency



18

assignment, Lecture Notes in Computer Science, 1498 :2671998.

M. Vasquez, A. Dupont and D. Habet, Consistent Neighborhioaa Tabu Search, in R. Sharda, S. Vo@, T.
Ibaraki, K. Nonobe and M. Yagiura (Editors), Metaheuristi®rogress as real Problem Solvers, MIC 2003
Post-conference volume, Kluwer Academic Publishers, 37-2005.

J. Vlasak, M. Vasquez, Résolution du probleme d'attrdoute frequences avec sommation de perturbateurs,
in proceedings of the fifth conference of the French OR spcROADEF’2003, Avignon, France, 118-119,

2003.

J.P. Walser, Feasible cellular frequency assignment wgingtraint programming abstractions, in proceedings
of the Workshop on Constraint Programming Applications 96 Cambridge, USA, 1996.



