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Abstract: We consider a realistic modeling of interferences for frequency allocation in hertzian telecom-
munication networks. In contrast with traditional interference models based only on binary interference
constraints, this new approach considers the case of a receiver disrupted simultaneously by several senders
yielding cumulative disruptions that are modeled through a unique non-binary constraint. To deal with these
complex constraints, we propose extensions of classical integer linear programming formulations. On a set
of realistic instances, we propose hybrid constraint programming and large neighborhood search solution
methods. We also compare the performances of our best method with those of existing heuristics and we show
how the end-user benefits from using the cumulative model instead of the traditional one.
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1 Frequency allocation with cumulative interference constraints

In this paper, we consider a frequency assignment problem (FAP) in an hertzian telecommunication network.
The network is made of geographic sites on which antennas are located, each antenna being connected with
senders and/or receivers. A given site may include several antennas. Two distinct geographic sites can be
connected by one or several unidirectional links between two antennas, each link being defined from the sender
of the first antenna to the receiver of the second one.

Let T denote the set of links for a given problem. Frequency allocation aims at giving to each link a frequency
value which guarantees a satisfying communication quality.

Each link i of T is associated with a frequency domain Fi which defines the set of discrete frequencies that can
be allocated to i. The domain results from legal issues, hardware limitations and geographic localization of the
equipments.

Communication quality is based on electromagnetic compatibility computations. These computations consist,
for a given receiver, to take into account the different emissions of neighbor senders that may disrupt it. For in-
stance, the ”C/I” criterion expresses an acceptable threshold between the useful power received by the disrupted
receiver and the received power coming from all neighbor senders.

Usually (Aardal et al., 2003) the ”right to disturb”, defined through the ”C/I” criterion, is equally distributed
among all the disrupters. Such a distribution allows to transform a situation with N senders disrupting a receiver
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into N elementary situations with a single disrupter sender and a single disrupted receiver.

This binary structure gives the following usual interference constraints, where δij is a minimal gap between
frequency fi allocated to link i and frequency fj allocated to link j. Let CEM1 denote the set of pairs of links
concerned by the binary interference constraints.

|fi − fj| ≥ δij ∀(i, j) ∈ CEM1 (1)

Nevertheless, this simplifying equal distribution is made considering practical solution issues without any real-
istic justification. In this paper, we drop this simplification by considering a new model issued by the French
armament electronics center (CELAR).

Indeed, distance constraints (1) can be replaced by weaker but more complex constraints which simultaneously
take the N disrupter links into account. Such realistic models have been studied only recently in the litera-
ture (Dunkin et al., 1998), (Mannino and Sassano, 2003), though these authors consider a simplified model
compared to the one presented in this paper, as explained below.

The distance matrix is here replaced by a function Tij of IN → IR such that Tij(x) represents the disruption
of link j on link i when |fi − fj| = x, and allows perturbation for x > 1, which is not the case of the
model presented in (Mannino and Sassano, 2003). Function Tij , called the perturbation function, is positive,
decreasing and tends to 0 as measure as x increases, as shown in Figure 1.
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Figure 1: Example of perturbation function Tij

Another difference concerns the influence of a disrupter link j 6= i which is weighted by a multiplier λ ij , taking
into account the geographical distance and the respective orientations of both disrupter and disrupted links.
Finally, only a subset Pi of links (the ones that are able to disrupt link i) is involved in a cumulative constraint.
Let Λi denote an acceptable threshold for the receiver of link i, computed according to the ”C/I” criterion, and
CEM2 the set of disrupted links involved in a cumulative constraint, the new interference constraints are now
expressed as follows:
∑

j∈Pi

λijTij(|fi − fj|) ≤ Λi ∀i ∈ CEM2 (2)

More precisely two distinct cases are considered:
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• when the disrupter senders are located on the same site as the disrupted receiver, (”near field” disruptions)
the constraints are kept in the binary form (1);

• when the disrupter senders are not on the same site as the disrupted receiver (”far field disruptions”), the
new formulation (2) is involved.

In addition, other imperative binary constraints are considered in the studied problems: these are fixed distance
(3) and forbidden distance (4) constraints. Such constraints appear when two links connect the same sites
(duplex constraints). CI1 and CI2 denote the set of links pairs involved in each type of imperative constraints,
respectively.

|fi − fj| = εij ∀(i, j) ∈ CI1 (3)
|fi − fj| 6= εij ∀(i, j) ∈ CI2 (4)

The set of constraints of the problem defines a so-called interference graph G = (T,E) such that two vertices
representing links that belong to the same constraint are connected in the graph. Working on this graph allows
specific assignment problems to be reduced to graph coloring problems.

For problems of realistic size, trying to satisfy all interference constraints (1) and (2) can reveal itself imprac-
tical. In consequence, a classical solution approach consists in relaxing these constraints and minimizing the
weighted sum of their respective violations. In the case where a solution is found with no violation of any in-
terference constraints, a secondary objective is to minimize the span, i.e. the difference between the maximum
and minimum assigned frequencies.

Because of the originality and practical importance of this model, the CELAR organized in 2002 a contest
where three independent teams had to solve the problem using three different methods. The objective was,
first, to find the best solution method and, second, to check whether the methods are able to take advantage of
the flexibility introduced by the new model to provide better solutions or, on the contrary, if the model is too
complex to be useful in practice. Related work for some classical frequency assignment problems and the other
methods in competition for the CELAR contest are presented in Section 2. Integer programming and constraint
programming formulations of the problem are presented in Sections 3 and 4, respectively. Section 5 is devoted
to the presentation of the methods we propose for solving the CELAR instances, that are presented in Section
5.1: Section 5.2 introduces a common preprocessing technique used by all approaches, while an exact hybrid
CP-based method is presented in Section 5.3 and a heuristic based on large neighborhood search is detailed in
Section 5.4. The results of the heuristic are then compared with the methods in competition for the CELAR
contest in Section 6. The interest of considering the cumulative model is underlined in Section 7. Concluding
remarks are finally drawn in Section 8.

2 State-of-the-art approaches for frequency assignment and methods in com-
petition for the CELAR contest

Since the problem studied in the present work introduces a new formulation, most of the approaches that
can be encountered in the literature usually do not deal with it but mostly with classical MI-FAP (Minimum
Interference) or MS-FAP (Minimum Span). For a complete description of these approaches, we refer to (Aardal
et al., 2003).
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Because of the strong connection between graph coloring and frequency assignment, many methods involve
techniques that have been shown very effective on the first class of problems. These methods rank from the
simplest constructive algorithms to standard metaheuristics. Among the first class of methods, the general-
ization of the DSATUR procedure (Brélaz, 1979) constitutes the basis of Costa’s work (Costa, 1993). Slight
modifications can be performed to tackle the specificities of MI-FAP: (Borndörfer, 1998), Generalized Satu-
ration Degree (Valenzuela, 1998). Other constructive methods are based on this analogy like the Generalized
Sequential Packing procedure (Sung and Wong, 1997). More sophisticated approaches, like genetic algorithms
(Valenzuela, 1998) or local search ones (Borgne, 1994) also invoke graph coloring methodologies.

Integer linear programs have been proposed for the binary interference case (Aardal et al., 2003). Constraint
programming has been tested by (Walser, 1996) for span minimization only.

Apart from that kind of methods, standard metaheuristics can be encountered, like evolutionary approaches:
genetic algorithms (Crompton, 1994), ANTS (Manezzio and Carbonaro, 2000), (Montemanni, 2002). An
original genetic algorithm is described in (Kolen, 1999). The latter works on a redefinition of the crossing and
mutation operators allowing to perform optimization operations on the individuals of the population.

Local search also constitutes a common approach for solving frequency assignment: guided local search (Tsang
and Voudouris, 1998), simulated annealing (Knälmann, 1994) and tabu search (Capone and Trubian, 1999),
(Hao, 1999).

For problems involving cumulative interferences, with a simplified model compared to the one presented in this
paper, an original methodology, called Solve and Extend, has been applied in (Smith, 1998) and (Mannino and
Sassano, 2003). The procedure executes in two distinct phases: during the first one, a significative sub-problem
is chosen and solved (Solve phase); it is then extended in order to obtain a solution to the global problem
(Extend phase). The two-phase process is iterated until a stopping criterion is met.

For the CELAR contest and the problem considered in this paper, three teams were in competition. A simulated
annealing procedure was designed by (Sarzeaud and Berny, 2003), involving Gibbs sampling for the choice of
neighbor. The Gibbs sampling introduces a variant compared to the traditional simulated annealing scheme
since at each iteration, it first performs an exhaustive search of the neighborhood to possibly find a solution
improving the best known one. The random selection of the neighbor is performed only in the case the best
neighbor does not improve the best known solution. In addition, learning techniques are used. The neighbor-
hood is defined by all the possible changes of a single frequency. A distribution probability is associated to
each possible frequency value and the learning process increases the probability if the frequency value is likely
to be included in a good solution based on statistics on the preceding explored solutions.

(Vlasak and Vasquez, 2003) tested the consistent neighborhood tabu search method (CN-tabu) which obtained
excellent results for other frequency assignment problems, see e.g. (Vasquez et al., 2005). As CN-tabu solves
only decisional problems, a linear search from an upper bound is performed for the two considered criteria.
We refer to (Vasquez et al., 2005) for a precise description of the CN-tabu method. It differs from the classical
tabu search method on two main characteristics. First, the search is performed on partial solutions, where only
a subset of frequencies are instantiated, satisfying all constraints. A move consists in selecting an unassigned
frequency and fixing its value. Regarding to consistency considerations, this instantiation may generate a
conflict set of frequencies that have to be unfixed by a repairing process. The neighborhood of a partial solution
is obtained by considering all partial solutions that can be reached by such a move. The second main component
of the CN-tabu method is the use of specific local consistency checking techniques to compute efficiently which
variables have to be unfixed for each move.

In the remaining of the paper we describe the models and methods our team developed for this contest and we
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compare the results of our best method with the ones developed by (Sarzeaud and Berny, 2003) and (Vlasak
and Vasquez, 2003).

3 Integer linear programming formulations

We propose a mixed integer linear programming formulation of the problem inspired from the classical formu-
lation (Aardal et al., 2003), based on variables indexed by the frequency value. For each link i ∈ T and for
each possible value v ∈ Fi for fi, we introduce a binary variable xiv equal to 1 if and only if fi = v. Finding
the optimal solution for MI-FAP consists in solving the following integer linear program:

min α
∑

(i,j)∈CEM1

cij + β
∑

i∈CEM2

di (5)

s-t
∑

v∈Fi

xiv = 1 ∀i ∈ T (6)

xiv ≤ xj(v+εij) + xj(v−εij) ∀(i, j) ∈ CI1,∀v ∈ Fi (7)
xj(v+εij) + xj(v−εij) + xiv ≤ 1 ∀(i, j) ∈ CI2,∀v ∈ Fi (8)

xiv +
∑

u∈Vijv

xju ≤ 1 + cij ∀(i, j) ∈ CEM1,∀v ∈ Fi, Vijv 6= ∅ (9)
∑

j∈Pi

λij
∑

w∈Fj

Tijvwxjw ≤ Λi + M(1 − xiv + di) ∀i ∈ CEM2,∀v ∈ Fi (10)

di ∈ {0, 1} ∀i ∈ CEM2 (11)
cij ∈ {0, 1} ∀(i, j) ∈ CEM1 (12)
xiv ∈ {0, 1} ∀i ∈ T,∀v ∈ Fi (13)

where

• constraints (6) state that one and only one frequency has to be assigned to each link.

• constraints (7) and (8) represent fixed distance constraints (3) and forbidden distance constraints (4),
respectively.

• constraints (9) correspond to classic binary interference constraints (1). Vijv denote the set of frequencies
u ∈ Fj such that |fv − fu| < δij , i.e. assignments of fj violating the constraint when fi = v. Hence for
a distance constraint (1) there are as many linear constraints as possible values v for i such that V ijv is
non empty. Binary variable cij indicates if the constraint is violated. Indeed, the distance δij between fi

and fj is respected if and only if cij = 0.

• constraints (10) correspond to cumulative interference constraints (2). Let Tijvw = Tij(|v − w|) denote
the interference value of link j induced on link i if fi = v and fj = w. Then, the left member of the
constraint represent the sum of interferences on link i when fi = v. If xiv = 0 the constraint is always
satisfied whenever constant M is large enough. Binary variable di allows to verify if the constraint is
violated. If xiv = 1, the constraint is satisfied and the interference sum is not grater than threshold Λi if
and only if di = 0.

• (5) is the objective function minimizing the weighted sum of violated interference constraints, where α
is the weight of binary constraints CEM1 and β is the weight of cumulative constraints CEM2.
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Setting cij = 0,∀(i, j) ∈CEM1 and di = 0,∀i ∈CEM2, MS-FAP can be expressed as follows:

min fmax − fmin (14)
s-t (6), (7), (8), (9), (10), (13)

fmax ≥
∑

v∈Fi

vxiv ∀i ∈ T (15)

fmin ≤
∑

v∈Fi

vxiv ∀i ∈ T (16)

fmax, fmin ≥ 0 (17)

Constraints (15) and (16) are used to compute the maximal and minimal frequencies, respectively. Objective
function (14) correspond to the minimization of the span.

Returning to the cumulative model, the big M constraints needed to represent the cumulative constraints are
known to give poor relaxations. For each cumulative constraint i ∈ CEM2 (2), there is a set of equivalent
constraints of the type cover inequalities yielding better relaxations:

xiv +
∑

(j,w)∈P

xjw ≤ |P | + di,∀i ∈ T,∀v ∈ Fi,∀P ∈ Piv (18)

where P ∈ Piv is a set of couples (link,value) violating the cumulative constraint for fi = v. Because of their
exponential number, these constraints could be added only when needed through branch-and-cut techniques.

Unfortunately, the resulting integer linear programming formulation is still well-known to become intractable
for practical problems, see e.g. (Mehrotra and Trick, 1996). This is due to the possibly huge number of integer
variables and to the symmetry of the formulation. Hence, the proposed model, even if enhanced by cutting
plane techniques, could only be used to solve small problems. It is consequently worst investigating other exact
and heuristic resolution frameworks.

4 Constraint programming formulations

The constraint programming formulation of the problem is very close to the natural one already described. It is
based on the following decision variables:

• fi for all i ∈ T with domain Fi. These variables represent directly the frequencies assigned to the links.

• dij for any couple of links (i, j) involved in a constraint. dij represents the gap value between the frequencies
assigned to links i and j.

• tij for any couple of links (i, j) involved in a cumulative constraint CEM2. tij represents the value of the
discrete perturbation function.

• cij for all (i, j) ∈ CEM1 with domain {0, 1} represent (as in the ILP model) the violation indicators of the
corresponding binary interference constraints.

• di for all i ∈ CEM2 with domain {0, 1} represent (as in the ILP model) the violation indicators of the
cumulative interference constraints.
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The model for the minimization of the violated constraints can be expressed as follows:

min α
∑

(i,j)∈CEM1

cij + β
∑

i∈CEM2

di (19)

dij = εij ∀(i, j) ∈ CI1 (20)
dij 6= εij ∀(i, j) ∈ CI2 (21)

dij < δij ⇒ cij = 1 ∀(i, j) ∈ CEM1 (22)
∑

j∈Pi

λijtij > Λi ⇒ di = 1 ∀i ∈ CEM2 (23)

dij = |fi − fj| (24)
tij = Tij [dij ] (25)

Constraints (22) and (23) represent the soft binary and cumulative interference constraints as implication con-
straints. Constraints (25) force variable tij to be the element of an array (the perturbation function) indexed by
a finite-domain variable, here distance dij . These constraints are commonly known as ELEMENT constraints
and were introduced in (Hentenryck and Carillon, 1988).

The model for the minimization of the span value can be expressed as follows, replacing soft by hard constraints:

min fmax − fmin (26)
s − t (20), (21), (24), (25)

dij ≥ δij ∀(i, j) ∈ CEM1 (27)
∑

j∈Pi

λijtij ≤ Λi ∀i ∈ CEM2 (28)

fmax ≥ fi ∀i ∈ T (29)
fmin ≤ fi ∀i ∈ T (30)

fmax, fmin ≥ 0 (31)

The used of such a CP model to solve realistic instances will be investigated in Section 5.3.

5 Solution methods

For solving the instances presented on Section 5.1, the solution methods described in Sections 5.3 and 5.4 follow
the same framework: after an initial preprocessing phase, as presented in section 5.2, the search performs in
two phases. First, the methods aim at minimizing the weighted number of violated constraints; then, and only
when the previous phase ends up with a number of violated constraints equal to 0, they attempt to minimize the
span.
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5.1 The CELAR FAPPG instances

The CELAR generated 30 instances of the frequency allocation problem with cumulative interference con-
straints, named FAPPG instances, from data issued from military applications 1. To generate these instances
the CELAR enriched the instances generated during the CALMA project (Combinatorial ALgorithms for Mil-
itary Applications) considering only classical interference constraints. For details about the CALMA project,
we refer to the FAP web site (http://fap.zib.de) and the paper by (Aardal et al, 2002). For a presen-
tation of the considered extension and of other practical extensions considered by the CELAR, we refer to the
web site http://www.fap.ema.fr, hosted by the Ecole des Mines d’Alès (France).

As shown in Table 1, the instances (named x n, where x represents the instance number and n the number of
links) have from 16 to 2166 links, from 10 to 1229 imperative constraints of type (3) and (4) (|CI | columns),
from 16 to 4155 binary interference constraints (1) (|CE | columns) and from 16 to 2015 cumulative interference
constraints (2) (|CC | columns). Additionally, the set of links of each instance can be decomposed accordingly
to the K connected components of the corresponding interference graph G.

instance K |CI | |CE | |CC | instance K |CI | |CE | |CC | instance K |CI | |CE| |CC |

01 0016 1 10 16 16 11 0164 3 84 439 101 21 1088 1 546 2789 1081
02 0018 1 11 24 18 12 0902 23 453 2354 572 22 0768 2 386 1604 757
03 0066 2 35 100 50 13 0306 2 155 1142 244 23 0034 1 19 53 24
04 0064 2 34 88 48 14 0194 1 99 587 163 24 0048 1 38 80 39
05 0064 1 34 80 64 15 2454 4 1229 5135 2015 25 0106 1 68 181 63
06 0182 4 93 245 172 16 0038 1 21 128 37 26 0140 2 85 219 83
07 0182 4 93 245 172 17 0040 1 22 92 36 27 0154 1 92 255 134
08 0608 20 306 812 484 18 0052 1 28 116 42 28 0398 9 199 821 340
09 1460 65 732 1862 1123 19 0770 1 387 2276 770 29 0526 17 263 980 471
10 1698 73 851 705 1292 20 1930 136 967 3896 1075 30 2166 46 1083 4155 1985

Table 1: Characteristics of the 30 CELAR instances

5.2 Preprocessing

For each link i ∈ T , the frequency domain can be reduced by propagating the imperative fixed distance con-
straints (3) as follows:

v ∈ Fi, if 6 ∃w ∈ Fj : |fi − fj| = εij ⇒ Fi = Fi − v

This simple reduction rule has a positive impact on 14 out of 30 instances (from 2.07% to 33.33% of values
removed from the links domains), but significantly only on 6 instances (more than 20% of removed values).

We also propose a special preprocessing for the cumulative constraints, taking into account jointly these con-
straints and the fixed distance constraints (3). On one hand, the cumulative constraints depend on the distances
between fi and fj ∈ Pi for any i ∈ CEM2. On the other hand, the fixed distance constraints provide us with the
exact value εij of this distance for any (i, j) ∈ CI1. Hence we can use these values directly in the cumulative
constraints where couples of frequencies linked with duplex constraints are involved. This preprocessing is
sufficient to prove that instances 25 and 27 possess a lower bound of 2 violated cumulative constraints.

1The instances can be downloaded from http://www.fap.ema.fr/save.php/fr/Local/fap/dir/instances/
fapg/archives/bench_fappg.zip
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5.3 Hybrid constraint programming and combinatorial optimization exact method

The CP model presented in Section 4 is solved by a constraint programming solver (ILOG solver 5.0) by
specifying the branching rule and using the standard constraint propagation algorithms of the solver. The
simple branching rule we use consists in selecting the variable fi with the smallest domain and exploring the
values of domain Fi in an increasing order. For optimization, series of feasibility problems are solved by
generating constraints on the objective function.

To enhance the CP-based method, we have coupled the solving of the CP model with the solving of a relaxation
of the problem based on the concept of cliques in a constraint graph. Considering the cumulative interference
constraints (2), we can deduce classical binary interference constraints (1) as follows:

|fi − fj| ≥ min
e∈IN

{e : λijTij(e) ≤ Λi} ∀j ∈ Pi, i ∈ CEM2 (32)

Using these constraints, we build a constraint graph where the nodes are the links and the edges are the orig-
inal binary interference constraints (1) and fixed distance constraints (3) plus the deduced binary interference
constraints (32). Each edge is weighted by the distance, i.e. the right term of the corresponding constraint. Let
us consider a k-clique in the constraint graph. Solving a relaxation of the traveling salesman problem, that is
the perfect matching, in this clique gives a lower bound for the span criterion. Hence we can deduce that there
is no solution to the problem when the lower bound is greater than the difference between the largest and the
smallest frequency values of all frequency domains. This relaxation is used to prune the search at each node of
the CP search phase.

Though this method doesn’t reveal itself extremely effective, the relaxation based on the perfect matching was
able to find lower bounds for the number of violated constraints on some instances. For the span criterion, the
problem is solved to optimality for instances 1, 23 and 24.

We summarize the obtained non zero lower bounds for the number of violated constraints in table 2. The
optimal solutions found for the span criterion by the hybrid method are displayed in Table 3.

Instance 16 17 19 20 25 27
LB MI 1 2 4 1 2 2

Table 2: Non zero lower bounds for the number of violated constraints obtained by the combinatorial bound

Instance 1 23 24
opt span 548 380 410

Table 3: Optimal span found by the hybrid method

5.4 Solving the problem with large neighborhood search

For most instances, the high number of variables and the important domains size do not allow the use of an
exact ILP or CP solution method. We have then developed a heuristic scheme based on the Large Neighborhood
Search (LNS) methodology. A preliminary version of this work was presented in (Palpant et al., 2002). This
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LNS method has shown its effectiveness and applicability to big problems. In particular, it has been able to find
all the solutions proved optimal by the hybrid CP-ILP method.

The method consists in generating and solving iteratively sub-problems of the global problem. Regarding FAP,
the idea is not entirely new since a hybrid ad-hoc method called Solve and Extend has previously been assessed
on specific problems. Thus, in (Smith et al., 1998), a clique of level p in the constraint graph is used to generate
a first sub-problem which is solved by a specific heuristic. The extension of the partial solution obtained at
the end of this first phase to a complete solution is then performed heuristically too. The process is iterated
by adding each time vertices of maximal saturation to the initial clique. As for the approach of (Mannino and
Sassano, 2003), an implicit enumeration scheme is used to solve and extend the sub-problems. The latter are
obtained one from each other by adding links to an initial sub-problem regarding connectivity criterions in the
constraint graph.

The method we present in this paper differs from the two ones cited above. Here, sub-problems are not extended
in order to obtain a complete solution, but the current complete solution is considered to generate and solve
sub-problems that are then used to improve this current solution. It consists then in a local search procedure
that explores iteratively neighborhoods of the current solution.

For each phase of the optimization process, the algorithm works on the K problems P1, . . . , PK , of respective
size n1, . . . , nK , defined by the connected components of the corresponding interference graph G. Regarding
interference minimization, solving independently each problem Pk is equivalent to solving the whole problem,
while this is not the case for span minimization since the objective function may relate to links belonging to
distinct connected components. Nevertheless, because of the specific strategies involved in the approach, the
second phase of the optimization process also works on this decomposition. The general execution scheme,
given in Figure 2, consists in generating and solving, at each iteration s, K distinct sub-problems. For each
problem Pk, sub-problem SP s

k , of size pk ≤ nk, is built using current solution F
s−1 and considering the current

objective (interference or span). It is then solved by an appropriate method in order to obtain partial solution
F

s
k. The result of the optimization of the K sub-problems is then used to compute neighbor solution F

s, from
which the process is iterated. The algorithm, which return final solution F

∗, stops when maximal execution
time MAX CPU is reached.

1. preprocessing
2. generate initial solution F

0
= (F

0
1, . . . , F

0
K)t with the help of a greedy algorithm

3. F
∗

= F
0
, s = 1

4. repeat
5. for each problem Pk

6. generate SP s
k from F

s−1 considering current objective
7. solve SP s

k to compute partial solution F
s
k

8. F
s

= (F
s
1, . . . , F

s
K)t

9. eventually update F
∗

10. s = s + 1
11. until CPU=MAX CPU

Figure 2: General algorithm

We describe in the following subsections each crucial point of the algorithm.
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5.4.1 Generation of the initial solution

For each problem Pk, we compute initial solution F
0
k with the help of a greedy algorithm. This heuristic

performs in nk steps, each one selecting the most constrained link (i.e. the one that appears in the biggest
number of constraints) and assigning it to the lowest possible frequency that minimizes the increase of the
interference value. At each step of the procedure, the problem is kept consistent, i.e. the value assigned to the
selected link satisfies the imperative constraints.

5.4.2 Sub-problem generation

At current iteration s, sub-problem SP s
k is defined for each problem Pk by freeing a subset T s

k of links. The
other links keeping the value they are assigned to in current solution F

s−1, the sub-problem lies then in finding
a solution satisfying several constraints. Thus, fixed links impose reductions on freed links domains via im-
perative and/or co-site constraints. In addition, other reductions may be performed according to some specific
strategies involved during the second phase of the optimization process (span minimization).

The selection of the freed variables starts from a randomly chosen link i. In the case of interference minimiza-
tion, this link is assumed to belong to a constraint violated by the current assignment. We then extend subset
T s

k by selecting every link j appearing simultaneously to i in any constraint, i.e. such that vertices representing
i and j are adjacent in constraint graph G. At the end of this step, if pk is not reached, the process is iterated
starting from a link already included in T s

k . Figure 3 shows an execution of the process. Starting from randomly
chosen link 9, links 8, 10, 2, 3 and 12 are firstly included in T s

k , in the given order. Considering that pk = 8,
the process is iterated from the secondly included link, that is link 8, and then from link 10, included in third
position in T s

k , which gives as final result T s
k = {9, 8, 10, 2, 3, 12, 7, 11}.
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Figure 3: Selection process

Once subset T s
k defined, the sub-problem lies in finding a feasible assignment to the freed links such that the
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following constraints are satisfied (interference minimization phase):

α
∑

(i,j)∈CEM1

cij + β
∑

i∈CEM2

di < α
∑

(i,j)∈CEM1

cs−1
ij + β

∑

i∈CEM2

ds−1
i (33)

(20), (21), (22), (23), (24), (25)

fi = f s−1
i ∀i /∈ T s

k (34)

As for the span minimization phase, several strategies may be involved, in order to tackle problems P1, . . . , PK

independently. They consist in performing additional domains reductions on freed links domains. Let f+ =
maxi∈T f s−1

i and f− = mini∈T f s−1
i denote the values of the maximum and minimum assigned frequencies

in current solution F
s−1 respectively, we can now consider the following cases:

• AllMax strategy: it is employed when all links assigned to f+ belong to T s
k and at least one link assigned

to f− doesn’t. The lowest assigned frequency being fixed, reassigning the frequencies of freed links in
the interval I = [f−, f+[ is sufficient to obtain an improved solution. Consequently, all values that don’t
belong to I are removed from the domains of the freed links.

• AllMin strategy: it is the symmetric strategy of the previous one. The domains are reduced to the interval
I =]f−, f+].

• NoMinMax: it is involved when a link that doesn’t belong to T s
k is assigned to f+ and another one to f−.

Here, the span value can’t be improved; however, rearranging the frequencies in the interval I = [f−, f+]
can lead to a further improve of the solution and also contributes to diversify the search. Domains values
are then kept in this interval.

• AllMinMax: it is used when all links assigned to f+ and f− belong to T s
k . Given d− = mini/∈T s

k
f s−1

i −

f− and d+ = f+ − maxi/∈T s
k

f s−1
i , any solution improving the span value can’t contain a link assigned

outside the interval I = [f− − d+, f+ + d−].

All these strategies are coupled with appropriate objectives. Hence, for the three first cases, a feasible solution
(i.e. a solution satisfying all interference and interval constraints) is searched, while the last strategy involves
the search of an optimal solution for SP s

k .

It is worth noting that the heuristic domains reductions of two first strategies may suppress good or even optimal
solutions from the neighborhood. However, by reducing the neighborhood size, they contribute to make its
exploration easier and consequently allow to solve sub-problems of bigger size. Moreover, the diversity of the
strategies involved during the search, combined with a non-deterministic selection scheme of the freed links
may hopefully lead to reconsider previously ignored solutions.

5.4.3 Solving the sub-problems

Sub-problem SP s
k is solved taking into account two criterions: on one hand, the considered objective; on the

other hand, the global solution strategies. Regarding the optimization parameter, it is worth noting that, due to
the several strategies and objectives involved during the search, solving a sub-problem doesn’t necessarily lead
to the obtention of an optimal solution, neither of an improved one, for the considered sub-problem.

The global solution strategy defines the computing effort that will be spent to find the neighbor solution: a
heuristic will provide medium-quality solutions but in a very short time, while an exact method will necessitate
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more computing time to obtain high-quality solutions. The idea is to apply a heuristic scheme when the current
solution is likely to be easily improved (i.e. during the first iterations) and then apply an exact procedure in
order to intensify the search.

The heuristic procedure is the one presented above. As previously said, this method doesn’t assume to provide
an improved neighbor solution, in which case the current solution remains unchanged. However, it globally
behaves effectively to improve medium-quality solutions. That’s why it is employed at the beginning of the
first phase of the optimization process, in order to obtain a solution of satisfying quality.

Once this solution reached, another solution scheme is involved to tackle the sub-problems. The latter consists
of a truncated exact procedure. The search is stopped as soon as an improved or optimal solution is found, or
when a time limit H is reached. This method allows to intensify the search of the neighbor solution as it spends
more time to explore the neighborhood. The time limit parameter is used to tune effectively the procedure: it
is high for interference minimization or when AllMinMax strategy is active; on the contrary, it is set to a low
value for all other cases of span minimization, in particular when NoMinMax strategy is employed.

6 Comparison of the methods in competition

Experiments have been conduced on a PC equipped with a 350 MHz CPU and 256 Mo RAM. To establish a
comparison, we have confronted our LNS approach to the Simulated Annealing method of (Sarzeaud, 2003)
and the Tabu Search method of (Vlasak and Vasquez, 2003), the two other teams challenging on this specific
problem. In order to make a fair comparison, all of the tests have been performed following the same operating
mode (1 hour of execution time, same hardware). Table 4 gives the results on the CELAR instances for all
approaches in terms of interference and span value. Columns LNS, SA and TS give the results of the Large
Neighborhood Search, Simulated Annealing and Tabu Search methods, respectively. For each approach, we
have reported the results obtained for both criterions: if the interference value is greater than 0, the latter is
then reported in column MI-FAP and the associated span value is indicated in parenthesis; on the contrary, if all
electromagnetic constraints have been satisfied, the span value is reported in column MS-FAP. Best solutions
are displayed in bold.

The LNS method is in general superior to the SA and TS methods, with the notable exception of instance
19. This particular instance is the only one that involves different weights in the expression of the sum of
violated constraints, which could explain the bad performance of our LNS approach on it. Indeed, the sub-
problems selection process may be less adequate to that particular case, since it does not take weights into
account for the selection of the freed links. Another remark that can be raised from the results presented
above concerns the good behavior of the LNS method on highly decomposable instances when minimizing the
span criterion (interference free instances 8, 9, 10, 12 and 29). In this case, it literally outperforms the results
obtained by the two others approaches. This tends to prove the effectiveness of the neighborhood reduction rules
involved during the second phase of the process. An interesting outcome could then consist in extending this
methodology to non-decomposable instances. These ones could be divided into several components regarding
connectivity criteria in the constraint graph, allowing then the LNS method to work on smaller problems during
the second phase.
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instance LNS SA (Sarzeaud et al) TS (Vlasak et al)
MI-FAP MS-FAP MI-FAP MS-FAP MI-FAP MS-FAP

01 - 548 - 549 - 548
02 - 629 - 629 - 629
03 2 (599) - 2 (580) - 2 (623) -
04 - 520 - 520 - 519
05 - 599 - 623 - 676
06 - 718 - 718 - 758
07 6 (666) - 4 (698) - 8 (687) -
08 - 620 - 646 - 642
09 - 544 - 656 - 860
10 - 412 - 692 - 849
11 - 604 - 656 - 601
12 - 572 1 (639) - 2 (634) -
13 9 (399) - 6 (399) - 8 (380) -
14 - 398 - 360 - 354
15 31 (399) - 73 (399) - 44 (399) -
16 46 (146) - 46 (146) - 46 (146) -
17 46 (99) - 45 (98) - 45 (98) -
18 - 404 1 (476) - - 408
19 4385 (492) - 4375 (496) - 3998 (496) -
20 150 (492) - 193 (496) - 152 (496) -
21 - 982 2 (964) - 4 (994) -
22 - 788 - 818 1 894
23 - 380 - 380 - 380
24 - 410 - 430 - 410
25 2* (540) - 2 (490) - 2* (540) -
26 - 480 1 (492) - - 480
27 2 (490) - 4 (490) - 2 (490) -
28 - 610 - 646 - 638
29 - 542 - 852 - 866
30 23 (912) - 27 (912) - 32 (912) -

Table 4: Computational results on the FAPPG CELAR instances
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7 Comparison of the models

Finally, the last goal of the study was to establish a comparison between the model including the cumulative
interference constraints and the model which replaces these constraints by more constrained binary interference
constraints. Recall that the classical representation of the interference constraints can be obtained by replacing
all CEM2 constraints (2) by CEM1 constraints (1), through a uniform distribution of the ”right to disrupt”:

λij |fi − fj| ≥
Λi

|Pi|
∀j ∈ Pi (35)

There exists in theory, because of the construction of the constraints, a solution for the problem with the
cumulative constraints as least as good as the best solution of the classical model. However, the objective of
the current study is to determine whether the methods are able to find these solutions in a reasonable amount
of time. In other words, is the increase in complexity of the constraints balanced by the quality of the obtained
solutions?

From the CELAR instances, we then generated the set of corresponding instances for the classical binary model.
The results displayed in Table 5 are obtained with the LNS method. If a solution satisfies all electromagnetic
constraints, the span value is indicated in column MS-FAP. Otherwise, the interference value is displayed on
column MI-FAP. Values in parenthesis indicate the results obtained on the model with cumulative constraints.
The experiments have been conduced as described in the previous section.

Instance MI-FAP MS-FAP Instance MI-FAP MS-FAP
01 - 571 (548) 16 57 (46) -
02 1 (0) - 17 55 (46) -
03 3 (2) - 18 - 488 (404)
04 - 718 (520) 19 5629 (4385) -
05 1 (0) - 20 178 (150) -
06 - (761) 718 21 24 (0) -
07 17 (6) - 22 10 (0) -
08 - 620 (620) 23 - 380 (380)
09 - 650 (544) 24 - 440 (410)
10 - 500 (412) 25 2 (2) -
11 - 617 (604) 26 - 480 (480)
12 - 600 (572) 27 2 (2) -
13 13 (9) - 28 - 634 (610)
14 1 (0) - 29 - 548 (542)
15 31 (31) - 30 27 (23) -

Table 5: Benefits of using the cumulative interference constraints

The results show that the model with cumulative constraints obtains a larger number of interference free solu-
tions than the model with only binary interference constraints. This shows clearly the benefit of introducing the
cumulative interference constraints to solve practical frequency allocation problems.
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8 Conclusion

We have performed an experimental comparison of two models and several methods to solve frequency assign-
ment problems with cumulative interferences.

The large neighborhood search method we propose is superior to the existing heuristics, although it does not
dominate them on all instances.

Last, our study establishes that good heuristic methods can take advantage of a direct representation of the cu-
mulative constraints, despite their complexity. Such a result is of practical importance to solve real assignment
problems since practitioners would benefit from switching, at least partially, to the new model.

As suggested by our preliminary encouraging results in this way, a future direction of research may consist in
designing efficient constraint propagation techniques for the cumulative interference constraints.
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