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Abs t rac t 

By automatically reformulating the problem 
domain, constructive induction ideally over­
comes the defects of the ini t ial description. The 
reformulation presented here uses the Version 
Space primitives D ( E , F ) , defined for any pair 
of examples E and F, as the set of hypotheses 
covering E and discriminating F, 
From these primitives we derive a polynomial 
number of M-of -N concept. Experimentally, 
many of these concepts turn out to be signifi­
cant and consistent. A simple learning strategy 
thus consists of exhaustively exploring these 
concepts, and retaining those with sufficient 
quality. Tunable complexity is achieved in the 
MONKEI algorithm, by considering a user-
supplied number of primitives D(E i, F i ) , where 
Ei and Fi are stochastically sampled in the 
training set. MONKEI demonstrates good per­
formances on some benchmark problems, and 
obtains outstanding results on the Predictive 
Toxicology Evaluation challenge. 

1 I n t r oduc t i on 
The goal of Machine Learning (ML) is to find a set of 
hypotheses accurately describing the target concept at 
hand, and to do so wi th an acceptable complexity This 
is made possible only if the learner, the description of 
the problem domain and the distribution of the training 
examples fit well together. 

When learning small disjuncts [Holte, 1993] for in­
stance, the difficulty might come from the distribution 
of the examples, and the existence of rare cases [Weiss 
and Hirsh, 1998]. It might also be due to the lack of rel­
evant primitives in the problem description [Perez and 
Rendell, 1995] — and indeed new primitives might allow 
to generalize/cluster rare cases in such a way that they 
are not "rare" any more. Last, the existence of rare cases 
might be caused by the learning strategy, e.g. based on 
set-covering [Michalski, 1983]. 

Constructive induction tradit ionally focuses on re­
fining (rewriting) the problem description [Michalski, 

1983]. The quality of a reformulation is measured by 
the improvement of some base learner accuracy. Indeed, 
expert-driven reformulations of the problem domain can 
significantly improve the learning performances [Craven 
and Shavlik, 1993]. 

Constructive induction is the process of automatically 
finding a good quality reformulation. A first possibil­
i ty is to derive the candidate reformulations from rules 
learned in a previous learning step. Wnek and Michalski 
[1994] look for new attributes allowing one to compact 
the previous rules. Gama [1998] uses the prediction of 
previously learned classifiers as new attributes. Another 
possibility is to syntactically define the space of candi­
date reformulations. For instance, MRP explores a set 
of relational patterns, defined as boolean functions of the 
init ial attributes of the problem domain [Perez and Ren-
dell, 1995]. In first order logic, SP searches a set of 
boolean functions, used to rewrite first-order examples 
in propositional form [Kramer et al., 1998]. 

These approaches strongly depend on the quality of 
the knowledge provided to the system (through rules, 
classifiers or syntactic definitions of the candidate refor­
mulations), which must be relevant and make the search 
tractable. 

To alleviate this l imitat ion, we present a three-step 
approach interleaving induction and constructive induc­
t ion: first, some ini t ial hypotheses are constructed from 
the examples; second, these hypotheses incur a simple 
reformulation; last, some simple concepts of the refor­
mulated problem are considered, and those satisfying the 
validation criteria (minimal number of covered examples, 
maximal number of allowed exceptions) are retained. 
This way, the learning workload might be balanced be­
tween constructive induction (reformulation) and induc­
t ion, making it possible to relax their respective require­
ments: the quality of the init ial hypotheses might be 
low, as these wi l l be reformulated; the complexity of the 
reformulation might be low, as it is based on hypothe-
ses instead of examples; the last induction step might be 
rough, as simple worthy concepts are emerged by refor­
mulation. Only attribute-value languages wi l l be consid­
ered in the paper. 

This approach is rooted in the Version Space (VS) 
framework, which canonically characterizes the hypothe-
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ses solutions of a learning problem [Mitchell, 1982]. In 
order to give a polynomial characterization of the VS, we 
have introduced the primitives D(E, F) of the VS, de­
fined as the set of hypotheses covering any given example 
E and discriminating any example F [Sebag, 1996] (Sec­
t ion 2). Indeed, D(EyF) can be viewed as the logical 
analog of the set of hyper-planes separating E from F. 

The point here is that D(E,F) naturally gives rise 
to an integer attr ibute noted HE,F (Section 3). Simple 
concepts bui l t on this attr ibute (e.g. cor­
respond to M-of-N concepts, of the init ial domain lan­
guage. Reformulating the problem domain according to 
these attributes thus gives access to a polynomial-sized 
subset of the exponential set of all M-of-iV concepts. Ex­
perimentally, it turns out that many of these concepts 
are worthy, i.e. they cover a significant number of ex­
amples, and are (almost) consistent. It is then sufficient 
to evaluate all candidate concepts, and retain those with 
acceptable significance and consistency. 

However, if all primitives D(E,F) were considered, 
the complexity of the approach would be cubic in the 
number of examples, making it unrealistic to handle 
medium-to-large datasets. This paper thus presents an 
algorithm called MONKEI (for M-of-N-based Konstruc-
tivE Induction), using stochastic heuristics to achieve re­
source bounded induction, along the lines of bounded re-
source reasoning [Zilberstein, 1996]: the number of con­
sidered primitives D(Ei,Fi) is set by the user, and ex­
amples Ei and Fi are randomly selected in the training 
set (Section 4). 

Our approach is situated wi th respect to related work 
(Section 5), and MONKEI is experimentally validated 
(Section 6). The advantage of this approach is success­
fully demonstrated on some problems in the Irvine repos­
itory [C. Blake and Merz, 1998], and a real-world prob­
lem proposed as an I JCAI challenge [Srinivasan, 1997], 
known as Predictive Toxicology Evaluation II. 
The main l imitation of MONKEI is that it provides a 
DNF theory, less intelligible than standard CNF theo-
ries. How to address this l imitat ion, and other perspec­
tives of research, are discussed in the last section. 

2 The pr im i t i ves of Version Space 
We assume the reader's familiarity wi th the Version 
Space framework [Mitchell, 1982] and its limitations due 
to an exponential complexity [Haussler, 1988]. As a gen­
eral remark, the complexity of a concept is commanded 
by its representation: a concept in DNF form (expressed 
as a conjunction of disjunctions) corresponds to an expo­
nential concept in CNF form (expressed as a disjunction 
of conjunctions). One way of having an affordable level 
of complexity (for both inductive and deductive reason­
ing) might thus be the use of a DNF formalism instead 
of a CNF one [Khardon and Roth, 1997]. 

Along these lines, the Disjunctive Version Space pro­
poses a polynomial DNF characterization of the Version 
Space [Sebag, 1996]. This characterization is built from 
elementary hypotheses D{E,F), called Version Space 

primitives: D(E, F) is defined as the set of all hypothe­
ses covering E and rejecting F, where E and F are two 
distinct training examples. 

We restrict ourselves to attribute-value logic, where 
hypotheses are conjunctions of selectors [att Interval) 
and [att = value] respectively bui l t on numerical-and 
nominal attributes att. In this language, the upper-
bound of D(E,F) is the disjunction (the set) of all 
maximally general selectors covering E and rejecting 
F, termed maximally discriminant selectors [Michalski, 
1983]. For instance in Table 1, is the max­
imally discriminant selector built on attribute Attz. 
By abuse of notations, D(E, F) is equated to its upper 
bound, hence characterized wi th linear complexity in the 
number of attributes. 

E 
F 

Att1 
Yes 
No 

Att2 
0 
0 

Att3 
3.45 
7.28 

Att4 
25 
18 

Att5 
red 

? 

Att6 

blue 

Let H be a conjunction of selectors, and assume that 
H belongs to the version space; by definition H is com­
plete (covers all positive training examples) and consis­
tent (rejects all negative examples). It follows that H be­
longs to (is subsumed by at least one selector in) D(E, F) 
for E ranging over the set of positive examples and 
F ranging over the set of negative examples: 

Inversely, let G denote the above conjunction of 
D(E, F). One can show wi th no difficulty that all max­
imally general (conjunctive) hypotheses in G are com­
plete and consistent. The version space and G thus have 
same upper bound, and G is expressed in DNF form with 
quadratic complexity in the number of examples and l in­
ear complexity in the number of attributes. 

Other limitations of Version Spaces due to noisy and 
sparse data, or disjunctive target concepts, are dealt wi th 
by using parameterized combinations of the D(E, F) [Se­
bag, 1996]. 

3 Learning M-of-iV Concepts 
This section describes new attributes derived from the 
Version Space primitives and uses them to reformulate 
the problem domain. An overview of the MONKEI al­
gorithm is then presented. 

3 .1 S e p a r a t i n g c o n c e p t s 
Let denote the attribute-value logic description of the 
problem domain (hypothesis and example language), de­
fined by numerical and/or nominal attributes. 

Let E and F be two training examples, and let 
D(E , F) be constructed as in Section 2, as the set (dis­
junction) of N maximally discriminant selectors Sel i-
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From D(E, F) we derive a mapping hE,F from the prob­
lem domain C onto the set of integers: for each example 
or hypothesis U, simply counts the number of 
selectors Seli that are satisfied by (covers) U. (or 
ft when no ambiguity can arise) maps C onto [0, N]: it 
defines a new computable attr ibute of the domain. 

E 
F 

[ U 

Att1 
Yes 
No 
? 

Att2 
0 
0 
1 

Att3 
3.45 
7.28 
5.28 

Att4 
25 
18 
20 

Att5 
red 

? 
? 

Att6 
? 

blue 
blue 

hE,F 
3 
0 ! 
2 i 

Table 2: Attribute hE,F maps onto [0,3] 

Consider the selectors bui l t on attr ibute ft, (e.g. [ft = 
Af]) , termed concepts. By definition, concept [ft = M] 
corresponds to the M-of-N concept of selectors an 
example U satisfies [ft = M] (equivalently, h(U) = M) 
i ff U satisfies exactly M selectors among the Seli. 

By construction, concepts [h = 0 ] , . . . , [ft = N] are 
disjoint and define a part i t ion of the examples. 

Attr ibute hE,F can conveniently be viewed as a new 
discrete "dimension" of the problem domain. This di­
mension separates E from F, as these examples belong 
to opposite regions along this dimension: E belongs to 

since E satisfies all and F belongs to 
since F satisfies none of the Seli. 

3.2 P r o p e r t i e s 
Concepts [ft = M] constitute a very flexible hypothe­
sis language, ranging from conjunctive hypotheses (e.g. 
[ft = N] is conjunctive), to XOR patterns (e.g. [ft = 1] 
corresponds to the XOR of selectors Seli). 

Note that concepts [h = M] can cover examples that 
are syntactically very different, inducing thereby unusual 
clusters of examples; this might hopefully decrease the 
number of "rare" cases. 

Further, the distribution of the examples along dimen­
sion ft (i.e. the number of examples covered by [ft = M ] , 
for M [0, N]) shows an interesting characteristic. If 
the ini t ial attributes were independent, wi th probability 
Pi for any example to satisfy a given selector Seli, the 
Centra! L imi t Theorem shows that the distribution of 
examples along ft tends toward a Gaussian law of mean 

when N goes to infinity (the approximation being 
considered accurate for N > 30 [Pitman, 1993]). The 
concepts [ft = M] in the tails of the distribution (M 
close to 0 or N) would then cover few or no examples. 

As could have been expected, experiments show that 
the ini t ial attributes are not independent: concepts in 
the tails of the distribution happen to cover a significant 
number of examples. Further, these concepts happen to 
be consistent, i.e. all or most covered examples belong to 
the same class. As concepts [ h E , F = M] are, sufficiently 
often, significant and consistent, a simple learning strat­
egy is to exhaustively explore these concepts, and retain 
all those that are sufficiently good. Further instances 
U are then classified by a majori ty vote of the concepts 
covering U. 

The number of such new attributes hE,F is quadratic 
in the number P of examples; evaluating each hE,F on 

the training set is linear in the number of attributes and 
in the number of examples. Hence, the complexity of 
the exhaustive strategy is cubic in the number of ex-
amples, making it unrealistic to handle medium-to-large 
datasets. 

3 .3 O v e r v i e w o f MONKEI 
Tunable complexity is achieved in MONKEI by consid­
ering a user-supplied number d of primitives D(Ei, Fi), 
where Ei and FI are iteratively selected in the training 
set. The pairs of examples (Ei,Fi), called seed exam­
ples, are sampled by a stochastic boosting mechanism, 
based on the notion of margin. Wi th in a majority vote-
based classifier, the margin of a training example E is 
the number of votes for the right class, minus the num­
ber of votes for the other class (or the second best class, 
in case of a multi-class discrimination problem) [Freund 
and Shapire, 1996]: E is misclassified iff its margin is 
negative. 

In MONKEI, one of the seed examples, say Ei, is se­
lected with uniform probability among low-margin ex­
amples (i.e., whose margin according to the current the­
ory Th of the system is less than 1 through the follow­
ing). The other seed example is selected wi th uniform 
probability among the training examples that do not be­
long to the same class as the first seed example. 

After a seed pair (Ei, Fi) has been selected, the corre­
sponding attr ibute ft is computed for all training exam­
ples, and its domain [0, N] is discretized in K intervals 
I1,.........,IK (concepts [h = M] and [ft = M + 1 ] are merged 
if they cover examples in the same class). Each concept 

is evaluated; it is added to the current theory if 
it covers more than a prescribed number A of examples 
and admits less than a prescribed rate e of exceptions1; 
ft is then termed dimension of the domain. 

It might happen that many pairs of seed examples 
(Ei, Fi) are considered and no concept is retained; these 

1 We further require the concept to cover at least one so 
far misclassified or unclassified example. 

A l g o r i t h m M O N K E I 
dimension = 0; Th = { } ; IdleSteps = 0 
While (dimension < d) 

Draw E among the low margin examples 
If no such E is found, return Th 
Draw F s.t. class(F) dass(E) 
Construct attr ibute hE,F

Discretize its domain into intervals I1,..IK
For each Ik

If is selected, 
Add to Th 

If at least one is selected, 
IdleSteps = 0 
Increment dimension 

Else increment IdleSteps 
If IdleSteps > T return Th 

End while 
return Th 
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steps are named "idle steps". The number of idle steps 
increases as learning proceeds, as there are less and less 
low-margin examples, and less chances to cover previ­
ously misclassified examples. 

MONKEI repeatedly selects pairs of examples unti l 
the desired number of dimension d is reached, or the 
number of consecutive idle steps reaches a threshold T 
(set to 100 through the following). 

C o m p l e x i t y . The worst case learning complexity is 
0{d x T x N x P ) , where d stands for the user-supplied 
number of dimensions, T is the maximal number of con­
secutive idle steps allowed, P is the number of training 
examples, and N is the number of init ial attributes. 
At most d x N concepts are learned. As classifying U re­
quires to compute hEi ,F i(U) only once (with complexity 
O(N)) , the classification complexity finally is O(d x N). 

4 Discussion 
MONKEI explores a set of concepts that express some 
relations of the init ial attributes, e.g. by counting the 
number of particular features that are simultaneously 
satisfied. Compared to the relational patterns used in 
MRP [Perez and Rendell, 1995], the difference is that 
the concepts explored here are automatically and poly-
nomiaUy derived from the examples, and no preliminary 
discretization of numerical domains is required. 
The constructed M-of-iV concepts are simply evaluated; 
as opposed to MRP [Perez and Rendell, 1995] or ID2-of-3 
[Murphy and Pazzani, 1991], MONKEI does not consider 
their combination (conjunction). 

MONKEI must also be compared to Support Vector 
Machines (SVMs) [Scholkopf et oi., 1998], which refor­
mulate the problem domain using kernel functions de­
rived from the examples. In the new description space, 
SVMs look for a separating surface optimizing the min­
imal margin over the training set; the optimization pro­
ceeds by pruning all examples but those with a minimal 
margin, called support vectors. 
One major difference between SVM and MONKEI is that 
every kernel function used in SVMs depends on a single 
example; every "kernel function" h E , F used in MONKEI 
depends on a pair of examples. Another difference is that 
SVMs start wi th a large set of kernel functions which is 
gradually pruned along the optimization of the minimal 
margin. In opposition, MONKEY gradually grows the 
set of kernel functions unti l a satisfactory margin has 
been found for all examples - or the computational re­
sources have been exhausted. 

Like boosting algorithms [Preund and Shapire, 1996], 
MONKEI pays more attention to misclassified examples 
than to others; if naively done, this strategy might lead 
to rewarding noisy examples. This drawback is limited in 
MONKEI as all constructed concepts are independently 
validated: only sufficiently good concepts can be added 
to the current theory. 

One main l imitat ion of MONKEI is that it is unlikely 
to deal wi th irrelevant attributes. For any example U, 
let h(U) be decomposed as where 

and respectively denote the number 
of discriminant selectors based on relevant and irrele­
vant attributes that are satisfied by can be 
viewed as some kind of noise which blurs the informa­
t ion contained in making it unlikely to discover the 
worthwhile concepts Additional heuristics 
need be designed to overcome this problem. 

Another l imitation, discussed in Section 5.3, regards 
the intelligibility of the theory produced by MONKEI. 

5 Exper imenta l va l idat ion 
Since a universal learner does not exist [Wolpert and 
Macready, 1995], experimental validation should make 
clear when a new learner is worth using. 

5.1 Benchmark prob lems 
We first consider six problems (artificial waveform 
[Breiman et al., 1984], glass, balance, tic-tac-toe, monks-
2, vehicle) from the Irvine repository [C. Blake and Merz, 
1998], i l lustrating various types of learning difficulties 
(noisy data, il l-distributed classes, many classes, many 
disjuncts). 

Table 3: Datasets and Reference Results. 

Table 3 recalls the characteristics of the datasets and 
the previous best results, obtained (as far as we know) 
by Local Cascade Generalization [Gama, 1998], G-Net 
[Anglano et al., 1998] and HCI [Wnek and Michakki, 
1994] using a 10-fold cross-validation. 

The experiment goal here is to check whether compet­
itive results can be obtained for a reasonable number of 
dimensions. The number d of considered dimensions is 
chosen from the interval [10,100]. Other parameters of 
MONKEI are frozen to their default value: the minimal 
number A of examples covered by a concept is 5, the 
maximal percentage of exceptions e is 10%. 

On the balance, glass, tic-tac-toe and vehicle prob­
lems, MONKEI accuracy is evaluated by 2-fold cross-
validation, averaged over 5 independent splits of the 
dataset as recommended by [Dietterich, 1998]. 15 inde­
pendent runs are executed for each split of the dataset, 
as recommended when evaluating a stochastic algorithm. 
On the Monks2 problem, the accuracy is evaluated on 
the 432-example test set (averaged on 15 independent 
runs). On the waveform problem, the predictive accu­
racy is evaluated on a 5000-examples test set, averaged 
over ten 300-examples training sets (15 independent runs 
are executed for each training set). 
CPU times are given in seconds on a Pentium 11-166. 
Table 4 shows the lowest number of dimensions d allow­
ing MONKEI to match or outperform the state-of-the-
art results on the balance, glass, vehicle and monks-2 
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problems. #C denotes the number of Af-of-iV learned 
concepts. 

for the lowest d matching reference results 
Table 5 illustrates how the performance depends upon 

the number of dimensions, on the waveform and tic-tac-
toe problems. MONKEI matches the optimal theoretical 
accuracy on the waveform problem (86%), but falls be­
hind G-Net on the tic-tac-toe problem. Some care must 
be exercised when comparing the results, since the ref­
erence results were obtained according to a 10-fold CV 
against a 2-fold CV for ours (meaning that MONKEI is 
evaluated wi th a more pessimistic estimate). 

Table 5: MONKEI Results (Dependence upon d) 
Generally, good results can already be achieved using 
comparatively small values of d (d > 60 for the wave-
form problem, d > 80 for the vehicle problem, d > 40 
otherwise). 

5.2 A r e a l - w o r l d p r o b l e m 
The real-world Predictive Toxicology Evaluation (PTE2) 
problem is nicely motivated and detailed in [Srinivasan, 
1997]. This problem both is very inspiring and appears 
difficult for experts, learners, and even learners cooper­
ating with experts [Srinivasan, 1999]. 

This dataset includes 333 examples. The "test" set 
includes 30 examples which were unknown at the be­
ginning of the P T E challenge; 20 have been since diag­
nosed and their class was available by November 1998. 
FOIL [Quinlan, 1990] and PROGOL [Muggleton, 1995] 
consider a first-order description of the problem, other 
learners consider a 417 attributes description. A compre­
hensive presentation of the descriptions and the reference 
results is found in [Srinivasan, 1999]. 

| Representation ] 
relational 

propositional 

| Algorithm 
FOIL 
PROGOL 
C4.5 prune 
C4.5 rules 
C4.5 rules 4- hand 

Accuracy 
25.15% 

63 % 
58.79% 
60.76% 

78% 
Table 6: Reference Results on PTE2 

Given the practical importance of the problem, 
MONKEI was run wi th unbounded resources, meaning 
that all primitives D(E, F ) , for E and F respectively 
ranging over the positive and negative examples, were 
considered. The CPU time is 24 minutes on a Pentium 
II-300. 

The selection of concepts thus only depends on the 
minimal number of covered examples A, chosen from the 
interval [30,50] and the maximal rate of exceptions e 
chosen from the interval [0,10%]. 

The results (Table 7) demonstrate the good perfor­
mances of MONKEI, and its stability wi th respect to 
parameters A and . #C denotes the number of M-of-
N learned concepts. 

£ 
0 
0 
5 
5 
10 

10 

A 
30
50 
30 
50 
30 
50 

"Test" 
100% 
100% 
100% 
100% 
95% 
95% 

Table 7: Unbounded 

Training 
100% 
100% 
100% 
100% 
94% 
98% 

# C 
188 
69 
356 
104 
1099 
192 

MONKEI on PTES 

5.3 D i s c u s s i o n 
In the field of scientific discovery, a major drawback of 
MONKEI is that it fails to produce an intelligible theory: 
this failure is basically due to the fact that it handles 
DNF concepts, which are generally considered to be less 
intelligible than standard rulesets, i.e. CNF concepts. 

Sti l l , an intelligible interface can be constructed on a 
DNF-based system [Khardon and Roth, 1997]. 

In MONKEI (as in SVMs), the system can answer 
the user's questions about the typicality of examples. 
The typicality of an example, interpreted wi th regard 
to its margin, can be computed (instead of, explained) 
from the theory. The experiment design might take ad­
vantage of this information, to preferably run physical 
experiments corresponding to borderline (untypical) ex­
amples. 

The logic-based formalism of MONKEI can facilitate 
the detection of attr ibute dependencies, as it allows one 
to focus on the subsets of examples that are covered by 
the concepts, and the selectors that are simultaneously 
satisfied by the examples. 

One might also focus on the selectors that are never 
simultaneously satisfied in these conditions, and search 
for XOR subconcepts. The favorable case is when all 
M-of-iV concepts can be expressed as conjunctions of 
simple XOR subconcepts; the theory would then directly 
be intelligible. 

6 Conclusion and Perspectives 
The approach investigated in this paper considers DNF 
concepts as hypothesis language; the advantage of the 
language is its high expressiveness (both conjunctive and 
XOR expressions are DNF concepts), and a low compu­
tational complexity. 

Wi th in the version space framework, we define a par­
ticular set of DNF concepts, polynomially characterized 
and evaluated from the examples. This set is explored by 
stochastic sampling, in order to let the user control the 
learning cost (any-time algorithm). A l l explored con­
cepts that are "sufficiently good" are retained. This 
strategy demonstrates its efficiency on several Irvine 
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problems, as i t matches or outpasses the previous best 
results for qu i te a l i m i t e d amoun t of resources. On the 
rea l -wor ld P T E 2 p rob lem, MONKEI achieves ou ts tand­
i n g results w i t h u n l i m i t e d resources, s t i l l i n reasonable 
t i m e . 

T h i s w o r k opens up several perspectives. One already 
ment ioned is to develop an " in te l l ig ib le" interface for 
MONKEI. Ano the r perspect ive is to upgrade MONKEI 
to f i rs t order logic, using the po lynomia l approx imat ions 
of the Version Space re la t iona l p r imi t i ves developed in 
[Sebag and Rouve i ro l , 1997]. 
Las t , we shal l examine in more deta i l the relat ionship 
between MONKEI and Suppor t Vector Machines. Using 
d pairs of seeds (E i , F , ) , MONKEI maps t he i n i t i a l t r a i n ­
i ng set on to N d ; th i s makes i t possible to app ly Suppor t 
Vector Machines, and determine the suppor t vectors ex­
amples Vj. An in terest ing quest ion is how, i f any, the 
suppor t vectors Vj are re lated to the seeds E i and F i . 
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