Michele Sebag Lms

Constructive Induction: A Version Space-based Approach

By automatically reformulating the problem domain, constructive induction ideally overcomes the defects of the initial description. The reformulation presented here uses the Version Space primitives D(E, F), defined for any pair of examples E and F, as the set of hypotheses covering E and discriminating F, From these primitives we derive a polynomial number of M-of-N concept. Experimentally, many of these concepts turn out to be significant and consistent. A simple learning strategy thus consists of exhaustively exploring these concepts, and retaining those with sufficient quality. Tunable complexity is achieved in the MONKEI algorithm, by considering a usersupplied number of primitives D(E i , F i), where E i and F i are stochastically sampled in the training set. MONKEI demonstrates good performances on some benchmark problems, and obtains outstanding results on the Predictive Toxicology Evaluation challenge.

Introduction

The goal of Machine Learning (ML) is to find a set of hypotheses accurately describing the target concept at hand, and to do so with an acceptable complexity This is made possible only if the learner, the description of the problem domain and the distribution of the training examples fit well together. When learning small disjuncts [START_REF] Holte | Very simple classification rules perform well on most commonly used datasets[END_REF] for instance, the difficulty might come from the distribution of the examples, and the existence of rare cases [START_REF] Weiss | [END_REF]. It might also be due to the lack of relevant primitives in the problem description [START_REF] Perez | [END_REF] -and indeed new primitives might allow to generalize/cluster rare cases in such a way that they are not "rare" any more. Last, the existence of rare cases might be caused by the learning strategy, e.g. based on set-covering [START_REF] Michalski | [END_REF].

Constructive induction traditionally focuses on refining (rewriting) the problem description [START_REF] Michalski | [END_REF]. The quality of a reformulation is measured by the improvement of some base learner accuracy. Indeed, expert-driven reformulations of the problem domain can significantly improve the learning performances [START_REF] Craven | [END_REF].

Constructive induction is the process of automatically finding a good quality reformulation. A first possibility is to derive the candidate reformulations from rules learned in a previous learning step. [START_REF] Wnek | [END_REF] look for new attributes allowing one to compact the previous rules. [START_REF] Gama | [END_REF] uses the prediction of previously learned classifiers as new attributes. Another possibility is to syntactically define the space of candidate reformulations. For instance, MRP explores a set of relational patterns, defined as boolean functions of the initial attributes of the problem domain [START_REF] Perez | [END_REF]. In first order logic, SP searches a set of boolean functions, used to rewrite first-order examples in propositional form [Kramer et al., 1998].

These approaches strongly depend on the quality of the knowledge provided to the system (through rules, classifiers or syntactic definitions of the candidate reformulations), which must be relevant and make the search tractable.

To alleviate this limitation, we present a three-step approach interleaving induction and constructive induction: first, some initial hypotheses are constructed from the examples; second, these hypotheses incur a simple reformulation; last, some simple concepts of the reformulated problem are considered, and those satisfying the validation criteria (minimal number of covered examples, maximal number of allowed exceptions) are retained. This way, the learning workload might be balanced between constructive induction (reformulation) and induction, making it possible to relax their respective requirements: the quality of the initial hypotheses might be low, as these will be reformulated; the complexity of the reformulation might be low, as it is based on hypotheses instead of examples; the last induction step might be rough, as simple worthy concepts are emerged by reformulation. Only attribute-value languages will be considered in the paper.

This approach is rooted in the Version Space (VS) framework, which canonically characterizes the hypothe-1 ses solutions of a learning problem [Mitchell, 1982]. In order to give a polynomial characterization of the VS, we have introduced the primitives D(E, F) of the VS, defined as the set of hypotheses covering any given example E and discriminating any example F [START_REF] Sebag | [END_REF] (Section 2). Indeed, D(E y F) can be viewed as the logical analog of the set of hyper-planes separating E from F.

The point here is that D(E,F) naturally gives rise to an integer attribute noted HE,F (Section 3). Simple concepts built on this attribute (e.g.

correspond to M-of-N concepts, of the initial domain language. Reformulating the problem domain according to these attributes thus gives access to a polynomial-sized subset of the exponential set of all M-of-iV concepts. Experimentally, it turns out that many of these concepts are worthy, i.e. they cover a significant number of examples, and are (almost) consistent. It is then sufficient to evaluate all candidate concepts, and retain those with acceptable significance and consistency.

However, if all primitives D(E,F) were considered, the complexity of the approach would be cubic in the number of examples, making it unrealistic to handle medium-to-large datasets. This paper thus presents an algorithm called MONKEI (for M-of-N-based Konstruc-tivE Induction), using stochastic heuristics to achieve resource bounded induction, along the lines of bounded resource reasoning [Zilberstein, 1996]: the number of considered primitives D(E i ,F i) is set by the user, and examples E i and F i are randomly selected in the training set (Section 4).

Our approach is situated with respect to related work (Section 5), and MONKEI is experimentally validated (Section 6). The advantage of this approach is successfully demonstrated on some problems in the Irvine repository [C. [START_REF] Blake | [END_REF]], and a real-world problem proposed as an IJCAI challenge [START_REF] Srinivasan | [END_REF], known as Predictive Toxicology Evaluation II. The main limitation of MONKEI is that it provides a DNF theory, less intelligible than standard CNF theories. How to address this limitation, and other perspectives of research, are discussed in the last section.

2

The primitives of Version Space

We assume the reader's familiarity with the Version Space framework [Mitchell, 1982] and its limitations due to an exponential complexity [Haussler, 1988]. As a general remark, the complexity of a concept is commanded by its representation: a concept in DNF form (expressed as a conjunction of disjunctions) corresponds to an exponential concept in CNF form (expressed as a disjunction of conjunctions). One way of having an affordable level of complexity (for both inductive and deductive reasoning) might thus be the use of a DNF formalism instead of a CNF one [Khardon and Roth, 1997].

Along these lines, the Disjunctive Version Space proposes a polynomial DNF characterization of the Version Space [START_REF] Sebag | [END_REF]. This characterization is built from elementary hypotheses D{E,F), called Version Space primitives: D(E, F) is defined as the set of all hypotheses covering E and rejecting F, where E and F are two distinct training examples.

We restrict ourselves to attribute-value logic, where hypotheses are conjunctions of selectors [att Interval) and [att = value] respectively built on numerical-and nominal attributes att. In this language, the upperbound of D(E,F) is the disjunction (the set) of all maximally general selectors covering E and rejecting F, termed maximally discriminant selectors [START_REF] Michalski | [END_REF]. For instance in Table 1, is the maximally discriminant selector built on attribute Attz. By abuse of notations, D(E, F) is equated to its upper bound, hence characterized with linear complexity in the number of attributes. Attribute h E,F can conveniently be viewed as a new discrete "dimension" of the problem domain. This dimension separates E from F, as these examples belong to opposite regions along this dimension: E belongs to since E satisfies all and F belongs to since F satisfies none of the Seli.

Properties

Concepts [ft = M] constitute a very flexible hypothesis language, ranging from conjunctive hypotheses (e.g. and Shapire, 1996]: E is misclassified iff its margin is negative.

In MONKEI, one of the seed examples, say E i , is selected with uniform probability among low-margin examples (i.e., whose margin according to the current theory Th of the system is less than 1 through the following). The other seed example is selected with uniform probability among the training examples that do not belong to the same class as the first seed example.

After a seed pair (E i , F i) has been selected, the corresponding attribute ft is computed for all training examples, and its domain [0, N] is discretized in K intervals I 1 ,........

.,IK (concepts [h = M] and [ft = M+1] are merged if they cover examples in the same class). Each concept

is evaluated; it is added to the current theory if it covers more than a prescribed number A of examples and admits less than a prescribed rate e of exceptions 1 ; ft is then termed dimension of the domain.

It might happen that many pairs of seed examples (E i , F i) are considered and no concept is retained; these 1 We further require the concept to cover at least one so far misclassified or unclassified example.

Discussion

MONKEI explores a set of concepts that express some relations of the initial attributes, e.g. by counting the number of particular features that are simultaneously satisfied. Compared to the relational patterns used in MRP [START_REF] Perez | [END_REF], the difference is that the concepts explored here are automatically and poly-nomiaUy derived from the examples, and no preliminary discretization of numerical domains is required. The constructed M-of-iV concepts are simply evaluated; as opposed to MRP [START_REF] Perez | [END_REF] or ID2-of-3 [Murphy and Pazzani, 1991], MONKEI does not consider their combination (conjunction).

MONKEI must also be compared to Support Vector Machines (SVMs) [Scholkopf et oi., 1998], which reformulate the problem domain using kernel functions derived from the examples. In the new description space, SVMs look for a separating surface optimizing the minimal margin over the training set; the optimization proceeds by pruning all examples but those with a minimal margin, called support vectors. One major difference between SVM and MONKEI is that every kernel function used in SVMs depends on a single example; every "kernel function" h E,F used in MONKEI depends on a pair of examples. Another difference is that SVMs start with a large set of kernel functions which is gradually pruned along the optimization of the minimal margin. In opposition, MONKEY gradually grows the set of kernel functions until a satisfactory margin has been found for all examples -or the computational resources have been exhausted.

Like boosting algorithms [Preund and Shapire, 1996], MONKEI pays more attention to misclassified examples than to others; if naively done, this strategy might lead to rewarding noisy examples. This drawback is limited in MONKEI as all constructed concepts are independently validated: only sufficiently good concepts can be added to the current theory.

One main limitation of MONKEI is that it is unlikely to deal with irrelevant attributes. For any example U, let h(U) be decomposed as where and respectively denote the number of discriminant selectors based on relevant and irrelevant attributes that are satisfied by can be viewed as some kind of noise which blurs the information contained in making it unlikely to discover the worthwhile concepts Additional heuristics need be designed to overcome this problem.

Another limitation, discussed in Section 5.3, regards the intelligibility of the theory produced by MONKEI.

Experimental validation

Since a universal learner does not exist [START_REF] Wolpert | [END_REF], experimental validation should make clear when a new learner is worth using.

Benchmark problems

We first consider six problems (artificial waveform [START_REF] Breiman | [END_REF], glass, balance, tic-tac-toe, monks-2, vehicle) from the Irvine repository [C. [START_REF] Blake | [END_REF]], illustrating various types of learning difficulties (noisy data, ill-distributed classes, many classes, many disjuncts).

Table 3: Datasets and Reference Results.

Table 3 recalls the characteristics of the datasets and the previous best results, obtained (as far as we know) by Local Cascade Generalization [START_REF] Gama | [END_REF], G-Net [Anglano et al., 1998] and HCI [Wnek and Michakki, 1994] using a 10-fold cross-validation.

The experiment goal here is to check whether competitive results can be obtained for a reasonable number of dimensions. The number d of considered dimensions is chosen from the interval [10,100]. Other parameters of MONKEI are frozen to their default value: the minimal number A of examples covered by a concept is 5, the maximal percentage of exceptions e is 10%.

On the balance, glass, tic-tac-toe and vehicle problems, MONKEI accuracy is evaluated by 2-fold crossvalidation, averaged over 5 independent splits of the dataset as recommended by [Dietterich, 1998]. 15 independent runs are executed for each split of the dataset, as recommended when evaluating a stochastic algorithm. On the Monks2 problem, the accuracy is evaluated on the 432-example test set (averaged on 15 independent runs). On the waveform problem, the predictive accuracy is evaluated on a 5000-examples test set, averaged over ten 300-examples training sets (15 independent runs are executed for each training set). CPU times are given in seconds on a Pentium 11-166. Table 4 shows the lowest number of dimensions d allowing MONKEI to match or outperform the state-of-theart results on the balance, glass, vehicle and monks-2 problems. #C denotes the number of Af-of-iV learned concepts.

for the lowest d matching reference results

Table 5 illustrates how the performance depends upon the number of dimensions, on the waveform and tic-tactoe problems. MONKEI matches the optimal theoretical accuracy on the waveform problem (86%), but falls behind G-Net on the tic-tac-toe problem. Some care must be exercised when comparing the results, since the reference results were obtained according to a 10-fold CV against a 2-fold CV for ours (meaning that MONKEI is evaluated with a more pessimistic estimate).

A real-world problem

The real-world Predictive Toxicology Evaluation (PTE2) problem is nicely motivated and detailed in [START_REF] Srinivasan | [END_REF]. This problem both is very inspiring and appears difficult for experts, learners, and even learners cooperating with experts [Srinivasan, 1999]. This dataset includes 333 examples. The "test" set includes 30 examples which were unknown at the beginning of the PTE challenge; 20 have been since diagnosed and their class was available by November 1998. FOIL [Quinlan, 1990] and PROGOL [Muggleton, 1995] consider a first-order description of the problem, other learners consider a 417 attributes description. A comprehensive presentation of the descriptions and the reference results is found in [Srinivasan, 1999] The selection of concepts thus only depends on the minimal number of covered examples A, chosen from the interval [30,50] and the maximal rate of exceptions e chosen from the interval [0,10%].

The results (Table 7) demonstrate the good performances of MONKEI, and its stability with respect to parameters A and . #C denotes the number of M-of-N learned concepts.

Discussion

In the field of scientific discovery, a major drawback of MONKEI is that it fails to produce an intelligible theory: this failure is basically due to the fact that it handles DNF concepts, which are generally considered to be less intelligible than standard rulesets, i.e. CNF concepts.

Still, an intelligible interface can be constructed on a DNF-based system [Khardon and Roth, 1997].

In MONKEI (as in SVMs), the system can answer the user's questions about the typicality of examples. The typicality of an example, interpreted with regard to its margin, can be computed (instead of, explained) from the theory. The experiment design might take advantage of this information, to preferably run physical experiments corresponding to borderline (untypical) examples.

The logic-based formalism of MONKEI can facilitate the detection of attribute dependencies, as it allows one to focus on the subsets of examples that are covered by the concepts, and the selectors that are simultaneously satisfied by the examples.

One might also focus on the selectors that are never simultaneously satisfied in these conditions, and search for XOR subconcepts. The favorable case is when all M-of-iV concepts can be expressed as conjunctions of simple XOR subconcepts; the theory would then directly be intelligible.

Conclusion and Perspectives

The approach investigated in this paper considers DNF concepts as hypothesis language; the advantage of the language is its high expressiveness (both conjunctive and XOR expressions are DNF concepts), and a low computational complexity. Within the version space framework, we define a particular set of DNF concepts, polynomially characterized and evaluated from the examples. This set is explored by stochastic sampling, in order to let the user control the learning cost (any-time algorithm). All explored concepts that are "sufficiently good" are retained. This strategy demonstrates its efficiency on several Irvine problems, as it matches or outpasses the previous best results for quite a limited amount of resources. On the real-world PTE2 problem, MONKEI achieves outstanding results with unlimited resources, still in reasonable time.

This work opens up several perspectives. One already mentioned is to develop an "intelligible" interface for MONKEI. Another perspective is to upgrade MONKEI to first order logic, using the polynomial approximations of the Version Space relational primitives developed in [START_REF] Sebag | [END_REF]. Last, we shall examine in more detail the relationship between MONKEI and Support Vector Machines. Using d pairs of seeds (E i , F,), MONKEI maps the initial training set onto N d ; this makes it possible to apply Support Vector Machines, and determine the support vectors examples Vj. An interesting question is how, if any, the support vectors Vj are related to the seeds E i and F i .

 a conjunction of selectors, and assume that H belongs to the version space; by definition H is complete (covers all positive training examples) and consistent (rejects all negative examples). It follows that H belongs to (is subsumed by at least one selector in) D(E, F) for E ranging over the set of positive examples and F ranging over the set of negative examples: Inversely, let G denote the above conjunction of D(E, F). One can show with no difficulty that all maximally general (conjunctive) hypotheses in G are complete and consistent. The version space and G thus have same upper bound, and G is expressed in DNF form with quadratic complexity in the number of examples and linear complexity in the number of attributes. Other limitations of Version Spaces due to noisy and sparse data, or disjunctive target concepts, are dealt with by using parameterized combinations of the D(E, F) [Sebag, 1996]. 3 Learning M-of-iV Concepts This section describes new attributes derived from the Version Space primitives and uses them to reformulate the problem domain. An overview of the MONKEI algorithm is then presented. 3.1 Separating concepts Let denote the attribute-value logic description of the problem domain (hypothesis and example language), defined by numerical and/or nominal attributes. Let E and F be two training examples, and let D(E, F) be constructed as in Section 2, as the set (disjunction) of N maximally discriminant selectors Sel i -From D(E, F) we derive a mapping h E,F from the problem domain C onto the set of integers: for each example or hypothesis U, simply counts the number of selectors Seli that are satisfied by (covers) U. (or ft when no ambiguity can arise) maps C onto [0, N]: it defines a new computable attribute of the domain. Attribute h E,F maps onto [0,3] Consider the selectors built on attribute ft, (e.g. [ft = Af]), termed concepts. By definition, concept [ft = M] corresponds to the M-of-N concept of selectors an example U satisfies [ft = M] (equivalently, h(U) = M) iff U satisfies exactly M selectors among the Sel i . By construction, concepts [h = 0],..., [ft = N] are disjoint and define a partition of the examples.

 [ft = N] is conjunctive), to XOR patterns (e.g. [ft = 1] corresponds to the XOR of selectors Sel i). Note that concepts [h = M] can cover examples that are syntactically very different, inducing thereby unusual clusters of examples; this might hopefully decrease the number of "rare" cases. Further, the distribution of the examples along dimension ft (i.e. the number of examples covered by [ft = M], for M [0, N]) shows an interesting characteristic. If the initial attributes were independent, with probability Pi for any example to satisfy a given selector Seli, the Centra! Limit Theorem shows that the distribution of examples along ft tends toward a Gaussian law of meanwhen N goes to infinity (the approximation being considered accurate for N > 30[START_REF] Pitman | Probability[END_REF]). The concepts [ft = M] in the tails of the distribution (M close to 0 or N) would then cover few or no examples.As could have been expected, experiments show that the initial attributes are not independent: concepts in the tails of the distribution happen to cover a significant number of examples. Further, these concepts happen to be consistent, i.e. all or most covered examples belong to the same class. As concepts [h E,F = M] are, sufficiently often, significant and consistent, a simple learning strategy is to exhaustively explore these concepts, and retain all those that are sufficiently good. Further instances U are then classified by a majority vote of the concepts covering U.The number of such new attributes h E,F is quadratic in the number P of examples; evaluating each h E,F on the training set is linear in the number of attributes and in the number of examples. Hence, the complexity of the exhaustive strategy is cubic in the number of examples, making it unrealistic to handle medium-to-large datasets.3.3 Overview of MONKEITunable complexity is achieved in MONKEI by considering a user-supplied number d of primitives D(Ei, Fi), where Ei and F I are iteratively selected in the training set. The pairs of examples (Ei,Fi), called seed examples, are sampled by a stochastic boosting mechanism, based on the notion of margin. Within a majority votebased classifier, the margin of a training example E is the number of votes for the right class, minus the number of votes for the other class (or the second best class, in case of a multi-class discrimination problem) [Freund

 Algorithm MONKEI dimension = 0; Th = {}; IdleSteps = 0 While (dimension < d) Draw E among the low margin examples If no such E is found, return Th Draw F s.t. class(F) dass(E) Construct attribute h E,F Discretize its domain into intervals I 1 ,..I K For each If IdleSteps > T return Th End while return Th steps are named "idle steps". The number of idle steps increases as learning proceeds, as there are less and less low-margin examples, and less chances to cover previously misclassified examples. MONKEI repeatedly selects pairs of examples until the desired number of dimension d is reached, or the number of consecutive idle steps reaches a threshold T (set to 100 through the following). Complexity. The worst case learning complexity is 0{d x T x N x P), where d stands for the user-supplied number of dimensions, T is the maximal number of consecutive idle steps allowed, P is the number of training examples, and N is the number of initial attributes. At most d x N concepts are learned. As classifying U requires to compute hE i , F i (U) only once (with complexity O(N)), the classification complexity finally is O(d x N).

Table 5 :

 5 MONKEI Results (Dependence upon d) Generally, good results can already be achieved using comparatively small values of d (d > 60 for the waveform problem, d > 80 for the vehicle problem, d > 40 otherwise).

 .

	| Representation]	| Algorithm	Accuracy
	relational	FOIL PROGOL	25.15% 63 %
	propositional	C4.5 prune C4.5 rules C4.5 rules 4-hand	58.79% 60.76% 78%

Table 6 :

 6 Reference Results on PTE2

	Given the practical importance of the problem,
	MONKEI was run with unbounded resources, meaning
	that all primitives D(E, F), for E and F respectively
	ranging over the positive and negative examples, were
	considered. The CPU time is 24 minutes on a Pentium
	II-300.

Table 7 :

 7 Unbounded

	Training 100% 100%	# C 188 69
	100% 100% 94% 98%	356 104 1099 192
	MONKEI on PTES

Acknowledgments

Many thanks to Yves Kodratoff and Fabien Torre, LRI, and Marc Schoenauer, Ecole Polytechnique, for their support and many discussions.

Thanks also to Lise Fontaine and the anonymous referees, for their help in making the paper readable.