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Mean-stress dependent damping of seismic waves in sand

J.F Semblat & J.J Brioist
Laboratoire Central des Ponts et Chaussées, Paris, France

M.P. Luong
Laboratoire de Mécanique des Solides, Ecole Polytechnique, Palaiseau, France

ABSTRACT : This paper deals with the numerical modelling of seismic waves propagation in soils. Some essential
aspects of numerical dispersion are firstly discussed. Classical numerical approaches for the modelling of damping are
compared with physical approaches. A rheological model corresponding to classical Rayleigh damping is considered.
The link with wave propagation centrifuge experiments is then made. From these tests, homogeneous damping does
not appear to be a suitable assumption to analyse the whole experimental results. Many other experimental results on
sand (cyclic, resonant...) also give evidence to the dependence of damping on mean stress. This paper then presents
a numerical modelling of non-homogeneous damping of seismic waves in sand. Numerical computations involving
mean-stress dependent damping are performed to model spherical wave propagation in the centrifuged medium. We
consider different laws giving attenuation versus mean stress (Hardin, Saxena, Stewart). Finite element computations,
involving these various influences of mean stress on damping, are performed. Numerical investigations give some
interesting results on wave propagation through non-homogeneously damped medium. It leads to a good numerical
quantification of damping phenomena in the whole medium by taking into account the mean-stress dependence.

1. DYNAMIC EXPERIMENTS ON SOILS

1.1 Classification of various dynamic experiments

Many different experimental methods are available to
investigate the dynamic response of soils. From cyclic
tests at very low frequencies to Hopkinson bar tests at
very high strain rates (Semblat et al., 99), there is a wide
range of experimental approaches. These testing
methods consequently involve very different frequencies
and strain magnitudes. Furthermore, as it is shown in
figure 1, the ratio χ between the main wavelength λ and
the reference length of the problem lref fastly changes
from one experimental method to another.

For small values of χ, wave propagation phenomena
strongly prevail on others (as for ultrasonic tests, see
figure 1). For high values of χ, such parameters as
stress or strain are nearly constant in the specimen and
one can directly determine the behaviour of the medium
(as for cyclic tests). In earthquake engineering
problems, wave propagation phenomena are important

but the spatial variations of the mechanical parameters
are not very fast. In this paper, we consequently
investigate wave propagation in soils considering
reduced-scale experiments in the centrifuge and a finite
element numerical analysis.

Figure 1 : Classification of different types of dynamic
experiments on soils (Semblat et al., 99).
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To analyze the numerical error for wave propagation 
problems, we consider a simple one-dimensional case. 
Table 1 gives the size ∆h and the number of elements 
generated in this 1D medium. In the two last column, the 
ratios ∆h/λ and ∆h/∆l characterize respectively the 

1.2 Dynamic experiments in the centrifuge

Dynamic centrifuge experiments have been performed
to study wave propagation in soils (Semblat, 98a). It
allows the analysis of wave propagation phenomena as
well as that of the dynamic behaviour of soils.
Acceleration measurements were made in the three
directions of space in ten different points (sensors S1 to
S10). Reduced-scale experiments are of great interest in
the field of earthquake geotechnical engineering (Luong,
93,95). A complete analysis of dispersion and
attenuation, characterizing the transient nature of the
loading, is proposed in (Semblat, 98a)). Attenuation has
been estimated by analytical models (homogeneous
damping). It is acceptable for plane waves, but it is not
possible, under this assumption, to characterize material
attenuation of spherical waves in the whole medium.

2. NUMERICAL MODELLING OF WAVE
PROPAGATION PHENOMENA

2.1 Numerical dispersion of seismic waves

To perform an acurate and complete numerical analysis,
it is necessary to estimate the constitutive parameters as
well as the geometry of the medium, the areas where the
variations of these parameters are strong... In the field of
dynamics, propagation phenomena could be difficult to
model using finite difference or finite element methods
since the numerical error may increase during
propagation. Waves propagation in a specific numerical
scheme depends for instance on the element size, the
time step, the time integration scheme... This
phenomenon is called numerical dispersion in
reference to the physical dispersion making the wave
velocity depend on frequency (Ihlenburg, 95, Semblat,
98b).

It is possible to analyze and quantify this numerical
dispersion. As shown in figure 2, the relative period
error for structural dynamics (Hughes, 87) is different
from one integration scheme to another. It is related to
the numerical dispersion of waves but does not take into
account the influence of the element size. For Houbolt
scheme, the error reaches 10% for a time step of 1/10th
of the fundamental period.

normalized size of the elements towards the wavelength
λ (∆h/λ) and towards the elementary distance ∆l such
as ∆l=C.∆t (where C is the wave velocity in the
medium).

Figure 2. Relative period error for different time
integration schemes (Hughes, 87).

The waveform variations during propagation in these
different meshes are displayed in figure 3. These curves
clearly show that the element size strongly influence the
numerical error. In this example, the numerical error is
large on both amplitude and wave velocity. Coarse
meshes lead to numerical results underestimating
amplitudes but overestimating velocities (phase or
group). This is the pratical effect of numerical dispersion
which can be overwhelmed by using an element size
well-adapted to the wavelength of the problem. For 2D
wave propagation, the wave type and incidence has a
strong influence on numerical dispersion (Bamberger,
80, Semblat, 98b).

Table 1. Mesh refinement and ratio to wavelength for all
numerical models.

Size of the
elements

Number of
elements

∆h/λ ∆h/∆l

∆h1=1m 100 0.36 10

∆h2=0.5m 200 0.18 5

∆h3=0.333m 300 0.12 3.33

∆h4=0.25m 400 0.09 2.5

∆h5=0.125m 800 0.04 1.25
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For numerical purposes, damping is often considered as 
Rayleigh damping (Clough, 93). The damping matrix 
[C] is built using a linear combination of mass and 
stiffness matrices [M] and [K]. As it is shown in 

Figure 3. Analysis of 1D-numerical dispersion for wave propagation problems (snapshots at different times).

Figure 4 : Equivalence of Rayleigh damping and
generalized Maxwell model towards attenuation
(Semblat, 97).

2.2 Rheological interpretation of Rayleigh damping

(Semblat, 97), for wave propagation problems, there is
a direct coincidence between Rayleigh damping and a
generalized Maxwell model in terms of attenuation
properties. This rheological model is depicted in figure 4
and the related attenuation expression is given. For
weak to moderate damping, Rayleigh formulation is
equivalent to a generalized Maxwell model. The
rheological interpretation of Rayleigh damping is used to
compare analytical results (Semblat, 98a) and numerical
results.

3. MEAN-STRESS DEPENDENT DAMPING

3.1 Need for inhomogeneous damping

For drop-ball experiments in the centrifuge (Semblat,
98a)., spherical waves are generated. Considering
different rheological models, a complete analytical
description of spherical wave propagation involving
homogeneous damping was proposed. It gives a
quantitative evaluation of damping parameters. But this
approach is not sufficient to describe the attenuation
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Figure 5 : Non-homogeneous damping depending on depth (or mean stress). 

phenomena in the whole medium. In fact, material
damping is found to be strong in some locations and
very low in some others (Semblat, 98a). As the
experiments were performed on dry sand, the influence
of mean stress on damping is considered herein. This
influence is obvious in laboratory tests on sand (cyclic,
resonant). Inhomogeneous material properties for the
numerical analysis of seismic wave propagation were for
example considered in (Idriss, 74) and (Yeh, 98). In the
following section, a finite element model involving
different descriptions of non-homogeneous damping is
then built to analyze the wave propagation phenomena
in the centrifuged sand mass.

3.2 Finite element model

To have limited numerical dispersion, the size of the
elements is generally chosen between a twentieth and a
tenth of the shortest wavelength. For the present study,
the mesh has 13624 quadrilateral elements with
quadratic interpolation (41419 nodes, size 3.75.10-3 m).
The numerical model is plane (length L=0.75m and
height h=0.38m) and axisymetrical strain is considered.
The transient loading is a uniform pressure applied on
the upper left (round) corner of the model (figure 5).
The numerical computation is made using the finite
element code CESAR-LCPC (Humbert, 1989).
Preliminary undamped numerical computations are given
in (Semblat, 98a) showing the different wave types and
the reflected waves at the bottom of the container.

3.3 Damping to mean stress dependence

Many differents authors have studied damping
phenomena in soils and rocks (Hardin, 65, Saxena, 89,
Stewart, 83). They have proposed various relations

between attenuation Q-1 and such parameters as strain
amplitude ε, confining pressure P, density...
Three of them are considered herein.
Hardin (65) proposed a relationship of the following
form for sand :

Q Px
− −=1 0 2 0 59γ θ

. .. (1)

where γθx is the distorsion and P the mean stress

Saxena and Reddy (89) proposed another kind of
dependence between quality factor and mean stress :

Q K P
− −=1 0 13 0. .. .33ε (2)

where K is a constant, P the mean stress and ε the
strain

Stewart et al. (83) assumes another type of relation for
rocks :

Q
K

P

− =1
4 3

. .
/

ζ ε (3)

where ζ is related to the crack density

3.4 Modelling non-homogeneous damping

The numerical model starts from these experimental
results to consider damping depending on mean stress.
As it is depicted in figure 5, we consider ten layers of
different damping properties from the free surface down
to the mid-depth sensors. Different Rayleigh damping
parameters are considered in each layer (Clough, 93,
Semblat, 97). Using the rheological interpretation of
Rayleigh damping, reference values of damping (layer
No.10) are estimated from analytical results on spherical
wave propagation in homogenously damped medium
(Semblat, 98a). A more complex formulation (e.g.
Caughey) could be easily considered.
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Figure 6 : Surface (left) and mid-depth (right) responses for different damping to mean stress laws.

Considering attenuation dependence on mean stress
given by equations 1, 2 and 3, numerical viscoelastic
computations involving non-homogeneous damping
(depending on depth) are performed. Figure 5 gives the
variations of attenuation versus depth using the three
relations. The power of mean stress for each relation is
respectively -0.5, -0.133 and -1.33 (for equations 1, 2
and 3). As it appears in figure 5, for Saxena’s law, the
damping properties of the medium are very close to the
homogeneously damped case. For Hardin’s and
Stewart’s laws, the inhomogeneity is stronger.

Considering damping properties depending on depth
(figure 5), it is then possible to perform numerical
computations of wave propagation in damped medium
with more realistic assumptions.

4. NUMERICAL RESULTS

4.1 Influence of damping variations

Under non-homogeneous damping assumption, the
responses computed for sensors 1 (surface) and 2 (mid-
depth) are much lower than for the homogeneous case
(figure 6). The wave form is slightly influenced by
damping variations for surface response (left curves) but
not at all for mid-depth response. For Stewart’s law,
the amplitude decrease is very strong and this law does
not seem to be really convenient for soils (it was
originally proposed for rocks).

4.2 Comparison of amplitude decrease values

Figure 7 gives the values of relative amplitude decrease
for mid-depth sensors 2 to 10 (normalized to that of the
first sensor S2). From these curves, it can be noticed
that Saxena’s law gives numerical results very close to
the homogeneously damped case. For this law, the
dependence on mean-stress is not very strong and the
inhomogeneity of damping is very small. For Hardin’s
and Stewart’s relations, the wave amplitude decrease in
the medium is larger.

Figure 7 : Relative amplitude decrease for different
damping vs mean stress laws.

As it is shown by experimental results, attenuation is
much stronger between sensors 2 and 4 (for instance)
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than between sensors 6 and 8 (Semblat, 98a). For
Hardin’s and Stewart’s laws, the relative amplitude
decrease is stronger for first sensors than for the others.
In figure 7, the numerical results involve both
geometrical and material damping. As the generated
wave field is spherical, the geometrical damping is very
large. The observed relative amplitude decrease is then
contributing much more to the material attenuation
process than it appears in figure 7. The relative
amplitude decrease with Hardin’s law is consequently
very strong between sensors S2 and S4, much lower
between sensors S4 and S6 and very small for last
sensors (S6, S8, S10). These conclusions coincide with
analytical estimation of damping parameters performed
in (Semblat, 98a) from experimental centrifuge results
on sand.

5. CONCLUSION

The experimental basis of the numerical analysis
proposed in this paper is wave propagation tests in a
centrifuged sand mass. Numerical investigations on
wave propagation phenomena is possible when
considering well-adapted models to avoid numerical
dispersion. Numerical dispersion is depending on many
parameters such as mesh refinement, time integration
scheme, wave type...

Homogeneous damping assumption, considered in
(Semblat, 98a) to express analytical solutions of the
wave propagation problem, was not sufficient to
recover the whole experimental results (except for plane
waves). Mean-stress dependent damping was then
involved in the finite element model. A rheological
interpretation of classical Rayleigh damping was firstly
proposed to link the analytical previous results to the
finite element model with variable damping. Different
attenuation to mean stress dependences were
considered. The numerical results are promising since
they clearly indicate that a variation of damping with
mean-stress give a strong amplitude decrease for first
sensors and a much lower decrease for further sensors.
These numerical results are in good agreement with
experimental conclusions given in (Semblat, 98a).
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