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Abstract. Biological evolution is good at dealing with environmental 
changes: Nature ceaselessly repeats its experiments and is not misled by 
any explicit memory of the past. This contrasts with artificial evolution 
most often considering a fixed milieu, where re-generating an individual 
does not bring any further information. 
This paper aims at avoiding such uninformative operations, via some 
explicit memory of the past evolution: the best and the worst individu
als previously met by evolution are respectively memorized within two 
virtual individuals. Evolution may then use these virtual individuals as 
social models, to be imitated or rejected. In mimetic evolution, standard 
crossover and mutation are replaced by a single operator, social muta
tion, which moves individuals farther away or closer toward the models. 
This new scheme involves two main parameters: the social strategy (how 
to move individuals with respect to the models) and the social pressure 
(how far the offspring go toward or away from the models). 
Experiments on large-sized binary problems are detailed and discussed. 

1 Introduction 

Biological evolution takes place in a changing environment. Being able to repeat 
previously unsuccessful experiments is therefore vital. As the result of previous 
experiments might change, any explicit memory of the past might provide mis
leading indications. This could explain why all knowledge gathered by evolution 
is actually contained in the current genetic material and dispatched among the 
individuals. 

Inversely, artificial evolution most often tackles optimization problems and 
considers fixed fitness landscapes, in the sense that the fitness of an individ
ual does not vary along time and does not depend on the other individuals 
in the population. In this framework, which is the only one considered in the 
rest of the paper, the evaluation of an individual produces reliable information, 
and generating this individual again does not provide any further information. 
Memorizing somehow the past of evolution thus make sense, as it could prevent 
evolution from some predictable failures. This paper focuses on gathering an 
explicit collective memory (EC-memory) of evolution, as opposed to both the 
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implicit memory of evolution contained in the genetic material in the popula
tion, and the local parameters of evolution conveyed by the individuals, such 
as the mutation step size in Evolution Strategies [23]), or the type of crossover 
applicable to an individual [26). 

Many works devoted to the control of evolution ultimately rely on some 
explicit collective memory of evolution. The memorization process can acquire 
numerical information; this is the case for the reward-based mechanism proposed 
by Davis to adjust the operator rates [5], the adjustment of penalty factors in 
SAT problems [6] or the construction of discrete gradients [11], among others. 
The memorization process can also acquire symbolic information, represented 
as rules or beliefs characterizing the disruptive operators (so that they could be 
avoided) [20), or the promising schemas [22]. 

Memory-based heuristics can control most steps of evolution: e.g. selection 
via penalty factors [6], operator rates (5), operator effects [11, 20] ... Memory can 
even be used to "remove genetics from the standard genetic algorithm" [4,3] 
as in the Population Based Incremental Learning (PBIL) algorithm. PBIL deals 
with binary individuals (in { 0, 1 }N) and it maintains the memory of the most 
fit individual encountered so far. This memory can be thought of as a virtual 
individual, belonging to [O, l]N. It provides an alternative to the genetic-like 
transmission of the information between successive populations: any population 
is generated from scratch by sampling the discrete neighbors of this virtual 
individual. And the virtual individual is then updated from the best current 
individual. 

Another approach, termed Evolution by Inhibitions (EBI), is inversely based 
on memorizing the worst individuals encountered so far; the memory is also 
represented by a virtual individual, termed the Loser [25]. This memory is used 
to evolve the current population, by means of a single new operator termed ftee
mutation. The underlying metaphor is that the offspring aim at being farther 
away from the loser, than their parents. Incidentally, this evolution scheme is 
biased against exploring again unfit regions previously explored. 

A new evolutionary scheme, restricted to binary search space and combining 
PBIL and Evolution by Inhibitions, is presented in this paper. The memory of 
evolution is thereafter represented by two virtual individuals, the Winner and 
the Lose-?. These virtual individuals, or Model.s, respectively summarize the best 
and the worst individuals encountered so far by evolution. An individual can 
independently imitate, avoid, or ignore each one of the two models; a wide range 
of, so to speak, social strategies, can thereby be considered. For instance, the 
Entrepreneur imitates the Winner and ignores the Loser; the Sheep imitates 
the Winner and rejects the Loser; the Phobic rejects the Loser and ignores 
the Winner (the dynamics is that of Evolution by inhibitions [25]); the Ignorant 
ignores both models and serves as reference to check the relevance of the models. 
This new scheme of evolution, termed mimetic evolution, is rather inspired by 
social than genetic metaphors. 

1 Other metaphors, all likely politically incorrect, could have been used: the leader 
and the scapegoat, the yang and the yin, the knight and the villain, ... 
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This paper is organized as follows. Section 2 briefly reviews related work 
dealing with virtual or imaginary individuals. Section 3 describes mimetic evo
lution and the social mutation operator replacing crossover and mutation. Social 
mutation is controlled from the user supplied social strategy, which defines the 
preferred direction of evolution of the individuals. Section 4 discusses the lim
itations of mimetic evolution, and studies the case where the dynamics of the 
models and the population go in a deadlock. Section 5 examines how far the 
offspring must go in the direction of the models; or, metaphorically, which social 
pressure should be exerted on the individuals. Mimetic mutation is validated on 
several large-sized binary problems, and the experimental results are detailed in 
section 6. Last, we conclude and present some perspectives of research. 

2 State of the art 

With no pretention to exhaustivity, this section examines how imaginary or vir
tual individuals have been used to support evolution. The central question still 
is the respective contribution of crossover and mutation to the dynamics of evo
lution (8, 18, 23). Though the question concerns any kind of search space, only 
the binary case will be considered here. 

The efficiency of crossover is traditionnally explained by the Building Block 
hypothesis (12, 9). But a growing body of evidence suggests that crossover is also 
efficient because it operates large step mutations. In particular, T. Jones has 
studied the macro-mutation operator defined as crossing over a parent with a 
random individual2• Macro-mutation obviously does not allow the offspring to 
combine the building blocks of their two parents; still, macro-mutation happens 
to outperform standard crossover on benchmark problems, everything else being 
equal [14]. 

In retrospect, crossover can be viewed as a biased mutation. The bias de
pends on the population and controls both the strength and the direction of 
the mutation. The "mutation rate" of standard crossover, e.g. the Hamming dis
tance between parents and offspring, depends on average on the diversity of the 
population; and the "mutation direction" of standard crossover (which genes are 
modified) also depends on the population. 

On the other hand, binary mutation primarily aims at preserving the genetic 
diversity of the population. This can be done as well through crossover with spe
cific individuals, deliberately maintained in the population to prevent the loss 
of genetic diversity. For instance, the Surrogate GA [7] maintains imaginary in
dividuals such as the complementary of the best current individual, or all-0 and 
all-1 individuals; crossover alone thus becomes sufficient to ensure the genetic di
versity of the population, and mutation is no longer needed. Another possibility 
is to deliberately introduce genotypic diversity by embedding the search space 

2 Note that this macro-mutation fairly resembles standard crossover during the first 
generations of evolution, especially for large populations. 
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[! into {O, 1} x fl and identifying the individuals Ow and lw, as done in Dual 
Genetic Algorithms [19]. Provided that the number of dual pairs (Ow and IW) 
is above a given threshold, crossover can similarly replace mutation and ensure 
genetic diversity. 

Evolution can also be supported by virtual individuals, i.e. individuals be
longing neither to the population nor to the search space. This is the case in the 
PBIL algorithm, mentionned in the introduction, where the best individuals in 
the previous populations are memorized within a vector of [O, l]N. This vector 
noted M provides an alternative to crossover and mutation, in that it allows 
PBIL to generate the current population from scratch: for each individual X 
and each bit i, value Xi is randomly selected such that P(Xi = 1) =Mi (where 
Ai denotes as usual the i-th component of A). Mis initialized to (0.5, 0.5, ... , 0.5) 
and it is updated from the best individual3 Xmax at each generation, by relax
ation: 

M +-- (1 - o:)M + o:Xmax 

where a in [O, 1] is the relaxation factor, which corresponds to the fading of the 
memory. The main advantage of PBIL is its simplicity: it does not involve any 
modification of the genetic material. The only information transmitted from one 
generation to another is related to the best individual; still, it is not necessar
ily sufficient to reconstruct this best individual. This might hinder evolution in 
narrow highly fit regions, such as encountered in the Long Path problem [13]. 
Practically, one sees that even if M is close to the path, the population con
structed from M poorly samples the path [24]. 

Evolution by Inhibition involves the opposite memory, that is, the memory 
of the worst individuals in the previous populations. This memory noted C (for 
Loser) is also a vector of [O, 1 ]N, constructed by relaxation: 

£ +-- (1 - 0:)£ + o:Xmin 

x where Xmin denotes the average of half the worst offspring, and a is the 
relaxation factor. In contrast with PBIL which uses M to generate a new popu
lation, C is actually used to evolve the current population via a specific operator 
termed flee-mutation. Flee-mutation replaces both mutation and crossover; for 
each individual X, it selects and flips the bits most similar to those of the loser 
(minimizing IXi - Ci!). The offspring thus is farther away from the loser, than 
the parent was. Metaphorically, the goal of this evolutionary scheme is: Be dif
ferent from the Loser ! And incidentally, this reduces the chance for exploring 
again low fit regions. 

The potential of evolution by inhibitions is demonstrated for appropriate set
tings of the flee-mutation rate (number of bits mutated): EBI then significantly 
outperforms PBIL [3, 25], which itself outperforms most standard discrete opti
mization algorithms (Hill-Climbers with multiple restarts, standard GAs, binary 

3 A more robust variant is to update M from the two best individuals and the worst 
individual in the population [3]. 
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evolution strategies). But the adjustment of the flee-mutation rate remains an 
open question. 

3 Mimetic evolution 

This section focuses on combining evolution by inhibitions and PBIL. Two mod
els memorizing respectively the best and worst individuals met in past gener
ations, are constructed. These models are used to evolve individuals through a 
single evolution operator. 

3.1 Winner-driven evolution of the population 

The winner is built by relaxation from the best individuals of the current popu
lation, in the same way as in PBIL (section 2). Table 1 illustrates how the winner 
W and the loser C are built from the current population. 

1 2 3 4 5 Fitness 
x 0 0 1 0 0 high 
y 1 1 1 1 1 high 
z 0 1 1 0 1 high 

dW 0.33 0.66 1 0.33 0.66 W +- (1 - aw)W + awdW 
s 0 0 0 1 0 low 
T 1 0 1 1 1 low 
u 1 0 0 1 1 low 

d£ 0.66 0 0.33 1 0.66 C +- (1 - a1)£ + a1d£ 

Table 1. Individuals and virtual individuals 

Let us first examine how W can help evolving individual X. Given the most 
fit individuals of the population ( X, Y and Z), some possible causes for being fit 
are (bit2 = 1), or (bit3 = 1), or (bit5 = 1) (a majority of the most fit individuals 
has those bits set to this value). Thus, one might want for instance to flip bit2 
and let bit3 unchanged in X; this amounts to making X more similar to dW, 
which goes to W in the limit. Metaphorically, X thus "imitates" the winner W. 

Practically, a model-driven mutation termed social mutation is implemented 
as follows. Given the number M of bits to flip (see section 5), one selects these 
M bits by tournament among the bits. For each one of these M bits, T bits 
i1, ... , ir are uniformly selected in l..N, and the bit i such that it maximizes 
!Xi - Wd, is flipped. This way, the offspring actually reduces its distance to the 
winner. 

This mechanism can be compared to the majority crossover of Syswerda, 
setting the value of the offspring to the majoritary value of the bit in the pop
ulation when the two parents differ on that bit [27]. The difference between 
majority crossover and social mutation is twofold: the majority crossover takes 
into account all individuals in the current population; social mutation takes into 
account the best individuals in all past populations. 
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Social mutation is easily refined to also account for the loser. For instance, 
according to dW, it might be a good idea to mutate bit 5; but d.C suggests that 
(bit5 1) is not a factor of high fitness. This leads to select the bits to mutate, so 
that the offspring "imitates" W and "rejects" £. Practically, one only modifies 
the tournament criterion: the winner of the tournament is the bit maximizing 
IXi Wil - IXi - Lil· 

Note that the relaxation factors aw and a1 respectively associated to the 
winner and the loser could be different, though they are set to the same value 
(10-2) throughout this paper. In this case, £ changes faster than W. 

3.2 Social strategies 

However, there is no reason why an individual could only imitate the winner and 
reject the loser. A straightforward generalization is to define a pair ( 8w, 8 L ) in 

Entrepreneur 

imitate Winner 

flee inner 
Anticonformist 

Rebel 

Fig. 1. Social Strategies 
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R2, and to select the bits to mutate as those maximizing 

One sees that X imitates model M (= W or £) if 8M > 0, rejects M if 
8M < 0, and ignores M if 8M = 0. Social mutation finally gets parameterized 
by the pair (ow, o L), termed social strategy. Some of these strategies have been 
given names for the sake of convenience; obviously, other systems of metaphors 
could have been imagined. We distinguish mainly: 

The entrepreneur, that imitates the winner and ignores the loser; 
The sheep, that imitates the winner and rejects the loser; 
The phobic, that rejects the loser and ignores the winner; 
The pioneer, that rejects both the winner and the loser; 
The rebel, that rejects the winner and ignores the loser; 

- The ignorant, that ignores both the loser and the winner. 

One notices that social mutation is unchanged if Ow and OL are multiplied by 
a positive coefficient. With no loss of information, social strategies are thus rep
resented by angles (R2 being projected onto the unit circle). This angle sets the 
direction of evolution of the individuals, in the changing system of coordinates 
given by the winner and the loser. Figure 1 shows the directions corresponding 
to the main social strategies, with angle 0 corresponding to imitating the loser, 
and angle 7r /2 to imitating the winner. 

4 Limitations 

As expected, not all social strategies are relevant and some turn out to be mis
leading. A clear such case is when the winner is close to a local optimum; imitat
ing the winner just drives the population to the local optimum, which does not 
allow for modifying the winner; a deadlock of mimetic evolution thus occurs. 

In a general way, the population and the models depend on each other: at each 
generation, the best (worst) individuals in the population are used to maintain 
the models; and these models are used to evolve the population. This dynamics 
can produce several kinds of deadlock. 

If the population does not make any progress, so does the winner; hence any 
strategy based on solely imitating the winner will fail, that is, fail to re-orient 
the search. In the meanwhile, the loser will probably fluctuate; either imitating 
or rejecting the loser could help sidestep this trap. 

The loser can also mislead the population. If the loser is close to the optimum, 
rejecting the loser will deceptively lead the population in bad regions; the loser 
will then change, providing more reliable beacons and allowing the population 
to resume its pilgrimage toward the optimum. This may produce an oscillation, 
satellizing the population around the optimum. Concretely, let us consider a 
population climbing a hill. As long as the loser is on the same side of the hill as 
the population, fleeing the loser will make the population duly climb the hill. But 
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when individuals are equally distributed on both sides of the hill, the loser gets 
close to the optimum, and now exerts a repelling influence on the population. 
This perpetuates until the symmetry is broken. Still worse, the loser may be on 
the other side of the hill than the majority of the population (if the relaxation 
factor is too large, for instance), and make the population go down the hill ... 

The distribution of individuals may also cause any strategy to be deceptive. 
Consider an even distribution of the population between the two schemas, and 
assume that model M reflects this distribution (Table 2). 

Schema 1 0 1 * * * * ... 
Schema 2 1 0 * * * * ... 

M 0.5 0.5 * * * * . .. 

Table 2: Stable distribution of the population 

Any individual X most differs from M by bits 1 and 2 (IXi - Mil = .5, i = 1, 2). 
Imitating M means reducing the differences between X and M, hence flipping 
preferably bits 1 and 2 (if the number of bits to mutate is greater than 2 -
this will be discussed in the next section). But mutating bits 1 and 2 would 
perpetuate the distribution of the population between schemas 1 and 2. 
Inversely, if the strategy is to reject M, one wants to preserve the differences 
between X and M, hence bits 1 and 2 will never be modified; and, everything 
being equal, this would preserve the distribution of the population too. 

To sum up, observing a single model may perpetuate the traps visited by 
the model or the population. This is confirmed by the fact that PEIL enriches 
the computation of the winner with random perturbations [4], or computes the 
winner from the two best and the worst individuals (3]. We experimented similar 
heuristics based on gaussian perturbations of the models. 

However, it turns out that guiding evolution according to two models is much 
more robust than with only one model: the influence of each model somehow 
moderates the influence of the other one, and makes it less harmful. Still, there 
certainly exists cases where the two combined models deliver deceptive indica
tions. Further research will focus on the deceptivity of social strategies. 

5 Social Pressure 

Binary mutation is traditionnally parameterized by the mutation rate, usually 
very low, setting the average number of bits to mutate in the population. And 
the selection of the mutated bits is done at random. 

In opposition, social mutation primarily concentrates on ordering the bits to 
mutate depending on the individual, via defining its desired direction of evolu
tion (section 3.2). But how far the individual should go in this direction, i.e. 
the number M of bits to mutate, is still to determine. This parameter, termed 
social pressure, controls the balance of evolution between exploitation and explo
ration, respectively achieved for low and high values of M. In any case, the social 
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pressure must correspond to a much higher mutation rate than for standard mu
tation, as social mutation is meant to replace both mutation and crossover. 

A previous work investigated two heuristics for the auto-adjustment of M 
in the framework of evolution by inhibitions [25]. The first heuristic is inspired 
from Davis [5], and proceeds by rewarding the values of M leading to fitness 
increases. The second one is inspired from self-adaptation [23, lJ: the number M 
is encoded within each individual, and evolution supposedly optimizes M as well 
as the genotypic information of the individual. 
Unfortunately, none of our attempts succeeded in determining relevant global or 
local values of M; rather, all heuristics rapidly lead to setting M = 1. Mimetic 
evolution thereafter behaves as a standard hill-climber, and soon gets trapped 
in a local optimum. 
In retrospect, reward-based adjustment tends to be risk-adverse, and favor op
tions that bring small frequent improvements, over options that bring rare, 
though large, improvements; this explains why M = 1 is preferred. 
On the other hand, the self-adaptation of M fails because the strong causality 
principle [21] is violated: finding the optimal M amounts to finding an optimal 
discrete value in a very restricted range (say [2 . . N /lOJ); no wonder that the con
vergence results of evolution strategies [23, 1] do not apply. 

We therefore used fixed schedules to determine Mt at generation t. The sim
plest possibility is to set Mt to a fixed, user-supplied value Mo. A more sophisti
cated possibility is to decrease Mt from an initial, user-supplied, value M0• We 
used a decreasing hyperbolic schedule borrowed from [2]: 

1 

__!_ + t . 1- Jo 
Mo T-l 

(1) 

where T is the maximum number of generations and t denotes the current gen
eration. Social mutation then mutates exactly the integer part of Mt bits in each 
individual4. 

It now remains to set the initial (or fixed) value of Mt, M0• We used off-line 
adjustments loosely inspired from Grefenstette's Virtual GA [10]. More precisely, 
a (1+10) binary ES is run for a few generations, for each considered value of M0 
(2 .. 5 in the constant schedule, and { 45, 90, 450} in the decreasing schedule), and 
one chooses the value of Mo leading to the best performance. 

6 Experimental Validation 

This section discusses the experimental results obtained by mimetic evolution 
on large-sized problems, and focuses on the role of social strategy. 

4 Another possibility, not investigated here, is to mutate on average Aft bits on the 
population [25]. 
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6.1 Problems 

The experiments consider some standard test functions: the OneMax, the Twin
Peaks and the deceptiv) Ugly5 functions, taken on {O, 1}900.

Other functions are taken from [3], and respectively correspond to the bi
nary coding and the Gray coding of the continuous functions on [-2, 56, 2.56(100

below: 

Yl X1 

Yi = Xi+ Yi-li i > 2 

F3 = 

10-5 + Eil-024 * {i + 1) - Xii 
100 

100 

In the latter case, each continuous interval [-2, 56, 2.56[ is mapped onto 
{O, 1}9; individuals thus belong to {O, 1}900.

The importance of the coding is witnessed, if necessary, by the fact that F3 
only reaches a maximum of 416, 63 in its binary version, whereas the continuous 
optimum is 107; this is due to the fact that the continuous optimum {Xi = 

.024 * (i + 1)) does not belong to the discrete space considered. 

6.2 Experimental setting 

The evolution scheme is a (10+50)-ES: 10 parents produce 50 offspring and 
the 10 best individuals among parents plus offspring are retained in the next 
population. A run is allowed 200,000 evaluations; all results are averaged on 10 
independent runs. 

The winner and the loser respectively memorize the best and the worst off
spring of the current generation. The The relaxation factors aw and a1 are both 
set to .01. The tournament size is set to 20. 

Several reference algorithms have been experimented on functions F1 and 
F3: two variants of GAs (GAl and GA2), two variants of Hill-climbers (HCl 
and HC2) [3] and two variants of evolution strategies (ESl and ES2) [25]. These 
algorithms served as reference for PBIL and evolution by inhibitions (INH). 
Another reference algorithm is given by mimetic evolution following an ignorant 
social strategy (an offspring is generated by randomly mutating 3 bits). 

Function HCl HC2 AGl AG2 AES TES PBIL INH IGNOR 
Fl Binary 1.04 1.01 1.96 1.72 2.37 1.87 2.12 2.99 2.98 
F3 Gray 416.65 416.65 28.35 210.37 380.3 416.65 366.77 246.23 385.90 

Table 3. Reference results on F1 and F3. 

More results, and the detailed description of the reference algorithms, are 
found in (25]. In this paper, we focus on the influence of the social strategy 

5 Defined as 300 concatenations of the elementary deceptive function U defined on 
{O, 1}3 as follows: U(lll) = 3; U(OXX) 2; otherwise U = 0.
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parameter, and in particular, the social pressure (nb of bits mutated) is fixed to 
3. 

6.3 The inff.uence of social strategies 

A new visualization format is proposed on Figure 2, in order to compare the 
results obtained for different strategies on a given problem. As social strategies 
can be represented as angles, results are plotted in polar coordinates: point (p, B) 
illustrates the results obtained for strategy B, with p being the best average fitness 
obtained for this strategy. Two curves are plotted by joining all points (p, B): the 
internal curve gives the results obtained for 50,000 evaluations, and the external 
one gives the results obtained for 200,000 evaluations. Both curves overlap (e.g. 
for OneMax and Ugly) when evolution reaches the optimum in about 50,000 
evaluations or less. 

• : 200.000 evaluations [),, : 50.000 evaluations 

Fig. 2. Summary results of social strategies 

The graphics obtained for functions TwinPeaks and Fig, quite similar to respec
tively those of OneMax and Fig, are omitted given the space limitations. 

Note that the shape of the curve obtained for 50,000 evaluations is very close 
to that obtained for 200,000 evaluations; in other words, the social strategy most 
adapted to a problem does not seem to vary along evolution. 

In all cases, strategies in the left half space are significantly better than 
those in the right half space: for all functions considered, the recommended 
behavior with respect to the loser is the flight. In opposition, the recommended 
behavior with respect to the winner depends on the function: flight is strongly 
recommended in the case of Fi, where the Pioneer strategy is the best. Inversely, 
imitation is strongly recommended in the case of F3, OneMax and Ugly, where 
the Sheep strategy is the best. This is particularly true for F3, where the Sheep 
is significantly better than other strategies: the respective amounts of imitation 
of the winner and avoidance of the loser must be carefully adjusted. 
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7 Conclusion 

Our working hypothesis is that the memory of evolution can provide worth 
information to guide the further steps of evolution. 

Instead of memorizing only the best [4] or the worst [25] individuals, mimetic 
evolution memorizes all striking past individuals, the best and the worst ones. 
A population can thereby access two models, featured as the Winner and the 
Loser. 

These models define a changing system of coordinates in the search space; an 
individual can thus be given a direction of evolution, or social strategy, expressed 
with respect to both models. And mimetic evolution proceeds by moving each 
individual in this direction. This paper has only considered the case of a single 
social strategy, fixed for all individuals, and focus on the influence of the strategy 
on the dynamics of evolution. 

Evolution by inhibitions is a special case, driven by the loser model only, of 
mimetic evolution. As mimetic evolution involves both loser and winner models, 
the possible strategies get richer. As could be expected, 2-model-driven strate
gies appear more robust than 1-model-driven ones. Indeed, the more models are 
observed, the less predictable and deterministic the behavior of the population 
gets; and the less likely evolution goes in a deadlock. 
Experimental results show that for each test function there exists a range of opti
mal social strategies (close to the Sheep in most cases; and to the Pioneer /Rebel 
in the others). And on most functions, these optimal strategies significantly 
outperform the "ignorant" strategy, which serves as reference and ignores both 
models. 

In any case, it appears that memory contains relevant information, as the 
way we use it fortunately often allows for speeding up evolution. Obviously, 
other and more clever exploitations of this information remain to be invented. 
On the other hand, the use of the memory is tightly connected to its content: 
which knowledge exactly should be acquired during evolution ? Currently the 
models reflect, or "capitalize", the individuals; another level of memory would 
capitalize the dynamics of the population as a whole, i.e. the sequence over 
all generations of the social strategy leading from the best parents to the best 
offspring. 

A further perspective of research is to self-adapt the social strategy of an 
individual, by enhancing the individual with its proper strategy parameters 8w 
and rh. This way, evolution could actually benefit from a mixture of different 
social strategies, dispatched within the population6. 

Another perspective is to extend mimetic evolution to continuous search 
spaces. Computing the winner and the loser from continuous individuals is 
straightforward; but the question of how to use them is still more open, than in 
the binary case. 

6 Incidentally, this would reflect more truly the evolution of societies. But indeed social 
modelling is far beyond the scope of this work. 
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A last perspective is to see to what extent the difficulty of the fitness land
scape for a standard GA is correlated to the optimal social strategy for this 
landscape (among which the ignorant strategy) . Ideally, the optimal strategy 
would allow one to compare diverse components of evolution, in the line of the 
Fitness Distance Correlation criterion [15]. The advantage of such criteria is to 
provide a priori estimates of the adequacy of e.g., procedures of initialization of 
the population [16], or evolution operators [17]. 
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