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Introduction

Biological evolution takes place in a changing environment. Being able to repeat previously unsuccessful experiments is therefore vital. As the result of previous experiments might change, any explicit memory of the past might provide mis leading indications. This could explain why all knowledge gathered by evolution is actually contained in the current genetic material and dispatched among the individuals.

Inversely, artificial evolution most often tackles optimization problems and considers fixed fitness landscapes, in the sense that the fitness of an individ ual does not vary along time and does not depend on the other individuals in the population. In this framework, which is the only one considered in the rest of the paper, the evaluation of an individual produces reliable information, and generating this individual again does not provide any further information. Memorizing somehow the past of evolution thus make sense, as it could prevent evolution from some predictable failures. This paper focuses on gathering an explicit collective memory (EC-memory) of evolution, as opposed to both the implicit memory of evolution contained in the genetic material in the popula tion, and the local parameters of evolution conveyed by the individuals, such as the mutation step size in Evolution Strategies [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF]), or the type of crossover applicable to an individual [START_REF] Spears | Adapting crossover in a genetic algorithm[END_REF].

Many works devoted to the control of evolution ultimately rely on some explicit collective memory of evolution. The memorization process can acquire numerical information; this is the case for the reward-based mechanism proposed by Davis to adjust the operator rates [START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF], the adjustment of penalty factors in SAT problems [START_REF] Eiben | Self-adaptivity for constraint satisfaction: Learning penalty functions[END_REF] or the construction of discrete gradients [START_REF] Hansen | On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adapta tion[END_REF], among others. The memorization process can also acquire symbolic information, represented as rules or beliefs characterizing the disruptive operators (so that they could be avoided) [START_REF] Ravise | An advanced evolution should not repeat its past errors[END_REF], or the promising schemas [START_REF] Reynolds | An introduction to cultural algorithms[END_REF].

Memory-based heuristics can control most steps of evolution: e.g. selection via penalty factors [START_REF] Eiben | Self-adaptivity for constraint satisfaction: Learning penalty functions[END_REF], operator rates [START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF], operator effects [START_REF] Hansen | On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adapta tion[END_REF][START_REF] Ravise | An advanced evolution should not repeat its past errors[END_REF] ... Memory can even be used to "remove genetics from the standard genetic algorithm" [START_REF] Baluja | Removing the genetics from the standard genetic algorithms[END_REF][START_REF] Baluja | An empirical comparizon of seven iterative and evolutionary function optimization heuristics[END_REF] as in the Population Based Incremental Learning (PBIL) algorithm. PBIL deals with binary individuals (in { 0, 1 } N ) and it maintains the memory of the most fit individual encountered so far. This memory can be thought of as a virtual individual, belonging to [O, l] N . It provides an alternative to the genetic-like transmission of the information between successive populations: any population is generated from scratch by sampling the discrete neighbors of this virtual individual. And the virtual individual is then updated from the best current individual.

Another approach, termed Evolution by Inhibitions (EBI), is inversely based on memorizing the worst individuals encountered so far; the memory is also represented by a virtual individual, termed the Loser [START_REF] Sebag | Toward civilized evolution: Developping inhibitions[END_REF]. This memory is used to evolve the current population, by means of a single new operator termed ftee mutation. The underlying metaphor is that the offspring aim at being farther away from the loser, than their parents. Incidentally, this evolution scheme is biased against exploring again unfit regions previously explored.

A new evolutionary scheme, restricted to binary search space and combining PBIL and Evolution by Inhibitions, is presented in this paper. The memory of evolution is thereafter represented by two virtual individuals, the Winner and the Lose-?. These virtual individuals, or Model.s, respectively summarize the best and the worst individuals encountered so far by evolution. An individual can independently imitate, avoid, or ignore each one of the two models; a wide range of, so to speak, social strategies, can thereby be considered. For instance, the Entrepreneur imitates the Winner and ignores the Loser; the Sheep imitates the Winner and rejects the Loser; the Phobic rejects the Loser and ignores the Winner (the dynamics is that of Evolution by inhibitions [START_REF] Sebag | Toward civilized evolution: Developping inhibitions[END_REF]); the Ignorant ignores both models and serves as reference to check the relevance of the models. This new scheme of evolution, termed mimetic evolution, is rather inspired by social than genetic metaphors. This paper is organized as follows. Section 2 briefly reviews related work dealing with virtual or imaginary individuals. Section 3 describes mimetic evo lution and the social mutation operator replacing crossover and mutation. Social mutation is controlled from the user supplied social strategy, which defines the preferred direction of evolution of the individuals. Section 4 discusses the lim itations of mimetic evolution, and studies the case where the dynamics of the models and the population go in a deadlock. Section 5 examines how far the offspring must go in the direction of the models; or, metaphorically, which social pressure should be exerted on the individuals. Mimetic mutation is validated on several large-sized binary problems, and the experimental results are detailed in section 6. Last, we conclude and present some perspectives of research.

State of the art

With no pretention to exhaustivity, this section examines how imaginary or vir tual individuals have been used to support evolution. The central question still is the respective contribution of crossover and mutation to the dynamics of evo lution [START_REF] Fogel | On the effectiveness of crossover in simulated evolu tionary optimization[END_REF][START_REF] Koza | Genetic Programming: On the Programming of Computers by means of Natural Evolution[END_REF][START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF]. Though the question concerns any kind of search space, only the binary case will be considered here.

The efficiency of crossover is traditionnally explained by the Building Block hypothesis [START_REF] Holland | Adaptation in natural and artificial systems[END_REF][START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF]. But a growing body of evidence suggests that crossover is also efficient because it operates large step mutations. In particular, T. Jones has studied the macro-mutation operator defined as crossing over a parent with a random individual2• Macro-mutation obviously does not allow the offspring to combine the building blocks of their two parents; still, macro-mutation happens to outperform standard crossover on benchmark problems, everything else being equal [START_REF] Jones | Crossover, macromutation and population-based search[END_REF].

In retrospect, crossover can be viewed as a biased mutation. The bias de pends on the population and controls both the strength and the direction of the mutation. The "mutation rate" of standard crossover, e.g. the Hamming dis tance between parents and offspring, depends on average on the diversity of the population; and the "mutation direction" of standard crossover (which genes are modifi ed) also depends on the population.

On the other hand, binary mutation primarily aims at preserving the genetic diversity of the population. This can be done as well through crossover with spe cifi c individuals, deliberately maintained in the population to prevent the loss of genetic diversity. For instance, the Surrogate GA [START_REF] Evans | Enhancing recombination with the complementary surrogate genetic algorithm[END_REF] maintains imaginary in dividuals such as the complementary of the best current individual, or all-0 and all-1 individuals; crossover alone thus becomes sufficient to ensure the genetic di versity of the population, and mutation is no longer needed. Another possibility is to deliberately introduce genotypic diversity by embedding the search space [! into {O, 1} x fl and identifying the individuals Ow and lw, as done in Dual Genetic Algorithms [START_REF] Collard | Dual ga: An efficient genetic algorithm[END_REF]. Provided that the number of dual pairs (Ow and IW) is above a given threshold, crossover can similarly replace mutation and ensure genetic diversity.

Evolution can also be supported by virtual individuals, i.e. individuals be longing neither to the population nor to the search space. This is the case in the PBIL algorithm, mentionned in the introduction, where the best individuals in the previous populations are memorized within a vector of [O, l] N . This vector noted M provides an alternative to crossover and mutation, in that it allows PBIL to generate the current population from scratch: for each individual X and each bit i, value Xi is randomly selected such that P(Xi = 1) =Mi (where Ai denotes as usual the i-th component of A). Mis initialized to (0.5, 0.5, ... , 0.5) and it is updated from the best individual3 Xmax at each generation, by relax ation:

M +--(1 -o:)M + o:Xmax
where a in [O, 1] is the relaxation factor, which corresponds to the fading of the memory. The main advantage of PBIL is its simplicity: it does not involve any modification of the genetic material. The only information transmitted from one generation to another is related to the best individual; still, it is not necessar ily sufficient to reconstruct this best individual. This might hinder evolution in narrow highly fit regions, such as encountered in the Long Path problem [START_REF] Horn | Genetic algorithms difficulty and the modality of fitness landscapes[END_REF]. Practically, one sees that even if M is close to the path, the population con structed from M poorly samples the path [START_REF] Sebag | Mutation by imitation in boolean evolution strate gies[END_REF].

Evolution by Inhibition involves the opposite memory, that is, the memory of the worst individuals in the previous populations. This memory noted C (for Loser) is also a vector of [O, 1 ] N , constructed by relaxation:

£ +--(1 -0: )£ + o:Xmi n
x where Xmin denotes the average of half the worst offspring, and a is the relaxation factor. In contrast with PBIL which uses M to generate a new popu lation, C is actually used to evolve the current population via a specifi c operator termed flee-mutation. Flee-mutation replaces both mutation and crossover; for each individual X, it selects and flips the bits most similar to those of the loser (minimizing IXi -Ci!). The offspring thus is farther away from the loser, than the parent was. Metaphorically, the goal of this evolutionary scheme is: Be dif ferent from the Loser ! And incidentally, this reduces the chance for exploring again low fit regions.

The potential of evolution by inhibitions is demonstrated for appropriate set tings of the flee-mutation rate (number of bits mutated): EBI then signifi cantly outperforms PBIL [START_REF] Baluja | An empirical comparizon of seven iterative and evolutionary function optimization heuristics[END_REF][START_REF] Sebag | Toward civilized evolution: Developping inhibitions[END_REF], which itself outperforms most standard discrete opti mization algorithms (Hill-Climbers with multiple restarts, standard GAs, binary evolution strategies). But the adjustment of the flee-mutation rate remains an open question.

3

Mimetic evolution

This section focuses on combining evolution by inhibitions and PBIL. Two mod els memorizing respectively the best and worst individuals met in past gener ations, are constructed. These models are used to evolve individuals through a single evolution operator.

Winner-driven evolution of the population

The winner is built by relaxation from the best individuals of the current popu lation, in the same way as in PBIL (section 2). Table 1 illustrates how the winner W and the loser C are built from the current population.

1 2 3 4 5 Fitness x 0 0 1 0 0 high y 1 1 1 1 1 high z 0 1 1 0 1 high dW 0.33 0.66 1 0.33 0.66 W +-(1 -aw)W + awdW s 0 0 0 1 0 low T 1 0 1 1 1 low u 1 0 0 1 1 low d£ 0.66 0 0.33 1 0.66 C +-(1 -a1)£ + a1d£
Table 1.

Individuals and virtual individuals

Let us first examine how W can help evolving individual X. Given the most fit individuals of the population ( X, Y and Z), some possible causes for being fit are (bit 2 = 1), or (bit3 = 1), or (bit5 = 1) (a majority of the most fit individuals has those bits set to this value). Thus, one might want for instance to flip bit2 and let bit3 unchanged in X; this amounts to making X more similar to dW, which goes to Wi n the limit. Metaphorically, X thus "imitates" the winner W.

Practically, a model-driven mutation termed social mutation is implemented as follows. Given the number M of bits to flip (see section 5), one selects these M bits by tournament among the bits. For each one of these M bits, T bits i1, ... , ir are uniformly selected in l..N, and the bit i such that it maximizes !Xi -Wd, is flipped. This way, the offspring actually reduces its distance to the winner.

This mechanism can be compared to the majority crossover of Syswerda, setting the value of the offspring to the majoritary value of the bit in the pop ulation when the two parents differ on that bit [START_REF] Syswerda | A study of reproduction in generational and steady state genetic algorithm[END_REF]. The difference between majority crossover and social mutation is twofold: the majority crossover takes into account all individuals in the current population; social mutation takes into account the best individuals in all past populations. Social mutation is easily refined to also account for the loser. For instance, according to dW, it might be a good idea to mutate bit 5; but d.C suggests that (bit5 1) is not a factor of high fitness. This leads to select the bits to mutate, so that the offspring "imitates" W and "rejects" £. Practically, one only modifies the tournament criterion: the winner of the tournament is the bit maximizing IXi Wil -IXi -Lil• Note that the relaxation factors aw and a1 respectively associated to the winner and the loser could be different, though they are set to the same value (10-2) throughout this paper. In this case, £ changes faster than W. One sees that X imitates model M (= W or £) if 8M > 0, rejects M if 8M < 0, and ignores M if 8M = 0. Social mutation finally gets parameterized by the pair (ow, o L), termed social strategy. Some of these strategies have been given names for the sake of convenience; obviously, other systems of metaphors could have been imagined. We distinguish mainly:

The entrepreneur, that imitates the winner and ignores the loser; The sheep, that imitates the winner and rejects the loser; The phobic, that rejects the loser and ignores the winner; The pioneer, that rejects both the winner and the loser; The rebel, that rejects the winner and ignores the loser; -The ignorant, that ignores both the loser and the winner.

One notices that social mutation is unchanged if Ow and OL are multiplied by a positive coefficient. With no loss of information, social strategies are thus rep resented by angles (R 2 being projected onto the unit circle). This angle sets the direction of evolution of the individuals, in the changing system of coordinates given by the winner and the loser. Figure 1 shows the directions corresponding to the main social strategies, with angle 0 corresponding to imitating the loser, and angle 7r /2 to imitating the winner.

As expected, not all social strategies are relevant and some turn out to be mis leading. A clear such case is when the winner is close to a local optimum; imitat ing the winner just drives the population to the local optimum, which does not allow for modifying the winner; a deadlock of mimetic evolution thus occurs.

In a general way, the population and the models depend on each other: at each generation, the best (worst) individuals in the population are used to maintain the models; and these models are used to evolve the population. This dynamics can produce several kinds of deadlock.

If the population does not make any progress, so does the winner; hence any strategy based on solely imitating the winner will fail, that is, fail to re-orient the search. In the meanwhile, the loser will probably fluctuate; either imitating or rejecting the loser could help sidestep this trap.

The loser can also mislead the population. If the loser is close to the optimum, rejecting the loser will deceptively lead the population in bad regions; the loser will then change, providing more reliable beacons and allowing the population to resume its pilgrimage toward the optimum. This may produce an oscillation, satellizing the population around the optimum. Concretely, let us consider a population climbing a hill. As long as the loser is on the same side of the hill as the population, fleeing the loser will make the population duly climb the hill. But when individuals are equally distributed on both sides of the hill, the loser gets close to the optimum, and now exerts a repelling influence on the population. This perpetuates until the symmetry is broken. Still worse, the loser may be on the other side of the hill than the majority of the population (if the relaxation factor is too large, for instance), and make the population go down the hill ... The distribution of individuals may also cause any strategy to be deceptive. Consider an even distribution of the population between the two schemas, and assume that model M reflects this distribution (Table 2). Imitating M means reducing the differences between X and M, hence flipping preferably bits 1 and 2 (if the number of bits to mutate is greater than 2this will be discussed in the next section). But mutating bits 1 and 2 would perpetuate the distribution of the population between schemas 1 and 2. Inversely, if the strategy is to reject M, one wants to preserve the differences between X and M, hence bits 1 and 2 will never be modified; and, everything being equal, this would preserve the distribution of the population too.

To sum up, observing a single model may perpetuate the traps visited by the model or the population. This is confi rmed by the fact that PEIL enriches the computation of the winner with random perturbations [START_REF] Baluja | Removing the genetics from the standard genetic algorithms[END_REF], or computes the winner from the two best and the worst individuals [START_REF] Baluja | An empirical comparizon of seven iterative and evolutionary function optimization heuristics[END_REF]. We experimented similar heuristics based on gaussian perturbations of the models.

However, it turns out that guiding evolution according to two models is much more robust than with only one model: the influence of each model somehow moderates the influence of the other one, and makes it less harmful. Still, there certainly exists cases where the two combined models deliver deceptive indica tions. Further research will focus on the deceptivity of social strategies.

5

Social Pressure

Binary mutation is traditionnally parameterized by the mutation rate, usually very low, setting the average number of bits to mutate in the population. And the selection of the mutated bits is done at random. In opposition, social mutation primarily concentrates on ordering the bits to mutate depending on the individual, via defining its desired direction of evolu tion (section 3.2). But how far the individual should go in this direction, i.e. the number M of bits to mutate, is still to determine. This parameter, termed social pressure, controls the balance of evolution between exploitation and explo ration, respectively achieved for low and high values of M. In any case, the social pressure must correspond to a much higher mutation rate than for standard mu tation, as social mutation is meant to replace both mutation and crossover.

A previous work investigated two heuristics for the auto-adjustment of M in the framework of evolution by inhibitions [START_REF] Sebag | Toward civilized evolution: Developping inhibitions[END_REF]. The first heuristic is inspired from Davis [START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF], and proceeds by rewarding the values of M leading to fitness increases. The second one is inspired from self-adaptation [23, lJ: the number M is encoded within each individual, and evolution supposedly optimizes M as well as the genotypic information of the individual. Unfortunately, none of our attempts succeeded in determining relevant global or local values of M; rather, all heuristics rapidly lead to setting M = 1. Mimetic evolution thereafter behaves as a standard hill-climber, and soon gets trapped in a local optimum. In retrospect, reward-based adjustment tends to be risk-adverse, and favor op tions that bring small frequent improvements, over options that bring rare, though large, improvements; this explains why M = 1 is preferred. On the other hand, the self-adaptation of M fails because the strong causality principle [START_REF] Rechenberg | Evolutionstrategie: Optimierung Technisher Systeme nach Prinzip ien des Biologischen Evolution[END_REF] is violated: finding the optimal M amounts to finding an optimal discrete value in a very restricted range (say [2 . . N /lOJ); no wonder that the con vergence results of evolution strategies [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF][START_REF] Back | Evolutionary Algorithms in theory and practice[END_REF] do not apply.

We therefore used fixed schedules to determine Mt at generation t. The sim plest possibility is to set Mt to a fixed, user-supplied value Mo. A more sophisti cated possibility is to decrease Mt from an initial, user-supplied, value M0• We used a decreasing hyperbolic schedule borrowed from [START_REF] Back | Intelligent mutation rate control in canonical GAs[END_REF]:

1 __!_ + t . 1-Jo Mo T-l (1) 
where T is the maximum number of generations and t denotes the current gen eration. Social mutation then mutates exactly the integer part of Mt bits in each individual4. It now remains to set the initial (or fixed) value of Mt, M0• We used off-line adjustments loosely inspired from Grefenstette's Virtual GA [START_REF] Grefenstette | Virtual genetic algorithms: First results[END_REF]. More precisely, a (1+10) binary ES is run for a few generations, for each considered value of M0 (2 . . 5 in the constant schedule, and { 45, 90, 450} in the decreasing schedule), and one chooses the value of Mo leading to the best performance.

6

Experimental Validation

This section discusses the experimental results obtained by mimetic evolution on large-sized problems, and focuses on the role of social strategy.

Problems

The experiments consider some standard test functions: the OneMax, the Twin Peaks and the deceptiv) Ugly5 functions, taken on {O, 1} 900 . Other functions are taken from [START_REF] Baluja | An empirical comparizon of seven iterative and evolutionary function optimization heuristics[END_REF], and respectively correspond to the bi nary coding and the Gray coding of the continuous functions on [-2, 56, 2.56( 100 below: The importance of the coding is witnessed, if necessary, by the fact that F3 only reaches a maximum of 416, 63 in its binary version, whereas the continuous optimum is 107; this is due to the fact that the continuous optimum {Xi = .024 * (i + 1)) does not belong to the discrete space considered.

Yl X1 Yi = Xi + Yi-li i > 2

Experimental setting

The evolution scheme is a (10+50)-ES: 10 parents produce 50 offspring and the 10 best individuals among parents plus offspring are retained in the next population. A run is allowed 200,000 evaluations; all results are averaged on 10 independent runs.

The winner and the loser respectively memorize the best and the worst off spring of the current generation. The The relaxation factors aw and a1 are both set to .01. The tournament size is set to 20.

Several reference algorithms have been experimented on functions F1 and F3: two variants of GAs (GAl and GA2), two variants of Hill-climbers (HCl and HC2) [START_REF] Baluja | An empirical comparizon of seven iterative and evolutionary function optimization heuristics[END_REF] and two variants of evolution strategies (ESl and ES2) [START_REF] Sebag | Toward civilized evolution: Developping inhibitions[END_REF]. These algorithms served as reference for PBIL and evolution by inhibitions (INH). Another reference algorithm is given by mimetic evolution following an ignorant social strategy (an offspring is generated by randomly mutating 3 bits). More results, and the detailed description of the reference algorithms, are found in [START_REF] Sebag | Toward civilized evolution: Developping inhibitions[END_REF]. In this paper, we focus on the influence of the social strategy parameter, and in particular, the social pressure (nb of bits mutated) is fixed to 3.

The inff.uence of social strategies

A new visualization format is proposed on Figure 2, in order to compare the results obtained for different strategies on a given problem. As social strategies can be represented as angles, results are plotted in polar coordinates: point (p, B) illustrates the results obtained for strategy B, with p being the best average fitness obtained for this strategy. Two curves are plotted by joining all points (p, B): the internal curve gives the results obtained for 50,000 evaluations, and the external one gives the results obtained for 200,000 evaluations. Both curves overlap (e.g. for OneMax and Ugly) when evolution reaches the optimum in about 50,000 evaluations or less . Note that the shape of the curve obtained for 50,000 evaluations is very close to that obtained for 200,000 evaluations; in other words, the social strategy most adapted to a problem does not seem to vary along evolution.

In all cases, strategies in the left half space are significantly better than those in the right half space: for all functions considered, the recommended behavior with respect to the loser is the flight. In opposition, the recommended behavior with respect to the winner depends on the function: flight is strongly recommended in the case of Fi, where the Pioneer strategy is the best. Inversely, imitation is strongly recommended in the case of F3, OneMax and Ugly, where the Sheep strategy is the best. This is particularly true for F3, where the Sheep is significantly better than other strategies: the respective amounts of imitation of the winner and avoidance of the loser must be carefully adjusted.

Conclusion

Our working hypothesis is that the memory of evolution can provide worth information to guide the further steps of evolution.

Instead of memorizing only the best [START_REF] Baluja | Removing the genetics from the standard genetic algorithms[END_REF] or the worst [START_REF] Sebag | Toward civilized evolution: Developping inhibitions[END_REF] individuals, mimetic evolution memorizes all striking past individuals, the best and the worst ones. A population can thereby access two models, featured as the Winner and the Loser.

These models defi ne a changing system of coordinates in the search space; an individual can thus be given a direction of evolution, or social strategy, expressed with respect to both models. And mimetic evolution proceeds by moving each individual in this direction. This paper has only considered the case of a single social strategy, fixed for all individuals, and focus on the influence of the strategy on the dynamics of evolution.

Evolution by inhibitions is a special case, driven by the loser model only, of mimetic evolution. As mimetic evolution involves both loser and winner models, the possible strategies get richer. As could be expected, 2-model-driven strate gies appear more robust than 1-model-driven ones. Indeed, the more models are observed, the less predictable and deterministic the behavior of the population gets; and the less likely evolution goes in a deadlock. Experimental results show that for each test function there exists a range of opti mal social strategies (close to the Sheep in most cases; and to the Pioneer /Rebel in the others). And on most functions, these optimal strategies significantly outperform the "ignorant" strategy, which serves as reference and ignores both models.

In any case, it appears that memory contains relevant information, as the way we use it fortunately often allows for speeding up evolution. Obviously, other and more clever exploitations of this information remain to be invented. On the other hand, the use of the memory is tightly connected to its content: which knowledge exactly should be acquired during evolution ? Currently the models refl ect, or "capitalize", the individuals; another level of memory would capitalize the dynamics of the population as a whole, i.e. the sequence over all generations of the social strategy leading from the best parents to the best offspring.

A further perspective of research is to self-adapt the social strategy of an individual, by enhancing the individual with its proper strategy parameters 8w and rh. This way, evolution could actually benefit from a mixture of different social strategies, dispatched within the population6.

Another perspective is to extend mimetic evolution to continuous search spaces. Computing the winner and the loser from continuous individuals is straightforward; but the question of how to use them is still more open, than in the binary case.

A last perspective is to see to what extent the difficulty of the fitness land scape for a standard GA is correlated to the optimal social strategy for this landscape (among which the ignorant strategy) . Ideally, the optimal strategy would allow one to compare diverse components of evolution, in the line of the Fitness Distance Correlation criterion [15]. The advantage of such criteria is to provide a priori estimates of the adequacy of e.g., procedures of initialization of the population [16], or evolution operators [START_REF] Kalle | A priori predictions of operator efficiency[END_REF].
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	Fl Binary 1.04	1.01 1.96 1.72 2.37 1.87	2.12 2.99 2.98

Table 3 .

 3 Reference results on F1 and F3.

Other metaphors, all likely politically incorrect, could have been used: the leader and the scapegoat, the yang and the yin, the knight and the villain, ...

Note that this macro-mutation fairly resembles standard crossover during the first generations of evolution, especially for large populations.

A more robust variant is to update M from the two best individuals and the worst individual in the population[START_REF] Baluja | An empirical comparizon of seven iterative and evolutionary function optimization heuristics[END_REF].

Limitations

Another possibility, not investigated here, is to mutate on average Aft bits on the population[START_REF] Sebag | Toward civilized evolution: Developping inhibitions[END_REF].

Defined as 300 concatenations of the elementary deceptive function U defined on {O, 1} 3 as follows: U(lll) = 3; U(OXX) 2; otherwise U = 0.

Incidentally, this would reflect more truly the evolution of societies. But indeed social modelling is far beyond the scope of this work.