
HAL Id: hal-00116540
https://hal.science/hal-00116540v1

Submitted on 20 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Induction of constraint logic programs
Michèle Sebag, Céline Rouveirol, Jean-François Puget

To cite this version:
Michèle Sebag, Céline Rouveirol, Jean-François Puget. Induction of constraint logic programs. Pa-
cific Rim International Conference on Artificial Intelligence (PRICAI 1996), 1996, Cairns, Australia.
pp.148-167, �10.1007/3-540-64413-X_34�. �hal-00116540�

https://hal.science/hal-00116540v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Induction of Constraint Logic Programs

Michele Sebag1 and Celine Rouveirol2 and Jean-Franc;ois Puget3

(1) LMS - URA CNRS 317
Ecole Polytechnique, 91128 Palaiseau Cedex, France

Michele.Sebag©polytechnique.fr

(2) LR1 - URA CNRS 410
Universite Paris-XI, 91405 Orsay Cedex, France

Celine.Rouveirol©lri.fr

(3) ILOG, 9 avenue de Verdun, 94253 Gentilly Cedex
jfpuget©ilog.fr

Abstract. Inductive Logic Programming (ILP) is concerned with learn­
ing hypotheses from examples, where both examples and hypotheses are
represented in the Logic Programming (LP) language. The application of
ILP to problems involving numerical information has shown the need for
basic numerical background knowledge (e.g. relation "less than"). Our
thesis is that one should rather choose Constraint Logic Programming
(CLP) as the representation language of hypotheses, since CLP contains
the extensions of LP developed in the past decade for handling numerical
variables.
This paper deals with learning constrained clauses from positive and
negative examples expressed as constrained clauses. A first step, termed
small induction, gives a computational characterization of the solution
clauses, which is sufficient to classify further instances of the problem do­
main. A second step, termed exhaustive induction, explicitly constructs
all solution clauses. The algorithms we use are presented in detail, their
complexity is given, and they are compared with other prominent ILP
approaches.

1 Introduction

Inductive .Logic Programming {ILP) is concerned with supervised learning from
examples, and it can be considered a a subfield of Logic Programming (LP):
it uses a subset of the definite clause language (e.g. used in Prolog) sometimes
extended with some form of negation, to represent both the examples and the
hypotheses to be learned (14] .

The application of ILP to problems involving numerical information, such as
chemistry [7], has shown the need for handling basic numerical knowledge, e.g.
relation less than. This has often been met by supplying the learner with some
ad hoc declarative knowledge [23]. However, one cannot get rid of the inherent
limitations of LP regarding numerical variables: functions are not interpreted,
i.e. they act as functors in terms. The consequences for that are detailed in
section 2.1. Other possibilities are to use built-in numerical procedures [17] , or

1

to map the ILP problem at hand onto an attribute-value induction problem
[8, 2, 26, 27].

This paper investigates a radically different approach in order to handle nu­
merical information correctly, namely the use of Constraint Logic Programming
(CLP) instead of LP as representation language. Indeed, CLP has been devel­
oped in the past decade as an extension of LP to other computation domains
than Herbrand terms, including e.g. sets, strings, integers, floating point num­
bers, boolean algebras (see [6] for a survey). We are primarily interested here in
the numerical extensions.

This paper extends a previous work devoted to learning constrained clauses
from positive and negative examples represented as definite clauses [21]. The
extension concerns the formalism of examples, which are thereafter represented
as constrained clauses as well; this allows a number of negative examples to be
represented via a single constrained clause.

This language of examples and hypotheses constitutes a major difference with
other ILP learners, e.g. FOIL [17], ML-Smart [1], PROGOL [13] or REGAL [3]
to name a few.

An equally important difference is that our approach is rooted in the Version
Space framework [11]. More precisely the set of solution clauses Th here consists
of all hypotheses partially complete (covering at least one example) and consis­
tent (admitting no exceptions) with respect to the examples [19]. This contrasts
with other learners retaining a few hypotheses in Th, optimal or quasi-optimal
with regards to some numerical criterion such as the quantity of information for
FOIL, or the Minimum Description Length for PROGOL.

This paper presents a 2-step approach. A computable characterization of Th
is constructed in a first step, termed small induction; this characterization is suf­
ficient for classification purposes. The explicit characterization of Th is obtained
in a second step, termed exhaustive induction, which is much more computation­
ally expensive than small induction. This 2-step approach allows one to check
whether the predictive accuracy of the theory is worth undergoing the expensive
process of explicit construction. Further, we show that exhaustive induction can
be reformulated as an equivalent constraint solving problem; thereby, the burden
of inductive search can be delegated to an external tool, purposely designed for
combinatorial exploration of continuous domains or finite sets.

The rest of the paper is organized as follows. Next section briefly presents
CLP. Then the induction setting is extended from LP to CLP: the notions of
completeness and consistency of constrained clauses are defined. Section 4 is
devoted to building constrained clauses consistent with a pair of examples. This
is used in section 5, to characterize the set of solution clauses via small induction.
Exhaustive induction is described in section 6, and section 7 is devoted to a
complexity analysis of both algorithms. We conclude with some comparison with
previous works and directions for future research.

2

2 Constraint Logic Programming

This section describes the formalism of constraint logic programming, for it
both subsumes logic programming [5] and handles clauses that would require an
additional background knowledge to be discovered in ILP.

2.1 The need for CLP

As said above, functions are not interpreted in LP; they are only treated as
functors for Herbrand terms. It follows that an equation such as X - Y = O will
never be true in a LP program: as sign 1-1 is not interpreted, the two sides of
the equation cannot be unified.

In practice, Prolog systems offer a limited form of interpreted functions, using
the is programming construct. This construct evaluates a ground term built
with numerical constants and arithmetic functors, and returns the corresponding
numerical value. However, this evaluation only applies to ground terms. Again,
the goal Z is X - Y will not succeed unless both X and Y are instantiated with
numerical values. Prolog systems also provide some predicates over numerical
constants, e.g.=<, which suffer from the same limitations.

Thus, in order to handle numerical variables without extending unification,
one must carefully design predicate definitions, and use the interpretation of
functions when some ground terms are found. Here is a clever example of such
a definition, reported from [23]. The goal is to define the less_than predicate.
First thing is to handle the ground case:

X less_than Y +- number (X) , number (Y) , ! , X =< Y.
X less_than X +- number (X) .

Then, in order to handle the non ground variables, one must introduce ex­
plicitly a way to bind the variables. The approach presented in [23] consists in
introducing a predicate float, that represents a finite set of numerical constants:

float(X) f- number(X), ! .
float(X) f- member(X, [O, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4]).

The definition of the inequality predicate can then be extended as follows:
X less_than Y +- f loat (X) , float (Y) , X =< Y.
X less_than Y +- f loat(X), float(Delta), Y is X + Delta.

Such a clever intensional definition still depends on (and is limited by) an
extensional definition of floating point constants.

2.2 Notations and definitions

The key idea of CLP stems from the observation that unification is an algorithm
for solving equality constraints between Herbrand terms. Hence, new computa­
tion domains can be added to LP if adequate constraint solvers are provided. An
alternative to special purpose definitions of predicates and extensional definition
of numerical domains, precisely consists of developing an adequate constraint

3

solver, that extends deduction through built-in interpretation of numerical con­
stants and constructs. The CLP scheme thus generalizes the LP scheme as equa­
tion solving is a special case of constraint solving.

This requires the introduction of an algebraic semantics. Of course, our aim
is not to present here an exhaustive state of the art in CLP (see [241), but
rather to define the basic CLP notions with respect to the classical LP and ILP
terminology [9, 14].

Let C = Ca U Cc, be a definite clause language without function symbols
other than constants, where Ca (respectively Cc) defines the set of uninterpreted
{resp. interpreted) predicate symbols.

Definition 1. In the following, a constraint denotes a literal built on a predicate
symbol in Cc· An atom denotes a literal built on a predicate symbol in Ca.

Definition 2. A constrained clause is a clause of the form:
H f- B1 A ... A Bm A c1 A . .. A Cn

where H, B1, ... , Bm are atoms and c1, ... , Cn are constraints. In the following,
c1 A .. . A Cn is referred to as the constraint part of the constrained clause, and
H f- B1 A . .. A Bm as to the definite part of the constrained clause.

A constrained logic program is a finite set of constrained clauses.
A constrained goal is a clause of the form: f- B1 A . . . A Bm A c1 A . .. A en,

where B1, . • • , Bm are atoms and c1, . • • , Cn are constraints.

2.3 Operational Semantics of CLP language

In LP, an answer to a query G with respect to a logic program P is a substitution
<J' (expressed as a set of equalities on variables of G) such that G<J' belongs to
the least Herbrand model of P. An answer to a query G with respect to a CLP
program P is not a substitution any more, but a set of consistent constraints
such that all atoms in G have been resolved. We refer to (24] for a formal defi­
nition of the inference rule used in CLP, as this is beyond the scope of this paper.

Definition 3. An answer to a CLP goal G with respect to program P is a
conjunction of constraints c1 A . .. A Cn such that

P, T I= ('v')(c1A . . . Aen -+ G), or equivalently P l==s ('v') (c1A .. . Acn -+ G)

where P is a constraint logic program, S is a structure, T is the theory axioma­
tizing S and ('v')F denotes the universal closure of F.

The operational semantics of a CLP language can be defined either in terms
of logical consequences or in an algebraic way (25] (see [5] for a detailed discus­
sion). From now on, after (24], we use the only notation V f=, which may be
read both as the logical or algebraic version of logical entailment.

Definition 4. A constraint c is consistent (or satisfiable) if there exists at least
one instantiation of variables of c in V such that c is true, noted V I= (3)c.

4

A constraint c is consistent with a set (i.e. conjunction) of constraints a if
1) I= (3)(0' A c).

A (set of) constraint(s) <Tis inconsistent if 1) I= (\f)(-.0')).
Given two (sets of} constraints a and 0'1, a entails 0'1, noted O' -<c 0'1, if

1) I= (\f)(<T � O'') .

Example: Let variable X have R as interpretation domain. Then constraint
(X2 < O) is unsatisfiable; constraint (X > 10) entails constraint (X > 5).

2.4 Domains of computation

Practically, we require the type of any variable X to be set by a domain con­
straint (equivalent to a selector in the Annotated Predicate Calculus terminology
(10]) . This domain constraint gives the initial domain of instantiation ilx of the
variable. We restrict ourselves to numerical, hierarchical and nominal variables,
where ilx respectively is (an interval of) Nor R, a tree, or a (finite or infinite)
set.

Domain constraints are of the form (X E dom(X)), where dom(X) denotes
a subset of ilx. The domain constraints considered throughout this paper are
summarized in Table 1.

Type of X Initial domain ilx Domain constraint X E dom (X)
numerical (interval of) R or N dom(X) interval of R or N.
hierarchical tree dom(X) subtree of ilx
nominal finite or infinite set dom(X) subset of Dx

Table 1: Domains of computation and domain constraints

A binary constraint involves a pair of variables X and Y having same do­
mains of instantiation. The advantage of binary constraints is to allow for com­
pact expressions: (X = Y) replaces page-long expression of the form (X E
{red}) and (Y E {red}) or (X E {blue}) and (Y E {blue}) or . .. The binary
constraints considered in this paper are summarized in Table 2.

Type of X and Y Binary constraints
numerical linear inequality (X � Y +a), (X � Y + b)
hierarchical generality (X � Y)
nominal equality and inequality (X = Y), (X # Y)

Table 2: Domains of computation and binary constraints

Our constraint language is restricted to conjunctions of domain constraints
and binary constraints as above. Two reasons explain our choice: this language is
sufficient to deal with most real world problems, and it is supported by complete
constraint solvers [4].

3 Induction setting in CLP

This section briefly recalls the basic induction setting and the Disjunctive Version
Space approach. The key definitions of inductive learning, namely completeness
and consistency, are then extended from LP to CLP.

5

3.1 Learning setting and Disjunctive Version Space

Let the positive and negative examples of the concept to be learned be expressed
in the language of instances Ci, and let Ch denote the language of hypotheses.
Let two boolean relations of coverage and discrimination be defined on Ch x Ci,
respectively telling whether a given hypothesis covers or discriminates a given
example.
The basic solutions of inductive learning consist of hypotheses that are com­
plete (cover the positive examples) and consistent (discriminate the negative
examples).

The Version Space (VS) framework gives a nice theoretical characterization
of the set of solutions [11].Unfortunately noisy examples and disjunctive target
concepts lead VS to fail, which implies that VS is not applicable to real-world
problems1• The Disjunctive Version Space (DiVS) algorithm overcomes these
limitations via relaxing the completeness requirement [19]. More precisely, DiVS
constructs the set Th of all hypotheses that are partially complete (cover at least
one example) and consistent. This is done by repeatedly characterizing the set
Th(E) of consistent hypotheses covering E, for each training example E.

The elementary step of Disjunctive Version Space actually consists of con­
structing the set D(E, F) of hypotheses covering E and discriminating some
other training example F: if Fi, F2, .. . , Fn denote the training examples not
belonging to the same target concept as E, termed counter-examples to E, then
by construction

Th(E) = D(E, F1) /\ .. . /\ D(E, Fn)

3.2 From ILP to CLP

When the current training example E is a definite clause, we proposed to express
E as CO, where C is the definite clause built from E by turning every occurrence
of a term ti in E into a distinct variable Xj, and 0 is the substitution given by
{Xi/ti} [18]:

E=CO

This decomposition allows induction to independently explore the lattice of
definite clauses generalizing C, and the lattice of substitutions or constraints
over the variables in C, that generalize 0: as a matter of fact, a substitution is
a particular case of constraint (a set of equality constraints between Herbrand
terms).

When training examples are described by constrained clauses, we must first
get rid of the fact that one constrained clause may admit several equivalent ex­
pressions.

Definition 5. Let g be a constrained clause. The canonical form of g is defined
aS Gl I Where
• G is the definite clause built from g by deleting the constraints and turning

1 Real examples are always noisy; real target concepts are usually disjunctive.

6

every occurrence of a term ti in g into a distinct variable X;;
• I is the maximally specific conjunction of constraints entailed by the constraint
part of g and the constraints (X; =ti).

Example: Let g be a constrained clause describing some poisonous chemical
molecules:

g : poisonous(X) t- atm(X, Y, carbon, T), atm(X, U, carbon, W),
(Y ::/= U), (T > W - 2)

The canonical expression of g is G1, with

G: poisonous(X) t- atm(X', Y, Z, T), atm(X", U, V, W)
1 : (Y =/: U), (T > W - 2), (X = X'), (X = X11), (X' = X"),

(Z =carbon), (V =carbon), (Z = V)

In the remainder of this paper, "constrained clause" is intended as "constrained
clause in canonical form".

Let E = CB hereafter denote the constrained clause to generalize. The lan­
guage of hypotheses Ch is that of constrained clauses G'Y where G is a definite
clause generalizing C in the sense of 8-subsumption [14], noted C � G, and I is a
conjunction of constraints set on variables in C, such that (} entails I (Definition
4):

Ch = { G1, such that C � G and 8 �c 1}

Di VS thus explores a bound logical space with bottom C, and a bound constraint
space with bottom 8.

3.3 Completeness and Consistency in CLP

The generality order on constrained clauses is extended from the generalization
order on logical clauses defined by 8-subsumption [14], and from the generaliza­
tion order defined by constraint entailment [6].

Definition 6. Let G1 and G111 be constrained clauses; G1 generalizes G'1',
noted G' 1' �h G11 if there exists a substitution er on G such that Ger is included
in G', and 1' er entails I:

G111 �h G1 iff there exists a /Ger � G' and 11 a �c I

It follows from Definition 6, that any constrained clause G1 in the search space
lh, generalizes E (er being set to the identity substitution on C):

implies

Positive examples are represented as constrained clauses concluding to the
predicate to be learned tc. Negative examples are also represented as constrained
clauses. Indeed, there is no standard semantics for the negation in Logic Pro­
gramming, and even less for CLP. We therefore explicitly introduce the negation

7

of target predicate tc, noted 0PPtc; negative examples are constrained clauses
concluding to 0PPtc. For instance, if active is the target predicate, we introduce
the opposite predicate symbol 0PPactive (= inactive).

Then, for any constrained clause g, let opp g be defined as the constrained
clause obtained from g by replacing the predicate in the head of g, by the opposite
target predicate.

OPPhead(g) +- body(g)

The consistency of a constrained clause is defined as follows:

Definition 7. Let G1 and G'1' be constrained clauses. G1 is inconsistent with
respect to G' 1' iff there exists a substitution u on G such that Gu is included
into 0PPG' and I is consistent with "(1 u:

G1 is inconsistent wrt G'1' iff 3 u such that Ga � 0PPQ' and 'D f= (3)(1/\.1' u)

Such a substitution a is termed negative substitution on G derived from G'11•
G1 discriminates G' 1', if there exists no negative substitution u on G derived

from G111•

Example: Let g and g' be two constrained clauses as follows:

g: poisanous(X) +- atm(X, Y, carbon, T), atm(X, U, carbon, W), (T > W - 2)
g': 0PPpoisanous(X) +- atm(X, Y,Z,T),atm(X,U,Z, W),(T � W)

Then, g is inconsistent wrt to g': u being set to the identity substitution, one sees
that a molecule involving two carbon atoms with same valence (T = W) would
be considered both poisonous according tog, and non poisonous according to g'.

4 Building discriminant constrained clauses

This section focuses on the elementary step of Disjunctive Version Space, namely
constructing the set D{E, F) of constrained clauses covering E and discriminat­
ing F (in the sense of definition 7), where E and F are constrained clauses
concluding to opposite target concepts. We assume in this section that E is
consistent with respect to F.

Given the chosen hypothesis language, there exists two ways for a candidate
hypothesis G1 to discriminate F: The first one, examined in section 4.1, operates
on the definite clause part of G1 : G7 discriminates F if G involves a predicate
that does not occur in F. The second one, examined in sections 4.2 and 4.3,
operates on the constraint part of G1: G1 discriminates F if 'Y is inconsistent
with the constraint part of F.

8

4.1 Discriminant predicates

Due to the fact that C involves distinct variables only, any clause G subsuming
C discriminates F iff it involves a predicate symbol that does not occur in F,
termed discriminant predicate. Predicate-based discrimination thereby amounts
to boolean discrimination {presence/absence of a predicate symbol). More for­
mally,

Proposition 1. Let Gpred(F) be the set of clauses head(C) t- Pi()., for Pi rang­
ing over the set of discriminant predicate symbols. Then, a definite clause that
subsumes C discriminates F if! it is subsumed by a clause in Gpred(F).

Gpred(F) thereby sets an upper bound on the set of definite clauses that subsume
C and discriminate F. Note this set can be empty: e.g. in the chemistry domain,
all example molecules are described via the same predicates (atom and bond),
regardless of their class (poisonous or non poisonous).

4.2 Discriminant domain constraints

Let G be the generalization of C obtained by dropping all discriminant predicates.
With no loss of generality, F can be described2 as 0PPGp, with p being the
constraint part of F.

Hence, G is inconsistent with F; and due to the fact that C (and hence G)
involves distinct variables only, any negative substitution on G derived from F
(Definition 7) is a permutation of variables in G. Let E denote the set of these
negative substitutions. Note that constraints on G are trivially embedded onto
constraints on C.

One is finally interested in the following constraints on C:
• Constraint 0 which is the constraint part of example E,
•Constraint p which is the constraint part of example F,
• And the set E of negative substitutions derived from F (being reminded

that substitutions are particular cases of constraints).
Let us first concentrate on domain constraints, and assume in this subsection

that our constraint language is restricted to domain constraints3. A constraint
'Y is thus composed of a conjunction of domain constraints (Xi E dom.,(Xi)), for
Xi ranging over the variables in C.
It is straightforward to show that the lattice of constraints on C is equivalent
to the lattice Ceq = 'P(fl1) x 'P(fl2) x . . . , where ni denotes the domain of
instantiation of Xi, for Xi ranging over the variables of C, and 'P{fli) denotes
the power set of ni. An equivalent representation of 'Y is given by the vector of
subsets dom.,(Xi)·

2 The predicates appearing in F and not appearing in E can be dropped with no loss of
information: given the hypothesis language, they will not be considered in D(E, F).

3 This restricted language does not include the substitutions, as it does not allow the
representation of variable linking. This will be settled in section 4.3.

9

Building discriminant domain constraints is thus amenable to attribute-value
discrimination: two constraints are inconsistent iff they correspond to non over­
lapping elements in Ceq.

Proposition 2. Let I be a conjunction of domain constraints (Xi E dom-y(Xi)),
and let 1' = (Xia E dom-y' (Xia) be a domain constraint. Constraint 1' is incon­
sistent with constraint I iff dom-y(Xi0) and dom-y'(Xi0) are disjoint.

Let us now characterize the constraints discriminating example F. By defi­
nition, G1 discriminates F iff 1 is inconsistent with pa for all a in E.

Definition 8. An elementary discriminant constraint with respect to a negative
substitution a and a variable X, is a domain constraint on X that is entailed by
() and inconsistent with pa.
A maximally general elementary discriminant constraint wrt a and X is called
maximally discriminant.

In the considered domain constraint language {section 2.4), there exists at
most one maximally discriminant constraint wrt a negative substitution CT and
a variable X, noted {XE domu0(X)):

- if X is a numerical variable, such a maximally discriminant constraint exists
iff domo(X) et domp(X.CT) are disjoint, in which case domu• (X) is the largest
interval including domo(X) and excluding domp(X.CT).

- if X is a hierarchical variable, such a maximally discriminant constraint
exists iff domo(X) et domp(X.u) are subtrees which are not comparable, in
which case domu• (X) is the most general subtree that includes domo(X)
and does not include domp(X.a).

- if X is a nominal variable, such a maximally discriminant constraint exists
iff domo(X) et domp(X.CT) do not overlap, in which case domu• (X) is the
complementary in Ox of domp(X.CT). For the sake of convenience, domain
constraint (XE domu• (X)) is noted (X fl domp(X.u)).

If domu• (X) exists, X is said to be CT-discriminant.
By construction, a domain constraint on X that is entailed by () and dis­

criminates pCT must entail (X E domu• (X)). An upper bound on the domain
constraints that discriminate pa is then given by the disjunction of constraints
(X E domu• (X)), for X ranging over the a-discriminant variables in C . More
formally,

Proposition 3. Let var(C) be the set of variables in C, let CT be a substitution in
E, and let lu be the disjunction of constraints (Xi E domu• (Xi)) for Xi ranging
over the er-discriminant variables in var(C). Let 'Y be a conjunction of domain
constraints on variables in C that is entailed by (). Then,

'Y is inconsistent with per iff

10

Example: Let E and F be as follows:

E: poisanaus(X) +- atm(X, Y, carbon,T), atm(X, U,carbon, W),T < 24, W � 25
F: 0PPpoisanaus(X) +- atm(X, Y, hydrogen, 18), atm(X, U, carbon, W'), W' � 21

The definite clause C built from E is given below; variables Z and V are nominal,
with domain of instantiation {carbon, hydrogen, oxygen, ... } . Variables T and
W are continuous, with domain of instantiation N, (Other variables are discarded
as they do not convey discriminant information).

C: poisono us(X) +- atm(X',Y,Z,T) ,atm(X",U, V, W)

There is no discriminant predicate (G = C); E includes four negative substitu­
tions u1, u2, 0'3 and cr4 which correspond to the four possible mappings of the
two literals atm in C onto the two literals atm in F.
Table 3 shows a tabular representation of the constraints 8 and pui, where a case
of the matrix is a sub domain of the domain of instantiation of the variable.

llX X'Y z T X"U v w
8 - - - carbon [O, 24) - - carbon (25,oo)

pcr1 - - - hydrogen 18 - - carbon [0,21]
pa2 - - - carbon [O, 21) - - hydrogen 18
pa3 - - - hydrogen 18 - - hydrogen 18
pa4 - - - carbon [0,21] - - carbon (0,21]
Table 3: Tabular representation of domain constraints

And the (disjunctive) constraint /u1 entailed by 8 and maximally general such
that it is inconsistent with pa1 is given as (with [W E (21, oo)] written [W > 21]
for the sake of readability):

"fu1 = [Z f/. {hydrogen}] V [W > 21]

4.3 Discriminant binary constraints

We showed that building discriminant binary constraints is amenable to building
discriminant domain constraints, via introducing auxiliary constrained variables,
termed relational variables (21].

As an example, let us consider binary equality or inequality constraints
X = Y or X f- Y. One associates to any pair of variables X and Y having
same domain of instantiation, the relational variable (X=Y), interpreted for any
substitution a of C as: (X=Y).cr = true if X.a = Y.a, (X=Y).a =false if X.a
and Y.cr are distinct constants, and (X=Y).cr is not bound otherwise.

Equality constraint (X = Y) (respectively inequality constraint (X f- Y)) is
equivalent to domain constraints on relational variable (X=Y) given as ((X=Y)
true) (resp. ((X=Y) =false)).
Binary arithmetic constraint can similarly be built as domain constraints on rela­
tional numerical variables: let (X-Y) be the constrained variable interpreted as
the difference of numerical variables X and Y , the domain constraint ((x-Y) E
[a, b]) is equivalent to the binary constraint on X and Y : (Y +a� X $ Y + b)).

11

In the chosen constraint language, all binary constraints can be expressed as
domain constraints on such auxiliary variables. Proposition 3 then generalizes
as :

Proposition 4. Let var* (C) be the set of initial and relational variables in C,
let u be a negative substitution in E, and let 1,,. now denote the disjunction of
constraints (X Edam,,.. (X)) for X ranging over the u-discriminant variables in
var*(C). Let I be a conjunction of domain constraints on variables in v ar*(C)
that is entailed by fJ. Then,

'Y is inconsistent with pu iff

Constraint ':/<T hence is the upper-bound on the set of constraints on C that
are entailed by fJ and are inconsistent with pa.

As an example, the tabular representation (Table 3) is extended to binary
constraints as well:

ll X X'Y z T X"U v w I IZ=U W-T I
(J - - - carbon (0, 24) - - carbon (25, oo) f al se (1, 00)

pu1 - - - hydrogen 18 - - carbon [0,21] f al se [-18,3]
pa2

- - - carbon (0, 21) - -hydrogen 18 f alse (-3, 18]
pa3 - - -hydrogen 18 - -hydrogen 18 true 0
pu4 - - - carbon [O, 21] - - carbon [O, 21} true 0

Table 4: domain constraints and binary constraints

And the disjunctive constraint -y,,.4 entailed by fJ and maximally general such
that it is inconsistent with pa4 is given as:

-y,,.4 = [W > 21] V (Z I: U] V [W -T > O]

Last, one considers the conjunction of the constraints -y,,. for u ranging in E:

Proposition 5. Let G be a generalization of C inconsistent with respect to F,
and let IF be the conjunction of constraints -y,,. for u ranging in E. Then G1
discriminates F iff 'Y entails 'YF.

Constraint IF thus defines an upper bound on the constraints discriminating
F, like Gpred(F) is the upper-bound on the set of definite clauses that gener­
alize C and discriminate F. These are combined in the next section in order to
characterize all consistent partially complete constrained clauses.

5 Small induction

Our goal is here to characterize the Disjunctive Version Space learned from
positive and negative constrained clauses, and to use this characterization to
classify further instances of the problem domain.

12

5.1 Characterizing Th(E)

Let all notations be as in the previous section, and let G'Y be a constrained clause
in the hypothesis language. By recollecting results in sections 4.1 and 4.3, G'Y
discriminates F iff either G is subsumed by a clause in Gpred(F) or 'Y entails "IF:

Proposition 6. Let D(E, F) be the set of constrained clauses that generalize E
and discriminate F, and let G"f be a constrained clause generalizing E. Then
G'Y belongs to D(E, F) if and only if

or ("/ -<c "/F) (1)

And the set Th(E) of consistent constrained clauses covering E can be char­
acterized from the set of constrained clauses covering E and discriminating F, for
F ranging over the counter-examples Fi, . . . Fn to E (i.e. the training examples
concluding to the concept opposite to that of E); by construction,

Th(E) = D(E,F1) A ... A D(E,Fn)

In other words, the pairs (Gpred(Fi),'YFJ constitute a computational char­
acterization of Th(E): they give means to check whether any given constrained
clause belongs to Th(E).

The Disjunctive Version Space finally is constructed by iteratively character­
izing Th(E), for E ranging over the training set.

However, looking for consistent hypotheses make little sense when dealing
with real-world, hence noisy, data. One is therefore more likely interested in
hypotheses admitting a limited number of inconsistencies. Let The(E) denote
the set of hypotheses covering E and admitting at most e inconsistencies. Then,
we show that The(E) can be characterized from the pairs (Gpred(.Fi), 'YFJ, with
no additional complexity [19]: a constrained clause G"f covering E belongs to
The: (E) iff it satisfies condition (1) above, for all but at most e counter-examples
Fi to E.

The advantage of this approach is to delay the choice of the consistency bias,
from induction to classification, at no additional cost [19):
Induction constructs once and for all the pairs (G pred (Fi), "/F,), or a tractable
approximation of these [22];
This allows one to tune the degree of consistency of the hypotheses used during
classification, at no extra cost4•

5.2 Classification in Disjunctive Version Space

One major result of this approach is that the computational characterization
of the Disjunctive Version Space is sufficient to classify any further instance of
the problem domain. In other words, the explicit construction of Th(E), for E
ranging over the training examples, gives no extra prediction power.

4 The degree of generality of hypotheses can also be tuned at no extra cost; see [19, 22].

13

The Disjunctive Version Space includes hypotheses concluding to opposite
target concepts, since positive and negative examples are generalized. And,
though these hypotheses are consistent with the training examples, they usu­
ally are inconsistent with one another. Classification therefore does not rely on
standard logic, but rather on a nearest-neighbor like approach. The instance I
to classify is said to be neighbor of a training example E, if I is generalized by
a hypothesis in T h(E); I is thereafter classified in the class of the majority of
its neighbors.

One shows that I is generalized by a hypothesis in Th(E) iff it is generalized
by a hypothesis in D(E, F), for every counter-example5 F. And this can be
checked from the computational characterization of D(E, F):

Proposition 7. Let I be an instance of the problem domain, formalized as a
conjunction of constrained atoms. Then I is generalized by the body of a clause
in D(E, F) iff there exists a generalization G of C and a constraint 'Y such that
the body of G7 generalizes I, and either G is subsumed by a clause in Gpred(F)
or 'Y entails IF.

The important distinction compared to Prop 6. is that 'Y is not required to
be entailed by 0 any more: Prop 7 only requires to consider the substitutions
between C and the definite part of I.

5.3 A two-step induction

We thus propose a two step induction scheme. During the first step, called small
induction, all pairs of training examples (E, F) satisfying opposite target con­
cepts are considered; and for each such pair, we build the set of discriminant
definite clauses Gpred(F) and the discriminant constraint [F (conjunction of
disjunctions). As shown above, this is sufficient to address the classification of
unseen examples, and characterize the set of consistent partially complete con­
strained clauses.

During the second step, called exhaustive induction, all such consistent con­
strained clauses are explicitly built, and it is shown in the next section that
exhaustive induction can be achieved by constraint solving.

The advantage of this scheme is twofold. First, the burden of explicitly con­
structing the hypotheses can be delegated to constraint solvers, that is, algo­
rithms external to induction and geared for combinatorial search in discrete and
continuous domains.

Second, small induction can be viewed as an on-fly, lazy learning, the com­
plexity of which is much smaller than that of exhaustive induction (section 7):
it constructs theories which are not understandable, but yet operational to clas­
sify examples. One may then get some idea of the accuracy of a theory, before
undergoing the expensive process of making it explicit.

5 Or for all except e counter-examples, in case the consistency requirement is relaxed.

14

6 Exhaustive induction

We present here an algorithm called I CP, for Induct ive Constraint Program­
ming, that constructs the set Th(E) of consistent constrained clauses covering
E. In the line of Version Spaces [11], we limit ourselves to construct explicitly
the upper bound of Th(E}, i.e. the set G(E) of maximally general constrained
clauses in Th(E).

I C P proceeds as follows. It first builds the computational characterization
of Th(E), i.e. the set of clauses Gpred(Fi) and constraint /F, for Fi ranging over
the counter-examples of E. G(E) is initialized to the empty set and the current
constrained clause G1 is initialized to the clause head(C) +-.
Then, Gpred(F;.) and /F; are explored in depth-first, and clause G1 is specialized
until it discriminates all counter-examples F;.. All consistent constrained clauses
are obtained by backtracking on the specialization choices.

Build G(E)

Init
For F=F1, ... ,Fn,

Build Gpred(F) and /F.
* Prune /F.

G(E) = </J.
G = head(C) f- .
'Y =True.

Main Loop
For F = Fi, ... , Fn,

if G is not subsumed by any clause in Gpred(F)
and 'Y does not entail 'YF• then

If possible,
* Specialize G1 to discriminate F

Otherwise,
Backtrack on the specialization choices

* If G1 is maximally general in Th(E),
G(E) = G(E) U {G1}.

Backtrack on the specialization choices.

Specialize G1 to discriminate F (non deterministic)

Select a clause Go in Gpred(F).

Or,
Do body(G) = body(G) /\body(Go)

For each negative substitution Uk derived from F
If 'Y does not entail 'Yuk•

Select a variable }(j that is Uk-discriminant
Do 'Y = 'Y /\(Xi E domu;,(Xj))

15

In this scheme, constraint solving is employed to several tasks (indicated with
an asterisk):

It is used to prune 7p: a partial order noted <E can be defined on the
negative substitutions with respect to the positive substitution [20]. Minimal
substitutions with respect to this partial order can be viewed as "near-misses":
all substitutions but the minimal ones, can soundly be pruned. This pruning was
explicitly dealt with in previous works [18, 20]. It turns out to be a special case
of constraint entailment (ui <Eu; is equivalent to 'Yu, --<c 'Yu;) and this pruning
can therefore be achieved by a constraint solver.

It chiefly allows for building G7, through selecting specialization choices,
checking whether the current solution G7 is subsumed by a clause in Gpred(Fi),
and backtracking.

Last, it allows for testing whether G7 is maximally general6 in Th(E).

7 Complexity

Assume that the domain of instantiation of any variable can be explored with
a bounded cost. Then, the complexity of building the maximally discriminant
constraint "lu that discriminates a negative substitution u, is linear in the number
of initial and relational variables in C. In our constraint language, this complexity
is quadratic in the number X of variables in C.

H £ denotes an upper bound on the number of negative substitutions de­
rived from a counter-example (the size of E), the complexity of building 'YF is
then O(X2 x £). The complexity of building Gpred(F) (section 4.1) is negligible
compared to that of building "IF (it is linear in the number of predicate symbols
in E, which is upper-bounded by X).

Finally the computational characterization of D(E, F) has complexity O(X2 x
£).

Characterizing the Disjunctive Version Space Th requires all pairs D(Ei, F;)
to be characterized; if N denotes the number of training examples, the compu­
tational characterization of Th has complexity O(X2 x £ x N2).

The complexity of classifying an unseen example I from Th (proposition 7) is
the size of the implicit characterization of Th times the number of substitutions
derived from I, upper bounded by £; the complexity of classification hence is
O(X2 x £2 x N2).

The complexity of the intentional characterization of Th, via algorithm I CP,
is in O(N x (x2x.cxN)). Needless to say, the learning and classifying processes
based on the computational characterization of Th are much more affordable
than those based on the explicit characterization of Th.

The typical complexity of first order logic appears through factor £: if M is
an upper bound on the number of literals based on a same predicate symbol that

6 The fact that G1 is a maximally general element ofTh(E) can be expressed via con­
sidering new constraint programs, involving the assertion of all but one elementary
constraints satisfied by /, and the negation of the remaining one. G1 is maximally
general if such new constraint programs are satisfiable.

16

occur in an example, and Pis the number of predicate symbols, .C is in MMxP.
For instance, in the mutagenesis problem [7], examples are molecules involving
up to 40 atoms; .C is then 4040•

We therefore used a specifically devised heuristic to overcome this limitation.
The exhaustive exploration of the set E of negative substitutions, was replaced
by a stochastic exploration: we limit ourselves to consider a limited number TJ of
samples in E, extracted by a stochastic sampling mechanism [22]. An approxima­
tion of D(E, F) was therefore constructed in polynomial time (O(X2 x T/ x N2);
to give an order of idea, the number T/ of samples considered in E was limited
to 300 (to be compared to 4040). This approach led to outstanding experimental
results, compared to the state of the art on the mutagenesis problem [23].

8 Discussion and Perspectives

This section first discusses our choice of a maximally discriminant induction, then
situates this work with respect to some previous works devoted to generalization
of constraints (16, 12] or reformulation of !LP problems [8, 26, 27].

8.1 Generalization Choices

This work first extends the frame of induction to constraint logic programming;
see [22] for an experimental demonstration of the potentialities of this language.
Note that this frame does not allow to learn clauses that could not be learned
by state-of-art learners, supplied with an ad hoc knowledge. Rather, it allows to
learn simple numerical relations without requirement for additional knowledge.

A second aspect of this work concerns the tractable characterization of the
Disjunctive Version Space of consistent partially complete hypotheses. In op­
position, as mentioned earlier, the theories built by either PROGOL or FOIL
include only a few elements in this set.

Like PROGOL, ICP handles non ground examples, in opposition to FOIL
[17]; but domain theory {that cannot be put as examples) can be considered only
through saturation of the examples: ICP cannot use the domain knowledge in
order to guide the exploration of the search space, as ML-Smart [1] or PROGOL
do.

8.2 Generalization from constraints

As far as we know, the generalization from constraints has only been addressed
so far by Page and Frisch [16] and Mizoguchi and Ohwada [12].

In [16], the goal is to generalize constrained atoms. Constrained atoms are
handled as definite clauses whose antecedents express the constraints. Con­
strained generalizations of two atoms are built from the sorted generalizations
defined on their arguments. In both [16] and our approach, generalization ulti­
mately proceeds by building constraints. But different issues are addressed. In
[16], the main difficulty arises from the possibly multiple generalizations of two

17

terms, which does not occur in our restricted language (section 4.2) . In oppo­
sition, the main difficulty here comes from the multiple structural matchings
among examples (section 7) while such a matching uniquely follows from the
unique atom considered in [16].

Another approach of the generalization of constrained clauses is presented
by Mizoguchi and Ohwada [12]. This work is nicely motivated by geometrical
applications (avoiding the collision between objects and obstacles). The region
of safe moves of an object can be 'naturally' described through a set of linear
constraints; the goal consists in automatically acquiring such constraints from
examples.
[12] first extend the definition of some typical induction operators (minimal gen­
eralization, absorption, lgg) to constrained clauses. Then, an ad hoc domain
theory being given, examples are described by constrained atoms which are gen­
eralized through absorption and lgg, in the line of [15].

In what regards the roles respectively devoted to ILP and CLP, the essential
differences can be summarized as follows: the induction of constrained clauses is
done (a) by incorporating the structure of constraints into ILP, in (16]; (b) by
extending the inverse resolution approach to CLP in [12]; and by interleaving
ILP and CLP in our approach.

8.3 Reformulation

A strong motivation for reformulating ILP problems into simpler problems, e.g.
in propositional form, is that propositional learners are good at dealing with
numbers [8, 2, 26]. LINUS [8] achieves such transformation under several as­
sumptions, which altogether ensure that one first-order example is transformed
into one attribute-value example; this transformation thereby does not address
the case of multiple structural matchings among examples. LINUS nicely uses
the theory of the domain in order to introduce new variables and enrich the
attribute-value representation of the examples.

Another approach is that of Zucker and Ganascia [26, 27], that focuses on
restricting the set of predicates and substitutions relevant to a given level of in­
duction. Simply put, moriological reformulations rely on a hierarchical descrip­
tion of the problem domain, where a morion of a given level can be decomposed
into one or several morions of a lower level (e.g. the car morion involves the
description of four tire morions). One may then restrict oneself to consider pat­
tern matchings among examples, that preserve the structure (front tires, back
tires). Such restrictions allow to drastically decrease the complexity of induction
(which could benefit to ICP too); but the machine learning of such restrictions
is still an open problem [26].

Note that [8] and [26] both map an induction problem into another simpler
induction problem. In opposition, the mapping presented here enables a shift of
paradigm: an induction problem is transformed into a constraint program, which
can in turn be solved by an external tool.

18

8.4 Perspectives

This work opens several perspectives of research:
New variables (as in [81} and new types of constraints could be considered.

Ideally, language bias would be expressed via additional constraints (for instance,
requiring the solution clauses to be connected could be expressed via additional
constraints).

Also, the user could supply some optimality function in order to guide the
selection of the admissible solutions. Selective discriminant induction could then
be reformulated as a constrained optimization problem (finding the optimum of
the objective function still satisfying the constraints).

But many promising tracks are opened by current experimental validations
of this scheme [22].

Acknowledgments

This work has been partially supported by the ESPRIT BRA 6020 Inductive
Logic Programming and by the ESPRIT LTR 20237 I LP2•

References

1. F. Bergadano and A. Giordana. Guiding induction with domain theories. In
Y. Kodratoff and R.S. Michalski, editors, Machine Learning : an ar tificial intelli­
gence approach, volume 3, pages 474-492. Morgan Kaufmann, 1990.

2. S. Dzeroski, L. Todorovski, and T. Urbancic. Handling real numbers in ILP: a step
towards better behavioral clones. In N. Lavrac and S. Wrobel, editors, Proceedings
of ECML-95, European Conference on Machine Learning, pages 283-286. Springer
Verlag, 1995.

3. A. Giordana, L. Saitta, and F. Zini. Learning disjunctive concepts by means of
genetic algorithms. In Cohen W. and Hirsh H., editors, Proceedings of ICML-94,
International Conference on Machine Learning, pages 96-104. Morgan Kaufmann,
1994.

4. ILOG. Manuel SOLVER. ILOG, Gentilly, France, 1995.
5. J. J affar and J. L. Lassez. Constraint logic programming. In Proc. of the four teenth

ACM Symposium on the Principles of Programming Languages, pages 111-119,
1987.

6. J. Jaffar and M.J. Maher. Constraint logic programming : a survey. Journal of
Logic Programming, pages 503-581, 1994.

7. R.D. King, A. Srinivasan, and M.J.E. Sternberg. Relating chemical activity to
structure: an examination of ILP successes. New Gen. Comput., 13, 1995.

8. N. Lavrae and S. Dzeroski. Inductive Logic Programming: Techniques and Appli­
cations. Ellis Horwood, 1994.

9. J.W. Lloyd. Foundations of Logic Programming, second extended edition. Springer
Verlag, 1987.

10. R.S. Michalski. A theory and methodology of inductive learning. In R.S Michal­
ski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning : an ar tificial
intelligence approach, volume 1, pages 83-134. Morgan Kaufmann, 1983.

19

11. T.M. Mitchell. Generalization as search. Ar tificial Intelligence, 18:203-226, 1982.
12. F. Mizoguchi and H. Ohwada. Constraint-directed generalizations for learning spa­

tial relations. In Proceedings of ILP-91, International Workshop on Inductive Logic
Programming, 1991.

13. S. Muggleton. Inverse entailment and PROGOL. New Gen. Comput., 13:245-286,
1995.

14. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and meth­
ods. Journal of Logic Programming, 19:629-679, 1994.

15. S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings
of the 1st conference on algorithmic learning theor y. Ohmsha, Tokyo, Japan, 1990.

16. C. D. Page and A. M. Frisch. Generalization and learnability: A study of con­
strained atoms. In S. Muggleton, editor, Proceedings of the first International
Workshop on Inductive Logic Programming, pages 29-61, 1991.

17. J.R. Quinlan. Learning logical definition from relations. Machine Leaming, 5:239-
266, 1990.

18. M. Sebag. A constraint-based induction algorithm in FOL. In W. Cohen and
H. Hirsh, editors, Proceedings of ICML-94, International Conference on Machine
Learning, pages 275-283. Morgan Kaufmann, July 1994.

19. M. Sebag. Delaying the choice of bias: A disjunctive version space approach. In
L. Saitta, editor, Proceedings of the t1h International Conference on Machine
Learning, pages 444-452. Morgan Kaufmann, 1996.

20. M. Sebag and C. Rouveirol. Induction of maximally general clauses compatible
with integrity constraints. In S. Wrobel, editor, Proceedings of ILP-94, Interna­
tional Workshop on Inductive Logic Programming, 1994.

21. M. Sebag and C. Rouveirol. Constraint inductive logic programming. In
L. de Raedt, editor, Advances in ILP, pages 277-294. IOS Press, 1996.

22. M. Sebag and C. Rouveirol. Tractable induction and classification in FOL. In
Proceedings of IJCAI-97. Morgan Kaufmann, 1997.

23. A. Srinivasan and S. Muggleton. Comparing the use of background knowledge
by two ILP systems. In L. de Raedt, editor, Proceedings of ILP-95. Katholieke
Universiteit Leuven, 1995.

24. P. Van Hentenryck and Deville Y. Constraint Logic Programming. In Proceedings
of POP L '97, 1987.

25. P. Van Hentenryck and Deville Y. Operational semantics of constraint logic pro­
gramming over finite domains. In Proceedings of PLILP '91, 1991.

26. J.-D. Zucker and J.-G. Ganascia. Selective reformulation of examples in concept
learning. In W. Cohen and H. Hirsh, editors, Proc. of 11th International Confer ­
ence on Machine Leaming, pages 352-360. Morgan Kaufmann, 1994.

27. J.-D. Zucker and J.-G. Ganascia. Representation changes for efficient learning
in structural domains. In L. Saitta, editor, Proceedings of the 1 sth International
Conference on Machine Leaming, pages 543-551, 1996.

20

