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Abstract. Inductive Logic Programming (ILP) is concerned with learn­
ing hypotheses from examples, where both examples and hypotheses are 
represented in the Logic Programming (LP) language. The application of 
ILP to problems involving numerical information has shown the need for 
basic numerical background knowledge (e.g. relation "less than"). Our 
thesis is that one should rather choose Constraint Logic Programming 
(CLP) as the representation language of hypotheses, since CLP contains 
the extensions of LP developed in the past decade for handling numerical 
variables. 
This paper deals with learning constrained clauses from positive and 
negative examples expressed as constrained clauses. A first step, termed 
small induction, gives a computational characterization of the solution 
clauses, which is sufficient to classify further instances of the problem do­
main. A second step, termed exhaustive induction, explicitly constructs 
all solution clauses. The algorithms we use are presented in detail, their 
complexity is given, and they are compared with other prominent ILP 
approaches. 

1 Introduction 

Inductive .Logic Programming {ILP) is concerned with supervised learning from 
examples, and it can be considered a a subfield of Logic Programming (LP): 
it uses a subset of the definite clause language (e.g. used in Prolog) sometimes 
extended with some form of negation, to represent both the examples and the 
hypotheses to be learned (14 ] .  

The application of ILP to problems involving numerical information, such as 
chemistry [7], has shown the need for handling basic numerical knowledge, e.g. 
relation less than. This has often been met by supplying the learner with some 
ad hoc declarative knowledge [23]. However, one cannot get rid of the inherent 
limitations of LP regarding numerical variables: functions are not interpreted, 
i.e. they act as functors in terms. The consequences for that are detailed in 
section 2.1. Other possibilities are to use built-in numerical procedures [17] , or 
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to map the ILP problem at hand onto an attribute-value induction problem 
[8, 2, 26, 27]. 

This paper investigates a radically different approach in order to handle nu­
merical information correctly, namely the use of Constraint Logic Programming 
(CLP) instead of LP as representation language. Indeed, CLP has been devel­
oped in the past decade as an extension of LP to other computation domains 
than Herbrand terms, including e.g. sets, strings, integers, floating point num­
bers, boolean algebras (see [6] for a survey). We are primarily interested here in 
the numerical extensions. 

This paper extends a previous work devoted to learning constrained clauses 
from positive and negative examples represented as definite clauses [21]. The 
extension concerns the formalism of examples, which are thereafter represented 
as constrained clauses as well; this allows a number of negative examples to be 
represented via a single constrained clause. 

This language of examples and hypotheses constitutes a major difference with 
other ILP learners, e.g. FOIL [17], ML-Smart [1], PROGOL [13] or REGAL [3] 
to name a few. 

An equally important difference is that our approach is rooted in the Version 
Space framework [11]. More precisely the set of solution clauses Th here consists 
of all hypotheses partially complete (covering at least one example) and consis­
tent (admitting no exceptions) with respect to the examples [19]. This contrasts 
with other learners retaining a few hypotheses in Th, optimal or quasi-optimal 
with regards to some numerical criterion such as the quantity of information for 
FOIL, or the Minimum Description Length for PROGOL. 

This paper presents a 2-step approach. A computable characterization of Th 
is constructed in a first step, termed small induction; this characterization is suf­
ficient for classification purposes. The explicit characterization of Th is obtained 
in a second step, termed exhaustive induction, which is much more computation­
ally expensive than small induction. This 2-step approach allows one to check 
whether the predictive accuracy of the theory is worth undergoing the expensive 
process of explicit construction. Further, we show that exhaustive induction can 
be reformulated as an equivalent constraint solving problem; thereby, the burden 
of inductive search can be delegated to an external tool, purposely designed for 
combinatorial exploration of continuous domains or finite sets. 

The rest of the paper is organized as follows. Next section briefly presents 
CLP. Then the induction setting is extended from LP to CLP: the notions of 
completeness and consistency of constrained clauses are defined. Section 4 is 
devoted to building constrained clauses consistent with a pair of examples. This 
is used in section 5, to characterize the set of solution clauses via small induction. 
Exhaustive induction is described in section 6, and section 7 is devoted to a 
complexity analysis of both algorithms. We conclude with some comparison with 
previous works and directions for future research. 
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2 Constraint Logic Programming 

This section describes the formalism of constraint logic programming, for it 
both subsumes logic programming [5] and handles clauses that would require an 
additional background knowledge to be discovered in ILP. 

2.1 The need for CLP 

As said above, functions are not interpreted in LP; they are only treated as 
functors for Herbrand terms. It follows that an equation such as X - Y = O will 
never be true in a LP program: as sign 1-1 is not interpreted, the two sides of
the equation cannot be unified. 

In practice, Prolog systems offer a limited form of interpreted functions, using 
the is programming construct. This construct evaluates a ground term built 
with numerical constants and arithmetic functors, and returns the corresponding 
numerical value. However, this evaluation only applies to ground terms. Again, 
the goal Z is X - Y will not succeed unless both X and Y are instantiated with 
numerical values. Prolog systems also provide some predicates over numerical 
constants, e.g.=<, which suffer from the same limitations. 

Thus, in order to handle numerical variables without extending unification, 
one must carefully design predicate definitions, and use the interpretation of 
functions when some ground terms are found. Here is a clever example of such 
a definition, reported from [23]. The goal is to define the less_than predicate. 
First thing is to handle the ground case: 

X less_than Y +- number (X) , number (Y) , ! , X =< Y. 
X less_than X +- number (X) . 

Then, in order to handle the non ground variables, one must introduce ex­
plicitly a way to bind the variables. The approach presented in [23] consists in 
introducing a predicate float, that represents a finite set of numerical constants: 

float(X) f- number(X), ! . 
float(X) f- member(X, [O, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4]). 

The definition of the inequality predicate can then be extended as follows: 
X less_than Y +- f loat (X) , float (Y) , X =< Y. 
X less_than Y +- f loat(X), float(Delta), Y is X + Delta. 

Such a clever intensional definition still depends on (and is limited by) an 
extensional definition of floating point constants. 

2.2 Notations and definitions 

The key idea of CLP stems from the observation that unification is an algorithm 
for solving equality constraints between Herbrand terms. Hence, new computa­
tion domains can be added to LP if adequate constraint solvers are provided. An 
alternative to special purpose definitions of predicates and extensional definition 
of numerical domains, precisely consists of developing an adequate constraint 
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solver, that extends deduction through built-in interpretation of numerical con­
stants and constructs. The CLP scheme thus generalizes the LP scheme as equa­
tion solving is a special case of constraint solving. 

This requires the introduction of an algebraic semantics. Of course, our aim 
is not to present here an exhaustive state of the art in CLP (see [241), but 
rather to define the basic CLP notions with respect to the classical LP and ILP 
terminology [9, 14]. 

Let C = Ca U Cc, be a definite clause language without function symbols 
other than constants, where Ca (respectively Cc) defines the set of uninterpreted 
{resp. interpreted) predicate symbols. 

Definition 1. In the following, a constraint denotes a literal built on a predicate 
symbol in Cc· An atom denotes a literal built on a predicate symbol in Ca. 

Definition 2. A constrained clause is a clause of the form: 
H f- B1 A ... A Bm A c1 A . .. A Cn 

where H, B1, ... , Bm are atoms and c1, ... , Cn are constraints. In the following, 
c1 A .. . A Cn is referred to as the constraint part of the constrained clause, and 
H f- B1 A . .. A Bm as to the definite part of the constrained clause. 

A constrained logic program is a finite set of constrained clauses. 
A constrained goal is a clause of the form: f- B1 A . . .  A Bm A c1 A . .. A en, 

where B1, . • •  , Bm are atoms and c1, . • •  , Cn are constraints. 

2.3 Operational Semantics of CLP language 

In LP, an answer to a query G with respect to a logic program P is a substitution 
<J' (expressed as a set of equalities on variables of G) such that G<J' belongs to 
the least Herbrand model of P. An answer to a query G with respect to a CLP 
program P is not a substitution any more, but a set of consistent constraints 
such that all atoms in G have been resolved. We refer to (24] for a formal defi­
nition of the inference rule used in CLP, as this is beyond the scope of this paper. 

Definition 3. An answer to a CLP goal G with respect to program P is a 
conjunction of constraints c1 A . .. A Cn such that 

P, T I=  ('v')(c1A . . .  Aen -+ G), or equivalently P l==s ('v') (c1A .. . Acn -+ G) 

where P is a constraint logic program, S is a structure, T is the theory axioma­
tizing S and ('v')F denotes the universal closure of F. 

The operational semantics of a CLP language can be defined either in terms 
of logical consequences or in an algebraic way (25] (see [5] for a detailed discus­
sion). From now on, after (24], we use the only notation V f=, which may be 
read both as the logical or algebraic version of logical entailment. 

Definition 4. A constraint c is consistent (or satisfiable) if there exists at least 
one instantiation of variables of c in V such that c is true, noted V I= (3)c. 
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A constraint c is consistent with a set (i.e. conjunction) of constraints a if 
1) I= (3)(0' A c).

A (set of) constraint(s) <Tis inconsistent if 1) I= (\f)(-.0')). 
Given two (sets of} constraints a and 0'1, a entails 0'1, noted O' -<c 0'1, if 

1) I= (\f)(<T � O'') . 

Example: Let variable X have R as interpretation domain. Then constraint
(X2 < O) is unsatisfiable; constraint (X > 10) entails constraint (X > 5). 

2.4 Domains of computation 

Practically, we require the type of any variable X to be set by a domain con­
straint (equivalent to a selector in the Annotated Predicate Calculus terminology 
(10] ) .  This domain constraint gives the initial domain of instantiation ilx of the 
variable. We restrict ourselves to numerical, hierarchical and nominal variables, 
where ilx respectively is (an interval of) Nor R, a tree, or a (finite or infinite) 
set. 

Domain constraints are of the form (X E dom(X)), where dom(X) denotes 
a subset of ilx. The domain constraints considered throughout this paper are 
summarized in Table 1. 

Type of X Initial domain ilx Domain constraint X E dom ( X) 
numerical (interval of) R or N dom(X) interval of R or N. 
hierarchical tree dom(X) subtree of ilx 
nominal finite or infinite set dom(X) subset of Dx 

Table 1: Domains of computation and domain constraints 

A binary constraint involves a pair of variables X and Y having same do­
mains of instantiation. The advantage of binary constraints is to allow for com­
pact expressions: (X = Y) replaces page-long expression of the form (X E 
{red}) and (Y E {red}) or (X E {blue}) and (Y E {blue}) or . .. The binary 
constraints considered in this paper are summarized in Table 2. 

Type of X and Y Binary constraints 
numerical linear inequality (X � Y +a), (X � Y + b) 
hierarchical generality (X � Y) 
nominal equality and inequality (X = Y), (X # Y) 

Table 2: Domains of computation and binary constraints 

Our constraint language is restricted to conjunctions of domain constraints 
and binary constraints as above. Two reasons explain our choice: this language is 
sufficient to deal with most real world problems, and it is supported by complete 
constraint solvers [4]. 

3 Induction setting in CLP 

This section briefly recalls the basic induction setting and the Disjunctive Version 
Space approach. The key definitions of inductive learning, namely completeness 
and consistency, are then extended from LP to CLP. 
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3.1 Learning setting and Disjunctive Version Space 

Let the positive and negative examples of the concept to be learned be expressed 
in the language of instances Ci, and let Ch denote the language of hypotheses. 
Let two boolean relations of coverage and discrimination be defined on Ch x Ci, 
respectively telling whether a given hypothesis covers or discriminates a given 
example. 
The basic solutions of inductive learning consist of hypotheses that are com­
plete (cover the positive examples) and consistent (discriminate the negative 
examples). 

The Version Space (VS) framework gives a nice theoretical characterization 
of the set of solutions [11].Unfortunately noisy examples and disjunctive target 
concepts lead VS to fail, which implies that VS  is not applicable to real-world 
problems1• The Disjunctive Version Space (DiVS) algorithm overcomes these 
limitations via relaxing the completeness requirement [19]. More precisely, DiVS 
constructs the set Th of all hypotheses that are partially complete (cover at least 
one example) and consistent. This is done by repeatedly characterizing the set 
Th( E) of consistent hypotheses covering E, for each training example E. 

The elementary step of Disjunctive Version Space actually consists of con­
structing the set D(E, F) of hypotheses covering E and discriminating some 
other training example F: if Fi, F2, .. . , Fn denote the training examples not 
belonging to the same target concept as E, termed counter-examples to E, then 
by construction 

Th(E) = D(E, F1) /\ .. .  /\ D(E, Fn) 

3.2 From ILP to CLP 

When the current training example E is a definite clause, we proposed to express 
E as CO, where C is the definite clause built from E by turning every occurrence 
of a term ti in E into a distinct variable Xj, and 0 is the substitution given by 
{Xi/ti} [18]: 

E=CO 

This decomposition allows induction to independently explore the lattice of 
definite clauses generalizing C, and the lattice of substitutions or constraints 
over the variables in C, that generalize 0: as a matter of fact, a substitution is 
a particular case of constraint (a set of equality constraints between Herbrand 
terms). 

When training examples are described by constrained clauses, we must first 
get rid of the fact that one constrained clause may admit several equivalent ex­
pressions. 

Definition 5. Let g be a constrained clause. The canonical form of g is defined 
aS Gl I Where 
• G is the definite clause built from g by deleting the constraints and turning

1 Real examples are always noisy; real target concepts are usually disjunctive. 
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every occurrence of a term ti in g into a distinct variable X;; 
• I is the maximally specific conjunction of constraints entailed by the constraint
part of g and the constraints (X; =ti). 

Example: Let g be a constrained clause describing some poisonous chemical 
molecules: 

g : poisonous(X) t- atm(X, Y, carbon, T), atm(X, U, carbon, W), 
(Y ::/= U), (T > W - 2)

The canonical expression of g is G1, with 

G: poisonous(X) t- atm(X', Y, Z, T), atm(X", U, V, W) 
1 : (Y =/: U), (T > W - 2), (X = X'), (X = X11), (X' = X"), 

(Z =carbon), (V =carbon), (Z = V) 

In the remainder of this paper, "constrained clause" is intended as "constrained 
clause in canonical form". 

Let E = CB hereafter denote the constrained clause to generalize. The lan­
guage of hypotheses Ch is that of constrained clauses G'Y where G is a definite 
clause generalizing C in the sense of 8-subsumption [14], noted C � G, and I is a 
conjunction of constraints set on variables in C, such that (} entails I (Definition 
4): 

Ch = { G1, such that C � G and 8 �c 1} 

Di VS thus explores a bound logical space with bottom C, and a bound constraint 
space with bottom 8. 

3.3 Completeness and Consistency in CLP 

The generality order on constrained clauses is extended from the generalization 
order on logical clauses defined by 8-subsumption [14], and from the generaliza­
tion order defined by constraint entailment [6]. 

Definition 6. Let G1 and G111 be constrained clauses; G1 generalizes G'1', 
noted G' 1' �h G11 if there exists a substitution er on G such that Ger is included 
in G', and 1' er entails I: 

G111 �h G1 iff there exists a /Ger � G' and 11 a �c I

It follows from Definition 6, that any constrained clause G1 in the search space 
lh, generalizes E (er being set to the identity substitution on C): 

implies 

Positive examples are represented as constrained clauses concluding to the 
predicate to be learned tc. Negative examples are also represented as constrained 
clauses. Indeed, there is no standard semantics for the negation in Logic Pro­
gramming, and even less for CLP. We therefore explicitly introduce the negation 
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of target predicate tc, noted 0PPtc; negative examples are constrained clauses
concluding to 0PPtc. For instance, if active is the target predicate, we introduce
the opposite predicate symbol 0PPactive (= inactive).

Then, for any constrained clause g, let opp g be defined as the constrained
clause obtained from g by replacing the predicate in the head of g, by the opposite 
target predicate. 

OPPhead(g) +- body(g) 

The consistency of a constrained clause is defined as follows: 

Definition 7. Let G1 and G'1' be constrained clauses. G1 is inconsistent with 
respect to G' 1' iff there exists a substitution u on G such that Gu is included 
into 0PPG' and I is consistent with "(1 u:

G1 is inconsistent wrt G'1' iff 3 u such that Ga � 0PPQ' and 'D f= (3)(1/\.1' u)

Such a substitution a is termed negative substitution on G derived from G'11• 
G1 discriminates G' 1', if there exists no negative substitution u on G derived 

from G111• 

Example: Let g and g' be two constrained clauses as follows: 

g: poisanous(X) +- atm(X, Y, carbon, T), atm(X, U, carbon, W), (T > W - 2)
g': 0PPpoisanous(X) +- atm(X, Y,Z,T),atm(X,U,Z, W),(T � W) 

Then, g is inconsistent wrt to g': u being set to the identity substitution, one sees 
that a molecule involving two carbon atoms with same valence (T = W) would 
be considered both poisonous according tog, and non poisonous according to g'. 

4 Building discriminant constrained clauses 

This section focuses on the elementary step of Disjunctive Version Space, namely 
constructing the set D{E, F) of constrained clauses covering E and discriminat­
ing F (in the sense of definition 7), where E and F are constrained clauses 
concluding to opposite target concepts. We assume in this section that E is 
consistent with respect to F. 

Given the chosen hypothesis language, there exists two ways for a candidate 
hypothesis G1 to discriminate F: The first one, examined in section 4.1, operates 
on the definite clause part of G1 : G7 discriminates F if G involves a predicate 
that does not occur in F. The second one, examined in sections 4.2 and 4.3, 
operates on the constraint part of G1: G1 discriminates F if 'Y is inconsistent 
with the constraint part of F. 
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4.1 Discriminant predicates 

Due to the fact that C involves distinct variables only, any clause G subsuming 
C discriminates F iff it involves a predicate symbol that does not occur in F, 
termed discriminant predicate. Predicate-based discrimination thereby amounts 
to boolean discrimination {presence/absence of a predicate symbol). More for­
mally, 

Proposition 1. Let Gpred(F) be the set of clauses head(C) t- Pi()., for Pi rang­
ing over the set of discriminant predicate symbols. Then, a definite clause that 
subsumes C discriminates F if! it is subsumed by a clause in Gpred(F). 

Gpred(F) thereby sets an upper bound on the set of definite clauses that subsume 
C and discriminate F. Note this set can be empty: e.g. in the chemistry domain, 
all example molecules are described via the same predicates (atom and bond), 
regardless of their class (poisonous or non poisonous). 

4.2 Discriminant domain constraints 

Let G be the generalization of C obtained by dropping all discriminant predicates. 
With no loss of generality, F can be described2 as 0PPGp, with p being the
constraint part of F. 

Hence, G is inconsistent with F; and due to the fact that C (and hence G) 
involves distinct variables only, any negative substitution on G derived from F 
(Definition 7) is a permutation of variables in G. Let E denote the set of these 
negative substitutions. Note that constraints on G are trivially embedded onto 
constraints on C. 

One is finally interested in the following constraints on C: 
• Constraint 0 which is the constraint part of example E,
•Constraint p which is the constraint part of example F,
• And the set E of negative substitutions derived from F (being reminded

that substitutions are particular cases of constraints). 
Let us first concentrate on domain constraints, and assume in this subsection 

that our constraint language is restricted to domain constraints3. A constraint 
'Y is thus composed of a conjunction of domain constraints (Xi E dom.,(Xi)), for 
Xi ranging over the variables in C. 
It is straightforward to show that the lattice of constraints on C is equivalent 
to the lattice Ceq = 'P(fl1) x 'P(fl2) x . . . , where ni denotes the domain of 
instantiation of Xi, for Xi ranging over the variables of C, and 'P{fli) denotes 
the power set of ni. An equivalent representation of 'Y is given by the vector of 
subsets dom.,(Xi)· 

2 The predicates appearing in F and not appearing in E can be dropped with no loss of 
information: given the hypothesis language, they will not be considered in D(E, F). 

3 This restricted language does not include the substitutions, as it does not allow the 
representation of variable linking. This will be settled in section 4.3. 
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Building discriminant domain constraints is thus amenable to attribute-value 
discrimination: two constraints are inconsistent iff they correspond to non over­
lapping elements in Ceq. 

Proposition 2. Let I be a conjunction of domain constraints (Xi E dom-y(Xi)), 
and let 1' = (Xia E dom-y' (Xia) be a domain constraint. Constraint 1' is incon­
sistent with constraint I iff dom-y(Xi0) and dom-y'(Xi0) are disjoint. 

Let us now characterize the constraints discriminating example F. By defi­
nition, G1 discriminates F iff 1 is inconsistent with pa for all a in E. 

Definition 8. An elementary discriminant constraint with respect to a negative 
substitution a and a variable X, is a domain constraint on X that is entailed by 
() and inconsistent with pa. 
A maximally general elementary discriminant constraint wrt a and X is called 
maximally discriminant. 

In the considered domain constraint language {section 2.4), there exists at 
most one maximally discriminant constraint wrt a negative substitution CT and 
a variable X, noted {XE domu0(X)): 

- if X is a numerical variable, such a maximally discriminant constraint exists 
iff domo(X) et domp(X.CT) are disjoint, in which case domu• (X) is the largest 
interval including domo(X) and excluding domp(X.CT). 

- if X is a hierarchical variable, such a maximally discriminant constraint 
exists iff domo(X) et domp(X.u) are subtrees which are not comparable, in 
which case domu• (X) is the most general subtree that includes domo(X) 
and does not include domp(X.a). 

- if X is a nominal variable, such a maximally discriminant constraint exists 
iff domo(X) et domp(X.CT) do not overlap, in which case domu• (X) is the 
complementary in Ox of domp(X.CT). For the sake of convenience, domain 
constraint (XE domu• (X)) is noted (X fl domp(X.u)). 

If domu• (X) exists, X is said to be CT-discriminant. 
By construction, a domain constraint on X that is entailed by () and dis­

criminates pCT must entail (X E domu• (X)). An upper bound on the domain 
constraints that discriminate pa is then given by the disjunction of constraints 
(X E domu• (X)), for X ranging over the a-discriminant variables in C .  More 
formally, 

Proposition 3. Let var(C) be the set of variables in C, let CT be a substitution in 
E, and let lu be the disjunction of constraints (Xi E domu• (Xi)) for Xi ranging 
over the er-discriminant variables in var(C). Let 'Y be a conjunction of domain 
constraints on variables in C that is entailed by (). Then, 

'Y is inconsistent with per iff 
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Example: Let E and F be as follows: 

E: poisanaus(X) +- atm(X, Y, carbon,T), atm(X, U,carbon, W ),T < 24, W � 25 
F: 0PPpoisanaus(X) +- atm(X, Y, hydrogen, 18), atm(X, U, carbon, W'), W' � 21 

The definite clause C built from E is given below; variables Z and V are nominal, 
with domain of instantiation {carbon, hydrogen, oxygen, ... } . Variables T and 
W are continuous, with domain of instantiation N, (Other variables are discarded 
as they do not convey discriminant information). 

C: poisono us(X) +- atm(X',Y,Z,T) ,atm(X",U, V, W) 

There is no discriminant predicate (G = C); E includes four negative substitu­
tions u1, u2, 0'3 and cr4 which correspond to the four possible mappings of the 
two literals atm in C onto the two literals atm in F. 
Table 3 shows a tabular representation of the constraints 8 and pui, where a case 
of the matrix is a sub domain of the domain of instantiation of the variable. 

llX X'Y z T X"U v w 
8 - - - carbon [O, 24) - - carbon (25,oo) 

pcr1 - - - hydrogen 18 - - carbon [0,21] 
pa2 - - - carbon [O, 21) - - hydrogen 18 
pa3 - - - hydrogen 18 - - hydrogen 18 
pa4 - - - carbon [0,21] - - carbon (0,21] 
Table 3: Tabular representation of domain constraints 

And the (disjunctive) constraint /u1 entailed by 8 and maximally general such 
that it is inconsistent with pa1 is given as (with [W E (21, oo) ]  written [W > 21] 
for the sake of readability): 

"fu1 = [Z f/. {hydrogen}] V [W > 21] 

4.3 Discriminant binary constraints 

We showed that building discriminant binary constraints is amenable to building 
discriminant domain constraints, via introducing auxiliary constrained variables, 
termed relational variables (21]. 

As an example, let us consider binary equality or inequality constraints 
X = Y or X f- Y. One associates to any pair of variables X and Y having 
same domain of instantiation, the relational variable (X=Y), interpreted for any 
substitution a of C as: (X=Y).cr = true if X.a = Y.a, (X=Y).a =false if X.a 
and Y.cr are distinct constants, and (X=Y).cr is not bound otherwise. 

Equality constraint (X = Y) (respectively inequality constraint (X f- Y)) is 
equivalent to domain constraints on relational variable (X=Y) given as ( (X=Y) 
true) (resp. ((X=Y) =false)). 
Binary arithmetic constraint can similarly be built as domain constraints on rela­
tional numerical variables: let (X-Y) be the constrained variable interpreted as 
the difference of numerical variables X and Y ,  the domain constraint ( ( x-Y) E 
[a, b]) is equivalent to the binary constraint on X and Y : (Y +a� X $ Y + b)). 
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In the chosen constraint language, all binary constraints can be expressed as 
domain constraints on such auxiliary variables. Proposition 3 then generalizes 
as :  

Proposition 4. Let var* ( C) be the set of initial and relational variables in C, 
let u be a negative substitution in E, and let 1,,. now denote the disjunction of 
constraints (X Edam,,.. ( X)) for X ranging over the u-discriminant variables in 
var*(C). Let I be a conjunction of domain constraints on variables in v ar*(C) 
that is entailed by fJ. Then, 

'Y is inconsistent with pu iff 

Constraint ':/<T hence is the upper-bound on the set of constraints on C that 
are entailed by fJ and are inconsistent with pa. 

As an example, the tabular representation (Table 3) is extended to binary 
constraints as well: 

ll X X'Y z T X"U v w I IZ=U W-T I 
(J - - - carbon (0, 24) - - carbon (25, oo) f al se (1, 00) 

pu1 - - - hydrogen 18 - - carbon [0,21] f al se [-18,3] 
pa2

- - - carbon (0, 21) - -hydrogen 18 f alse (-3, 18] 
pa3 - - -hydrogen 18 - -hydrogen 18 true 0 
pu4 - - - carbon [O, 21] - - carbon [O, 21} true 0 

Table 4: domain constraints and binary constraints 

And the disjunctive constraint -y,,.4 entailed by fJ and maximally general such 
that it is inconsistent with pa4 is given as: 

-y,,.4 = [W > 21] V (Z I: U] V [W -T > O]

Last, one considers the conjunction of the constraints -y,,. for u ranging in E: 

Proposition 5. Let G be a generalization of C inconsistent with respect to F, 
and let IF be the conjunction of constraints -y,,. for u ranging in E. Then G1 
discriminates F iff 'Y entails 'YF. 

Constraint IF thus defines an upper bound on the constraints discriminating 
F, like Gpred(F) is the upper-bound on the set of definite clauses that gener­
alize C and discriminate F. These are combined in the next section in order to 
characterize all consistent partially complete constrained clauses. 

5 Small induction 

Our goal is here to characterize the Disjunctive Version Space learned from 
positive and negative constrained clauses, and to use this characterization to 
classify further instances of the problem domain. 
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5.1 Characterizing Th(E) 

Let all notations be as in the previous section, and let G'Y be a constrained clause 
in the hypothesis language. By recollecting results in sections 4.1 and 4.3, G'Y 
discriminates F iff either G is subsumed by a clause in Gpred(F) or 'Y entails "IF: 

Proposition 6. Let D(E, F) be the set of constrained clauses that generalize E 
and discriminate F, and let G"f be a constrained clause generalizing E. Then 
G'Y belongs to D(E, F) if and only if 

or ( "/ -<c "/F ) ( 1) 

And the set Th(E) of consistent constrained clauses covering E can be char­
acterized from the set of constrained clauses covering E and discriminating F, for 
F ranging over the counter-examples Fi, . . .  Fn to E (i.e. the training examples 
concluding to the concept opposite to that of E); by construction, 

Th(E) = D(E,F1) A ... A D(E,Fn) 

In other words, the pairs (Gpred(Fi),'YFJ constitute a computational char­
acterization of Th(E): they give means to check whether any given constrained 
clause belongs to Th(E). 

The Disjunctive Version Space finally is constructed by iteratively character­
izing Th(E), for E ranging over the training set. 

However, looking for consistent hypotheses make little sense when dealing 
with real-world, hence noisy, data. One is therefore more likely interested in 
hypotheses admitting a limited number of inconsistencies. Let The(E) denote 
the set of hypotheses covering E and admitting at most e inconsistencies. Then, 
we show that The(E) can be characterized from the pairs (Gpred(.Fi), 'YFJ, with 
no additional complexity [ 19]: a constrained clause G"f covering E belongs to 
The: ( E) iff it satisfies condition (1) above, for all but at most e counter-examples 
Fi to E. 

The advantage of this approach is to delay the choice of the consistency bias, 
from induction to classification, at no additional cost [19): 
Induction constructs once and for all the pairs ( G pred (Fi), "/F,), or a tractable 
approximation of these [22]; 
This allows one to tune the degree of consistency of the hypotheses used during 
classification, at no extra cost4• 

5.2 Classification in Disjunctive Version Space 

One major result of this approach is that the computational characterization 
of the Disjunctive Version Space is sufficient to classify any further instance of 
the problem domain. In other words, the explicit construction of Th(E), for E 
ranging over the training examples, gives no extra prediction power. 

4 The degree of generality of hypotheses can also be tuned at no extra cost; see [19, 22]. 
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The Disjunctive Version Space includes hypotheses concluding to opposite 
target concepts, since positive and negative examples are generalized. And, 
though these hypotheses are consistent with the training examples, they usu­
ally are inconsistent with one another. Classification therefore does not rely on 
standard logic, but rather on a nearest-neighbor like approach. The instance I 
to classify is said to be neighbor of a training example E, if I is generalized by 
a hypothesis in T h(E); I is thereafter classified in the class of the majority of 
its neighbors. 

One shows that I is generalized by a hypothesis in Th(E) iff it is generalized 
by a hypothesis in D(E, F), for every counter-example5 F. And this can be 
checked from the computational characterization of D(E, F): 

Proposition 7. Let I be an instance of the problem domain, formalized as a 
conjunction of constrained atoms. Then I is generalized by the body of a clause 
in D(E, F) iff there exists a generalization G of C and a constraint 'Y such that 
the body of G7 generalizes I, and either G is subsumed by a clause in Gpred(F) 
or 'Y entails IF.

The important distinction compared to Prop 6. is that 'Y is not required to 
be entailed by 0 any more: Prop 7 only requires to consider the substitutions 
between C and the definite part of I. 

5.3 A two-step induction 

We thus propose a two step induction scheme. During the first step, called small 
induction, all pairs of training examples (E, F) satisfying opposite target con­
cepts are considered; and for each such pair, we build the set of discriminant 
definite clauses Gpred(F) and the discriminant constraint [F (conjunction of 
disjunctions). As shown above, this is sufficient to address the classification of 
unseen examples, and characterize the set of consistent partially complete con­
strained clauses. 

During the second step, called exhaustive induction, all such consistent con­
strained clauses are explicitly built, and it is shown in the next section that 
exhaustive induction can be achieved by constraint solving. 

The advantage of this scheme is twofold. First, the burden of explicitly con­
structing the hypotheses can be delegated to constraint solvers, that is, algo­
rithms external to induction and geared for combinatorial search in discrete and 
continuous domains. 

Second, small induction can be viewed as an on-fly, lazy learning, the com­
plexity of which is much smaller than that of exhaustive induction (section 7): 
it constructs theories which are not understandable, but yet operational to clas­
sify examples. One may then get some idea of the accuracy of a theory, before 
undergoing the expensive process of making it explicit. 

5 Or for all except e counter-examples, in case the consistency requirement is relaxed. 
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6 Exhaustive induction 

We present here an algorithm called I CP, for Induct ive Constraint Program­
ming, that constructs the set Th(E) of consistent constrained clauses covering 
E. In the line of Version Spaces [11], we limit ourselves to construct explicitly 
the upper bound of Th(E}, i.e. the set G(E) of maximally general constrained 
clauses in Th(E). 

I C  P proceeds as follows. It first builds the computational characterization 
of Th(E), i.e. the set of clauses Gpred(Fi) and constraint /F, for Fi ranging over 
the counter-examples of E. G(E) is initialized to the empty set and the current 
constrained clause G1 is initialized to the clause head(C) +-. 
Then, Gpred(F;.) and /F; are explored in depth-first, and clause G1 is specialized 
until it discriminates all counter-examples F;.. All consistent constrained clauses 
are obtained by backtracking on the specialization choices. 

Build G(E) 

Init 
For F=F1, ... ,Fn, 

Build Gpred(F) and /F. 
* Prune /F.

G(E) = </J. 
G = head(C) f- . 
'Y =True. 

Main Loop 
For F = Fi, ... , Fn, 

if G is not subsumed by any clause in Gpred(F) 
and 'Y does not entail 'YF• then 

If possible, 
* Specialize G1 to discriminate F

Otherwise, 
Backtrack on the specialization choices 

* If G1 is maximally general in Th(E),
G(E) = G(E) U {G1}. 

Backtrack on the specialization choices. 

Specialize G1 to discriminate F (non deterministic) 

Select a clause Go in Gpred(F). 

Or, 
Do body(G) = body(G) /\body( Go) 

For each negative substitution Uk derived from F 
If 'Y does not entail 'Yuk• 

Select a variable }(j that is Uk-discriminant 
Do 'Y = 'Y /\(Xi E domu;,(Xj)) 
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In this scheme, constraint solving is employed to several tasks (indicated with 
an asterisk): 

It is used to prune 7p: a partial order noted <E can be defined on the 
negative substitutions with respect to the positive substitution [20]. Minimal 
substitutions with respect to this partial order can be viewed as "near-misses": 
all substitutions but the minimal ones, can soundly be pruned. This pruning was 
explicitly dealt with in previous works [18, 20]. It turns out to be a special case 
of constraint entailment (ui <Eu; is equivalent to 'Yu, --<c 'Yu;) and this pruning 
can therefore be achieved by a constraint solver. 

It chiefly allows for building G7, through selecting specialization choices, 
checking whether the current solution G7 is subsumed by a clause in Gpred(Fi), 
and backtracking. 

Last, it allows for testing whether G7 is maximally general6 in Th(E). 

7 Complexity 

Assume that the domain of instantiation of any variable can be explored with 
a bounded cost. Then, the complexity of building the maximally discriminant 
constraint "lu that discriminates a negative substitution u, is linear in the number 
of initial and relational variables in C. In our constraint language, this complexity 
is quadratic in the number X of variables in C. 

H £ denotes an upper bound on the number of negative substitutions de­
rived from a counter-example (the size of E), the complexity of building 'YF is 
then O(X2 x £). The complexity of building Gpred(F) (section 4.1) is negligible 
compared to that of building "IF (it is linear in the number of predicate symbols 
in E, which is upper-bounded by X). 

Finally the computational characterization of D(E, F) has complexity O(X2 x 
£). 

Characterizing the Disjunctive Version Space Th requires all pairs D(Ei, F;) 
to be characterized; if N denotes the number of training examples, the compu­
tational characterization of Th has complexity O(X2 x £ x N2). 

The complexity of classifying an unseen example I from Th (proposition 7) is 
the size of the implicit characterization of Th times the number of substitutions 
derived from I, upper bounded by £; the complexity of classification hence is 
O(X2 x £2 x N2). 

The complexity of the intentional characterization of Th, via algorithm I CP, 
is in O(N x (x2x.cxN) ). Needless to say, the learning and classifying processes 
based on the computational characterization of Th are much more affordable 
than those based on the explicit characterization of Th. 

The typical complexity of first order logic appears through factor £: if M is 
an upper bound on the number of literals based on a same predicate symbol that 

6 The fact that G1 is a maximally general element ofTh(E) can be expressed via con­
sidering new constraint programs, involving the assertion of all but one elementary 
constraints satisfied by /, and the negation of the remaining one. G1 is maximally 
general if such new constraint programs are satisfiable. 
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occur in an example, and Pis the number of predicate symbols, .C is in MMxP.
For instance, in the mutagenesis problem [7], examples are molecules involving 
up to 40 atoms; .C is then 4040• 

We therefore used a specifically devised heuristic to overcome this limitation. 
The exhaustive exploration of the set E of negative substitutions, was replaced 
by a stochastic exploration: we limit ourselves to consider a limited number TJ of 
samples in E, extracted by a stochastic sampling mechanism [22]. An approxima­
tion of D(E, F) was therefore constructed in polynomial time (O(X2 x T/ x N2); 
to give an order of idea, the number T/ of samples considered in E was limited 
to 300 (to be compared to 4040). This approach led to outstanding experimental 
results, compared to the state of the art on the mutagenesis problem [23]. 

8 Discussion and Perspectives 

This section first discusses our choice of a maximally discriminant induction, then 
situates this work with respect to some previous works devoted to generalization 
of constraints (16, 12] or reformulation of !LP problems [8, 26, 27]. 

8.1 Generalization Choices 

This work first extends the frame of induction to constraint logic programming; 
see [22] for an experimental demonstration of the potentialities of this language. 
Note that this frame does not allow to learn clauses that could not be learned 
by state-of-art learners, supplied with an ad hoc knowledge. Rather, it allows to 
learn simple numerical relations without requirement for additional knowledge. 

A second aspect of this work concerns the tractable characterization of the 
Disjunctive Version Space of consistent partially complete hypotheses. In op­
position, as mentioned earlier, the theories built by either PROGOL or FOIL 
include only a few elements in this set. 

Like PROGOL, ICP handles non ground examples, in opposition to FOIL 
[17]; but domain theory {that cannot be put as examples) can be considered only 
through saturation of the examples: ICP cannot use the domain knowledge in 
order to guide the exploration of the search space, as ML-Smart [1] or PROGOL 
do. 

8.2 Generalization from constraints 

As far as we know, the generalization from constraints has only been addressed 
so far by Page and Frisch [16] and Mizoguchi and Ohwada [12]. 

In [16], the goal is to generalize constrained atoms. Constrained atoms are 
handled as definite clauses whose antecedents express the constraints. Con­
strained generalizations of two atoms are built from the sorted generalizations 
defined on their arguments. In both [16] and our approach, generalization ulti­
mately proceeds by building constraints. But different issues are addressed. In 
[16], the main difficulty arises from the possibly multiple generalizations of two 
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terms, which does not occur in our restricted language (section 4.2) .  In oppo­
sition, the main difficulty here comes from the multiple structural matchings 
among examples (section 7) while such a matching uniquely follows from the 
unique atom considered in [16]. 

Another approach of the generalization of constrained clauses is presented 
by Mizoguchi and Ohwada [12]. This work is nicely motivated by geometrical 
applications (avoiding the collision between objects and obstacles). The region 
of safe moves of an object can be 'naturally' described through a set of linear 
constraints; the goal consists in automatically acquiring such constraints from 
examples. 
[12] first extend the definition of some typical induction operators (minimal gen­
eralization, absorption, lgg) to constrained clauses. Then, an ad hoc domain 
theory being given, examples are described by constrained atoms which are gen­
eralized through absorption and lgg, in the line of [15]. 

In what regards the roles respectively devoted to ILP and CLP, the essential 
differences can be summarized as follows: the induction of constrained clauses is 
done (a) by incorporating the structure of constraints into ILP, in (16]; (b) by 
extending the inverse resolution approach to CLP in [12]; and by interleaving 
ILP and CLP in our approach. 

8.3 Reformulation 

A strong motivation for reformulating ILP problems into simpler problems, e.g. 
in propositional form, is that propositional learners are good at dealing with 
numbers [8, 2, 26]. LINUS [8] achieves such transformation under several as­
sumptions, which altogether ensure that one first-order example is transformed 
into one attribute-value example; this transformation thereby does not address 
the case of multiple structural matchings among examples. LINUS nicely uses 
the theory of the domain in order to introduce new variables and enrich the 
attribute-value representation of the examples. 

Another approach is that of Zucker and Ganascia [26, 27], that focuses on 
restricting the set of predicates and substitutions relevant to a given level of in­
duction. Simply put, moriological reformulations rely on a hierarchical descrip­
tion of the problem domain, where a morion of a given level can be decomposed 
into one or several morions of a lower level (e.g. the car morion involves the 
description of four tire morions). One may then restrict oneself to consider pat­
tern matchings among examples, that preserve the structure (front tires, back 
tires). Such restrictions allow to drastically decrease the complexity of induction 
(which could benefit to ICP too); but the machine learning of such restrictions 
is still an open problem [26]. 

Note that [8] and [26] both map an induction problem into another simpler 
induction problem. In opposition, the mapping presented here enables a shift of 
paradigm: an induction problem is transformed into a constraint program, which 
can in turn be solved by an external tool. 
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8.4 Perspectives 

This work opens several perspectives of research: 
New variables (as in [81} and new types of constraints could be considered. 

Ideally, language bias would be expressed via additional constraints (for instance, 
requiring the solution clauses to be connected could be expressed via additional 
constraints). 

Also, the user could supply some optimality function in order to guide the 
selection of the admissible solutions. Selective discriminant induction could then 
be reformulated as a constrained optimization problem (finding the optimum of 
the objective function still satisfying the constraints). 

But many promising tracks are opened by current experimental validations 
of this scheme [22]. 
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