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Determining the instant for support activation in plane strain tunnel calculations is an essential 
step, as for Convergence Confinement Method. Recent researches on that subject lead to an 
original development of that Method which allows for an accurate determination of that instant. 
The proposed methodology results from "experimental numerical laws" learned from comparison 
between plane strain approach and direct three dimensional one. For this purpose, a reference three 
dimensional geometry is considered: a constant rate advancing circular tunnel in anisotropic 
geostatic stress state, with one principal direction parallel to tunnel axis. The isotropic state of 
stress is first considered. It is shown that two fundamental principles allow to treat completely the 
plane strain approach. It is then shown how these principles can be extended to the anisotropic 
stress state, using a "mean convergence curve concept Finally, it is proposed to apply such a 
method to three dimensional tunnels in steady state advancement. With such improvements, the 
Convergence Confinement Method appears as a self-contained plane strain approach to the three 
dimensional advancing tunnel problem, without much additional intricacy to classical approaches. 

1 Introduction 

Support is fundamental to the stability of deep tunnels. The three dimensional nature of 
this problem involves an intricate interplay between the construction phases, rock mass 
aQd support behaviour. The framework of continuum mechanics is considered herein. 
Although three dimensional calculation has achieved constant progress in tunnel 
modelling, it remains heavy to carry out, and approximate plane strain analyses are still 
preferred and currently used in practice. 

Among other methods, Convergence Confinement (CV-CF) is the most popular, 
using a variable fictitious stress state at the tunnel wall in order to reproduce the effects 
of face advance on convergence of a tunnel section .. However, up to now, efficiency of 
these approaches have been seriously impeded by the drawback of undetermined instant 
for support activation, an essential parameter which controls rock mass-support 
interaction. 

This paper presents recent researches on this subject which allow to eliminate now 
satisfactorily such undetermination, without much modifying the nature of calculations. 
The method presented herein is intended to be self contained, independent of the 
particular behaviour of the rock mass and the support system. 

a Now in GETEC, 69 rue d'Aguesseau 92771 Boulogne Billancourt. France. 
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2 Defining a reference tunnel problem 

The method for determining the support activation instant is based on general rules 
learned from comparison between the direct three-dimensional problem and the 
corresponding plane strain approach. To demonstrate this, let us consider a simplified 
"reference tunnel problem", which contains the main ingredients of a three dimensional 
tunnel problem: a circular tunnel of unit radius (Figure 1), with anisotropic geostatic 
stress state, one principal stress direction being parallel to tunnel axis. This tunnel and 
its support placement are advancing at constant strain rate. Remark that steady state 
hypothesis is understood in CV-CF plane strain approach. 

1' 1' 
p v 

1' 1' 1' 1' 
p v 

Figure 1: Reference tunnel problem 

As intrinsic rules are expected to be found out, details of constitutive laws are less 
important, so a simple elastoplastic incompressible Mises model has been mainly used: 

.JJ;-C =O

This problem is defined by the following parameters 

Stress anisotropy factor ........................ K0 = Ph /Pv 
Mean geostatic pressure P = ( cr h + cr v )/2: 
Loading factor ...................................... N, = P/C 
Support laying distance to the face .. .. . . D 0 
Relative support stiffness ..................... K* = K0/Km 
Km is the elastic ground stiffness, and Kc support normal stiffness
Let us also define Kb the support bending stiffness 

(1) 
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For direct calculations (excavation, support placement), specific softwares have been 
built up, taking advantage of the peculiar hypotheses of the reference problem. There 
results in a versatile Finite Element programs, based on the steady state algorithm 
(Nguyen Q.S & al. 8, Maitournam 12, Corbetta 4, Guo 3), which allows to treat the steady
state problem on a fixed geometry, instead of using a classical sequential procedure. In 
case of anisotropic stress field, Fourier's development of solutions in the angular 
direction e has been used, along with the steady state algorithm (Braham et al. 13, 
Maitournam et al.11), which replaces the three dimensional problem by a succession of 
two dimensional problems. 

3 Statement of the problem 

The CV-CF Method is illustrated on the generic case of a circular tunnel in rotational 
symmetry K0 =1 (Figure 2), with a fictitious pressure Pi applied at the wall, or
conversely, a deconfining ratio A, by relationship Pi=l-/., (Pi is normalized by P). 

Pi 

�) 
� ffi CD

A=() O<A.<1 A=! 
Pi=P Pi=(1-A.)P Pi=O 0 lh? 1 Kp 

Vi 

Figure 2: Fictitious pressure concept in plane strain approach and CV-CF diagram 

Equilibrium of the supported tunnel appears on the non dimensional diagram Pi vs Ui 
(convergence normalised by free elastic one) as intersection between rock mass 
convergence curve, and support confinement reaction curve. This latter curve is easily 
obtained, but its abscissa at the origin, U0  (or, conversely, the deconfining ratio A,0), is 
undetermined. Indeed, the actual time for activation is more likely represented by 
distance to tunnel face D0 for support placement, so the basic problem is to find out the 
relationship between this parameter D 0 and U 0• 
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This CV-CF method is currently extended to three dimensional cases, using plane 
strain FEM analyses, but of course, the undetermination of the support activation instant 
still remains. 

Up to now, no systematic method allowed to resolve such undetermination (AFTES 
1). Different studies on this subject, initiated since years 1990's (Corbetta 4, Bernaud 6, 
Guo 3), have allowed now to eliminate satisfactorily this drawback, giving practically the 
same results as by direct three dimensional approach. 

4 Circular symmetric case ( K0 = 1) 

The question of Figure 2 is equivalent to the following set of equations :

{Pi= M(UJ ground 

Pi = K *c U i - U 0 ) sup port
Uo=? 

(2) 

Which give support pressure P;. = P � and final convergence U; = U � of tunnel, 
provided a supplementary equation for U 0 is given in terms of D 0, and eventually, of 
U i .. Indeed, the problem could be resolved if the relationship U; vs distance to the face 
D could be determined (Figure 3). 

u u 
I I 

K
p 

?• - - - - - -- lfx: . . . -----""" 
- .Uo. - - -

0 Do 
Figure 3: Scheme for detennining U 0 

oc D 
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4.1 Self Similarity Principle and approximate solution 

An approximate determination of U 0 refers to the free convergence curve of the tunnel, 
u; (D), instead of Ui(D) curve so that:

(3) 
Historically, this solution was effectively proposed for the elastic case. An analytical 
expression can be given for the free elastic convergence u; (D) = F(D), for instance
(Panet 2) : 

F(D) =l-0,71( 0•84 )1
0,84 + DI R 

remark that A0= U 0 only for linear elasticity. 

P. l 

K
p 

u. q l - - 1),-

- - - -1
free elastic l°nvergence Ui = F(D) 

0 0 
Figure 4: Schematic diagram of self similarity principle 

D 

(4) 

In elastoplasticity, a Principle, called the Self Similarity Principle, based on numerical 
data evidence for various elastoplatic behaviours (Corbetta 4, Corbetta & Nguyen-Minh 
5), allows us to derive the free elastoplastic convergence curve u; (D) from the
normalised elastic one Ui=F(D), by self similarity from the origin (Figure 4). The 
equation of this curve expresses in terms of elastic function F(D) and the self similarity 
ratio KP obtained from a CV-CF calculation: 

(5 ) 
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Thus, by a quite procedure to the elastic case, we can easily obtain an approximate value 
for U 0, much more convenient than tables for A.0 proposed by AFTES 1. 

4.2 Interaction Principle 

However, the approximation based on the free convergence curve u; (D) may lead to
important errors up to 40% on support pressure (Bernaud 6). This can be termed as the
face support interaction effect, illustrated on Figure 5 .  

Ui 

0 Do 

Free tunnel 

D 

Figure 5: Face support interaction effect 

In order to analyse that effect, extensive parametric analyses were carried out on the 
direct numerical model, including different stability numbers, relative support stiffness
K*, and support distances D0 (Figure 6). 

7 
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Figure 6: Numerical data for U 0 vs U � (Mises model) 

12 

When plotted in an adimensional diagram U� vs u:, by dividing U 0 and U � by their
respective free convergence values : 
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u· = � . u� = 
u� (6) 0 ur , -o KP 

the results present a definite trend, called the Interaction Principle expressed as follows : 

u� = <1>cu:) 
<I> ( x )  = 0. 55  + 0.45x - 0.42(1- x )3 (7) 

Where 0,23 s <l>(x) s I since 0 S x s I. 
This curve does not depend on any parameters of the model, e.g. support stiffness K*, 
distance for setting support D0, stability number Ns. We shall admit its universality, i.e. ,
its validity for any other rock mass constitutive law. This has been effectively verified 
by internal and external validations , using other constitutive laws or alternative theories;
moreover, interaction principle was proved to work in viscoplasticity (Guo 3). 

0,8 

0,6 

0,4 

0.2 

0 

4.3 Conclusion 

0 

u· 0 

0 
Interaction Principle 

0,2 0,4 0.6 0.8 

Figure 7: Interaction Principle U� = <l>(U:) 

The missing equation for U 0 in system (2) is finally obtained :

u· 

- approximately, with U0:: Ui (D0), using Self Similarity Principle (eq (5 )) ,

- with taking account of Interaction Principle (6), combined with the Self Similarity
Principle (5 ), which gives Ui (D0) .
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5 Examples 

5. I Elastic tunnel 

The final convergence of a supported elastic tunnel writes as : 

U.=1+K·u0
' l+ K* (8) 

Remark 0::; U; ::; 1; two different expressions for U 0 can be given, depending on 
neglecting or not the support interaction effect (eq. (5) , (6) and (7) for U0). There
results a final tunnel closure U; = U� or U; = U�, as illustrated graphically, in a (Y, 
UJ diagram, by setting Y equal to either member of eq. (8) (Figure 8) . 

If K* were set to infinity ,  the second member of eq (8) ,  taking account of
interaction, is Y=F(D0 )<l>(U �) , which is function <l>(U �) reduced by affinity F(D0 ) . 

Y= 

Y= 

o u� u� 1 u. I 

Figure 8: Graphical illustration of the two kinds of solution for elastic tunnel 
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5.2 Elastoplastic tunnel (Tresca model, cohesion C)

The elastoplastic convergence curve writes : 

1 P =1-A=l-- ( l+Ln(NsU ) ' Ns ' 
(9) 

Elastoplastic behaviour for the supported tunnel implies conditions on U i and U 0: 

where Ns = P/C is the stability number. 
Taking into account support reaction gives : 

l+K*U0 1 
---"'"- > -

l+K* - Ns 

K*Ui +-1 (l+Ln(NsUJ 
Ns 

l+K* 

(10) 

(11) 

which is the analogous of equation (8). Let us again represent eq (11) in (Ui,Y) 
diagram, with Y=Yl (first member) and Y=Y2 (second member) (Figure 9). 
Keeping in mind inequality (10) and F(D0IKP)<1, this diagram clearly shows that a
unique solution exists for U� and U �, as well as their difference. 

y Tresca model 

uoo u.:., K 
p 

u: I 

Figure 9: Graphical illustration of the two kinds of solution for elastoplastic tunnel 
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6 Circular tunnel in anisotropic geostatic stress state (K0 -:t l)  

When rotational symmetry is lost, the fictitious pressure concept can be naturally 
extended to a fictitious stress, applied at the wall of the gallery. It is currently admitted 
that this fictitious stress be proportional to the initial stress state, via the deconfining 
ratio A,: 

(12) 

Note that stresses and pressures are now normalised to the mean geostatic pressure P, 
and convergences and displacements to the elastic convergence of the same tunnel under
isotropic geostatic pressure P. 

6.1 Validity of fictitious stress concept and deconfining ratio 

This concept has however to be verified, and, effectively, we checked that (Guo 3, 
Nguyen Minh and Guo 10) : 
- For a free tunnel, a l.(D) relationship can be exhibited, which relates the deformed 
section in 2D approach to a tunnel section at a given distance D in the direct 3D 
calculation. Remind, according to what has been discussed here above, relation l.(D) is 
not sufficient to determine the support activation instant. 
- There exists A= 1.0, for activating support, allowing to find back the final deformed
section of the direct 3D approach. 

6.2 Mean convergence curve concept 

Let us define a mean fictitous pressure Pi applied at the wall of tunnel, as the mean flux
of the fictitious applied stress, and the mean convergence U i of the tunnel as the mean 
flux of displacement at the wall (e.g. half surface variation of section). 
It is interesting to note, for an elastic tunnel, that the mean convergence curve U i, Pi : 

Pi=(l-1.) 
U i = A, (in elasticity )

(13) 
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is independent on the stress anisotropy ratio K0, and is identical to that of the tunnel 
under isotropic geostatic pressure P. This shows that defining mean values according to 
(13) is adequate to express an intrinsic behaviour of the elastic tunnel under anisotropic
stress state. This is no more true in elastoplasticity: the U; , P; curve then characterises
the intrinsic influence of the anisotropic stress ratio K0 (Figure 10). 

2,5 u 

2 

1-"-

0 0.2 0.4 0.6 0.8 

Figure 10: Effect of stress anisotropy on mean convergence curve in elastoplasticity 

The "mean convergence curve" concept is all the more interesting , that the bending 
support stiffness has a negligible influence on the deformation of a tunnel section. This 
can be understood, since the ratio of normal stiffness to bending stiffness is 

� = ± (!_)2 >> 1 ( e, sup port thickness).
Kb 3 e 
Tunnel closure appears thus to be controlled uniquely by the normal support stiffness. 

6.3 Method for determiningA0 

The interesting properties of the mean convergence curves allow us to expect 
determining Ao by postulating that Interaction Principle still works on it for the
anisotropic loading case. However , it must be checked that Self Similarity is still valid, 
which is actually the case as shown on Figure 11 .

Finally , determining Ao for the anisotropic stress state is reduced to that of a 
rotational symmetry problem with a "mean rock mass convergence" curve. Let us 
remind again , that , except in elasticity , this "mean" curve is not the convergence of the 
circular tunnel submitted to mean the geostatic stress P, but is sentitive to K0. 
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The solution thus obtained in CV-CF method has been proved to agree quite well
with the direct tunnel calculation (Guo 3), which validates at the same time the
applicability of Interaction Principle to the non isotropic geostatic stress state. 

4 
Ns= 2.9 Ko= 0. 67 

Ns= 1.9 Ko= 0.5 

Ns= 2.1 Ko= 0.67 

D ) ������������������ 
0 5 10 15 20 

Figure 11: Self Similarity for free tunnel in anisotropic geostatic stresses 

7 Conclusion 

For plain strain approaches, it has been proved, on a reference three dimensional 
geometry, that two universal Principles take into account satisfactorily the three 
dimensional influence of the front face: 
- The Self Similarity Principle describes the free convergence behind the face 
- The Interaction Principle describes the relationship between convergence of two 
particular points of the supported tunnel, one on the leading edge of the support, and the 
other far behind the face. 

In the general case, when geostatic stress is anisotropic, these Principles have to be 
associated with the "mean free convergence" curve to determine accurately the support 
activation instant. 

It is proposed to extend this "mean convergence" concept to analyses of more 
general tunnel geometries, rock mass structure and rock mass anisotropy, provided the 
"steady state" conditions prevail for the tunnel under study. This results in a new plane 
strain approach, which appears as a self-contained CV-CF Method, for treating three 
dimensional deep tunnel problems, by using practically the same classical software 
procedures with a minimum added intricacy. 

Naturally, if the problem is too far from the reference problem, it may be necessary 
to treat it by a direct approach, namely, using the steady state method which is well 
adapted. It may then be expected that the methodology presented herein be extended, 
provided some modification to the specific cases encountered. 
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Nomenclature 

D, D0 

p 
P; 
'A 
ui 
Uo,Ub 
U�,U� 

distance to the face of a unit radius tunnel, and distance to tunnel face for support laying. 

mean geostatic stress (isotropic geostatic stress) 

fictitious pressure at the tunnel wall 

deconfining ratio 

radial displacement at the tunnel wall 

convergence when laying the support and convergence of the free tunnel at distance D 0 
stabilised convergence of supported tunnel and stabilised convergence of free tunnel 

(J v, (J h = K0CT v vertical and horizontal principal geostatic stresses (anisotropic geostatic stress state) 

K0 ratio of vertical horizontal principal initial stress 

mean geostatic stress 

E, V elastic parameters of the rock mass 

Kn, Kh normal and bending support stiffness 

K: = Kn I Km normal relative support stiffness where Km = EI (I+ V) is rock mass stiffness 
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