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ON THE IDENTIFICATION OF ELASTIC MODULI IN PLATES 

ABSTRACT 

A. CONSTANTINESCU

Laboratoire de Mecanique des Solides, CNRS - Ecole Polytechnique 
91228 Palaiseau Cedex, France 

This paper addresses an identification problem for a thin linear elastic plate under the Love
Kirchhoff plate hypothesis. The inhomogeneous bending rigidities and the underlying elastic 

moduli of the material are identified from over specified displacement-force measurement data. 

The data represents a partial knowledge of the Dirichlet-to-Neumann data map. From a numerical 

point of view the problem is presented as a constrained minimization problem for the error on 

constitutive law over kinematically and statically admissible fields. A numerical reconstruction 
procedure is presented and illustrated on some examples for isotropic plates. 
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INTRODUCTION 

Two important problems related to composites materials are: 

• identification of their mechanical properties

• identification of defects and damage

These problems are complex as anisotropy and inhomogeneity are current characteristics of these 
materials and traditional direct measuring techniques cannot be always employed. 

A characteristic static test for the identification of elastic moduli can be described in the 

following way: 

Elastic moduli of a fixed plate are to be identified from displacements and forces measured 

simultaneously on a certain number of interior and boundary points (for a review see [6]). 

This type of test has traditionally been used in order to identify a homogeneous plate [4, 5, 6]. 

Changing the distributions of applied forces gives rise to a series of deflection-force measure

ments, representing a partial knowledge of the Dirichlet-to-Neumann data map characterizing 

the boundary response of a body. This map gives generally the correspondence between dis
placement, the Dirichlet boundary condition, and forces the Neumann boundary conditions. A 
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series of mathematical results [13] showed that the knowledge of the Dirichlet-to-Neumann data
map permits the identification of the nonhomogenous distribution of elastic moduli. Therefore
one can expect to identify in a similar way for elastic plates a nonhomogenous distribution of
elastic moduli from a series of boundary measurements.

The purpose of this paper is to place this identification problem in the classical framework
of elastic impedance tomography and present a possible solution using the minimization of the
error on constitutive law [2].

The first introductory part of the paper presents the mathematical inverse problem and a short
discussion of the uniqueness of the identification problem in the anisotropic case under the static
test.

The second part of the paper presents a numerical reconstruction procedure based on the
minimization of the error on the constitutive law. This error functional can be expressed for
general elastic bodies under the following form:

(1) 

where C, er, t, denote the tensor field of elastic moduli, of stresses and respectively of strains.
In order to apply this formula to anisotropic plates a simple transformation will be made using
the plate kinematics hypothesis and the representation of the elasticity tensor in the base of
eigenelastic moduli represented by the eigenvalues and eigenvectors of the elasticity tensor.

The third part of the paper presents a series of examples using simulated measurements ob
tained by direct computations and addition of white noise. The identification corresponds to
composite plates having different kinds of material symmetry.

THE IDENTIFICATION PROBLEM
Let us consider a thin elastic plate in the classical framework of the Love-Kirchhoff plate

theory occupying in the reference configuration a regular domain n with boundary an. n and t
will denote the normal and tangent unit vector on the an.

Let w, k , M stand respectively for the deflection field of the plate, the second-order tensor
of generalized strain, corresponding to curvature, and the the second-order tensor of generalized
stress, corresponding to bending moments. Considering a stress-free initial state and no body
forces, the governing equations on n are:

k='v'vw M=Dk divdivM = 0 (2) 

where D is the forth rank tensor of the bending rigidities, related to the Hooke elasticity tensor
in the classical way. D is positive definite and for which the classical symetry relations:

a, (3, 'Y, </> = 1, 2 (3)
Dis supposed to be inhomgenous, i.e. D = D(x), x E n unless specified otherwise.

The above equations and the prescription of two of the following quantities on the boundary:
• deflection: w = </> 

• normal derivative of the deflection: :: = 1/J
• moment: nMn = 1>
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• forces: ! (nMt) + (divM) n = w

describes completely the classical direct problem for elastical plates. For this problem uniqueness 
of the solution as well as continious dependence of the boundary values and elastic moduli are 
assured. 

The mathematical inverse problem for plates (see [8, 9]), supposes that the tensor of the 
bending rigidities D is not known and that it has to be recovered from the knowledge of the 
Dirichlet-to-Neumann data map: 

(4) 

This idealized problem of non-destructive testing and its electrical analogue have extensively 
been discussed in the mathematical literature. One of the important addressed questions is 
uniqueness, stated in the context of plates as follows: If two two plates having bending rigidi
ties D and D' give the same response to measurements, are necessary D and D' equal?. This 
problem is more difficult than the global elastic one as explained in [9]. 

For the isotropic elastic plates a uniqueness result for the linearized problem has been given 
by Ikehata [7]. He has showed that the Young modulus and the Poisson ratio can be identified 
from the Dirichlet-to-Neumann data map if their boundary values and their derivatives are known 
and if they are close enough to a constant. 

For anisotropic elastic plates general uniqueness can not be expected as in the case of three 
dimensional elasticity [1], as explained by Ikehata in [9]. The uniqueness of the linearized prob
lem is related to two classes of homogeneous elasticity tensors which coincide with the ones 
defined by Lehnitskii [ 1 O] for the study of the general solution of the plate equation. The global 
uniqueness questions remains to our knowledge still an open problem. 

From an engineering point of view, one can remark that problems are stated in a slightly 
different manner. One has to recover the bending rigidities D from a series of simultaneous 
displacement and force measurements and generally a series of additional information is given. 
In a certain number of cases one can accept that bending rigidities are homogeneous or deflection 
can be measured on a portion of the surface of the plate. A series of experiments and and different 
methods for determining homogeneous bending rigidities have already been described in a series 
of papers [4, 5, 6]. However, as it will be shown in the sequel, these information are sufficient 
under a certain number of assumptions to obtain some informations about a inhomogeneous 
distribution of bending rigidities. 

THE RECONSTRUCTION METHOD 

The reconstruction procedure presented here is based on a variational reconstruction method 
of the minimization of the error on the constitutive law. This technique has already been applied 
in the case of electric impedance tomography [11] and the 2D elasticity identification prob
lem [2]. 

The measured data will be represented by a series of simultaneous measured boundary fields 
{ </>;,'¢;;,<I>;, '11;};=1,N and eventually the corresponding series of measured deflections and con
centrated forces { v;, f;};=I,N on a certain number of interior points. 

Considering the constitutive equation apart, it is natural to form the space of kinematically 
and statically admissible fields, KA(</>, '¢;, v) and respectively SA( <I>, w, J). This permits to
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decouple the general laws of dynamics and kinematics from the general problem and to state the 
inverse problem as a constrained minimization problem: 

Find the distribution of bending rigidities D and deflections wi E KA(</>i, "Pi, vi) (i = 1, N)
and the bending moments M; E SA( <P, W, J) ( i = 1, N) minimizing the error on the constitutive
law(ECL): 

(5) 

This form of the ECL can be changed by successive integration by parts and usage of equi
librium equations and boundary conditions to the following expression: 

L 1 MiD-1M; + k;Dkidv 
i=l,N !1 

2 . L kn </><P + 'lj;W ds - 2 . L v;f;
=lft =lft 

As the last two terms are the known measurements, it follows that the only part of the ECL 
playing a role in the minimization procedure is: 

(6) 

The fact that J represents the sum of a generalized stress (moment) and strain (curvature) energy 
conducts naturally to the following minimization algorithm: 

1. with given D minimize Jover KA(</>, 'lj;, v) and SA( <P, W, f)

This step corresponds to solving a series of classical boundary value problems for plates.
2. with given k; and M; ( i = 1, N) minimize J over D

In special cases of elastic anisotropies it has been shown [2], using the concept of eigenelastic 
moduli, that the last step of the minimization process can be reduced, as in the case of isotropic 
electricity, to a straightforward minimization. Let us denote, using the same technique, A Ul, 
j = 1, 3, the projections of a second rank tensor A on the basis of eigentensors corresponding 
to the tensor of bending rigidities D. Thus the constitutive equations can be expressed in 3 
uncoupled relations: 

j = 1,3 (7) 

and the partial minimization of J with respect to d(i) has the following expression: 

j = 1,3 (8) 

for given k; and M;. 

NUMERICAL RESULTS 
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Figure 1: The tested plate and the positions of the applied forces in different experiments 

The numerical results present the identification of an inclusion in case of an isotropic elas
tic plate. The tensor of bending rigidities has in this case the following form in the Cartesian 
coordinate system: 

(a + b
M= a 

0 

a

a+b 
0 

where a(x) and b(x) are related to the Young modulus E and the Poisson coefficient v by:

h3 Ev a=---
12 1 - v2 

b = h3 E(I - v)
12 1 - v2 

In this case the eigenelastic constants are defined as follows: 

(9) 

(10) 

(11) 

A straightforward calculation using the corresponding eigenelastic tensors gives the optimal 
eigenelastic moduli in the minimization of J: 

2 2 (M11 + M22)
2 

d(ll = (2a + b) = (k k )2 11 + 22 
d2 4b2 Mf2

(2)
= 

=v12 

and defines therefore completely the minimization algorithm. 
The plate with the loading configuration is presented schematically in fig. I. In a first step 

displacement-force measurements were generated by direct elastic computations, correspond
ing to a concentrated forces applied on 9 different locations. The measured displacement data 
consists of the deflection w of the point were the force has been applied and of the deflection 
distribution on the boundary of the plate. In some cases the normal derivative of the deflection 
!: has also been considered as measured, this additional information has not changed drastically 
the obtained results. In a second step the elastic moduli have been reconstructed (fig. 2-3) using 
the simulated measurements and the algorithm presented in the preceding section. 

All computations have been programmed using gibiane, a object oriented language spe
cialized for finite element computations (FEM code Castem 2000), on a HP9000 workstation. 
The domain, 1 unit x 1 unit, was divided in 2 x 20 x 20 triangular elements of the DKT (Di
crete Kirchhoff Triangle) type. The 9 direct computations took a couple of seconds and the 
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inversion took about 1 minute for 1 iteration, i.e. 2 x 9 direct computations plus the internal 
calculations of the eigenelatic moduli. 

The primary focus of these reconstructions was to asses the differences in the identification 
of the young modulus using different eigenelastic moduli as the identification parameter. 

An initial number of test has been performed to test test the robustness of the algorithm for 
a homogeneous distribution of the young modulus. The real value has general been recovered 
after 5 iterations from starting values ranges up to 2 times the real value. This permits to expect 
robust behaviour of the functional in applications as the one presented by Grediac [4, 5, 6]. 

A series of test have been done in order to identify different distributions of nonhomogenous 
young moduli corresponding to shape as presented in fig.2-3. The inclusion have been generally 
localized even if the exact shape was difficult to attain. It is important to remark that the local
ization property was dependend on the eigenelastic moduli used for the identification, even if the 
same Young modulus had to be be reconstructed. In a ceratin number of cases (see for exam
ple fig. 3) a certain interference between the boundary conditions and the form of the inclusion 
occured. 

Comparing these results with previous one obtained in 2D elasticity [2] one can remark that 
the reconstruction in the case of plates was less precise. This could be partialy explained by 
the different number of experiments used in the inversion (9 versus 40 or 96). However the 
minimisation of the error functional gave the same huge descent in the first steps before attending 
an almost flat valley, where a degradation of the reconstruction can be expected. 

The ring-shaped inclusion was reconstructed very badly (fig. 4). The identification presented 
the similar problems as in 2D elasticity. It is important to remark that the concentrated forces 
were all applied on the ring. It is therefore possible that a more precise image could be obtained 
from a larger number of measurement points. 

The same reconstructions, done using a slightly different error functional: 
I(D, { wi};=1,N, {Mi}i=l,N) = L J 1n-112Mi - D112kddv (12) i=l,N n 

presented the same overall tendecies. This is to be expected as the two normal are equivalent 
from a mathematical point view. However no apriori judgement can be done on the numeri
cal performance of the norms. A complete report of the efficiency of this method in different 
cases and using appriori information on the shape of the inclusion will be presented in a further 
publication. 

CONCLUSION 

This paper presented a numerical reconstruction method for nonhomogenous elasticity ten
sors in thin elastic plates. It has been shown that the minimization of the error on the consti
tutive law can also be applied in the case of plates and a splitting of the error functional using 
eigenelastic tensors has been applied. Identifying the same parameter from different parts of 
the error functional showed the importance of the energy distribution in different components 
of the solution during the reconstruction process. This shows also the importance of the experi
mental configuration, i.e. boundary conditions, location of applied forces, in this indentification 
problem. 
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Figure 2: Real and reconstructed values of the young modulus using the d(!) = 2a+b = �:: !;;!";2

(left column) and the d(2l = 2b = M
k 

12 (right column) eigenelastic moduli 
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Figure 3: Real and reconstructed values of the young modulus using the du) = 2a+b = "£::!f.�2 

(left column) and the d(3) = 2b = Mn - M22 (right column) eigenelastic moduli
k11 - k22 
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Figure 4: Real and reconstructed values of the young modulus using the d(l) = 2a+b = �;;!�;2
(left column) and the d

(3) = 2b = �11 - :22 (right column) eigenelastic moduli11 - 22 
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