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Abstract. Induction in first-order logic languages suffers from an ad-
ditional factor of complexity compared to induction in attribute-value
languages: the number of possible matchings between a candidate hy-
pothesis and a training example.

This paper investigates the use of a stochastic bias to control this factor
of complexity: the exhaustive exploration of the matching space is re-
placed by considering a fixed number of matchings, obtained by random
sampling. One thereby constructs from positive and negative examples
a theory which is only approximately consistent. Both the degree of ap-
proximation and the computational cost of induction are controlled from
the number of samples allowed.

This approach is illustrated and validated on the mutagenesis problem.
An ad hoc sampling mechanism has been purposely designed, and exper-
imental results fully demonstrates the power of stochastic approximate
induction, in terms of both predictive accuracy and computational cost.
Furthermore, this approach applies for learning both logic programs (as it
is usually the case in ILP) and constrained logic programs, i.e. extended
logic programs that can naturally handle numerical information. The
gain of learning constrained logic programs for the mutagenesis problem
is evaluated by comparing the predictive accuracy of the theories induced
in both languages.

1 Introduction

The framework of Inductive Logic Programming (ILP) [21] allows induction to
handle relational problems. This very expressive formalism however raises two
major questions: that of dealing with numerical values, and that of mastering
the computational complexity pertaining to first-order logic.

Handling numbers in ILP has mainly been tackled via transformation of re-
lational problems into propositional ones a la LINUS [15] (see also [37]), or by
using adequate “numerical knowledge”, be it built-in as in FOIL [25] or pro-
vided in declarative form as in PROGOL [20]. A third possibility is based on
Constraint Logic Programming (CLP), which both subsumes logic programming
(LP) and allows for the interpretation of predefined predicates, in particular



predicates involving numerical variables [8]. An earlier work [30] has presented
a learner named ICP for Inductive Constraint Programming, which uses con-
straints to prevent negative examples from matching candidate hypotheses.

This paper is concerned with bridging the gap between the above theoretical
approach and real-world problems. A major difficulty is that of computational
complexity. This general difficulty of induction is usually handled through lan-
guage biases (e.g. GOLEM considers ij-determinate clauses [22]; PROGOL sets
an upper bound on the number of literals in a candidate clause [20]) or search bi-
ases, (e.g. FOIL considers one literal at a time [25]; FOCL restricts the amount
of look-ahead [24]; FOIL and PROGOL respectively use the quantity of in-
formation and the MDL principle to sort the candidate hypotheses). However,
adjusting these biases requires a precise a priori knowledge, which is often far
from available.

This is the reason why our previous works [26, 29, 30] were based on a variant of
the “bias-free” Version Space framework [18], called Disjunctive Version Space
(DiVS) [28]. However, this gets intractable on truly relational problems, for the
number of possible matchings between a hypothesis and a negative example is
exponential in the size of the examples; e.g. in the mutagenicity problem, where
molecules involve up to 40 atoms, the number of possible matchings goes to 40%°.

We therefore propose a new algorithm that builds approximate version spaces
with polynomial complexity. This algorithm, named STILL for Stochastic Induc-
tive Learner, combines Disjunctive Version Spaces with a sampling mechanism:
it only considers some samples of the possible matchings between a hypothesis
and a negative example. It thereby constructs a theory which is only approx-
imately consistent with linear complexity in the number of samples allowed.
Besides, classification heuristics taken from the propositional DiVS [28] can di-
rectly be adapted for STILL to cope with noisy and sparse data, while keeping
a polynomial classification.

The sampling mechanism allows the expert to control both the computa-
tional cost of induction and the degree of approximation of the induced theory,
via the number of samples allowed. This heuristics can be used whenever several
(many) matchings between a hypothesis and a training example are possible.
We study its effects on learning either definite or constrained programs.

The paper is organized as follows. Next section briefly reviews the Disjunctive
Version Space approach. As the computational pitfall in first-order logic becomes
obvious, section 3 discusses how to restrict the matching search space, and in-
troduces the sampling mechanism implemented in STILL. The algorithms of
induction and classification in STILL are given, together with the corresponding
polynomial complexity results. Section 4 is devoted to experimental validation on
the mutagenicity problem; STILL results compare favorably to those of PRO-
GOL and FOIL, reported from [33]. Finally, some avenues for further research
are discussed in section 5.



2 Disjunctive Version Spaces in LP and CLP

This section illustrates the Disjunctive Version Space approach on a problem
pertaining to organic chemistry [11]: the mutagenicity problem is one most fa-
mous testbed in ILP [33, 10]. A more detailed presentation of Disjunctive Version
Spaces in the frame of attribute-value and CLP languages can be found in [28]
and [30].

2.1 Data and language of examples

The mutagenicity problem consists in discriminating organic molecules (nitroaro-
matic compounds) depending on their mutagenic activity (active or inactive).
This still open problem is of utmost practical interest, for these compounds oc-
cur in car exhaust fumes, and high mutagenic activity is considered carcinogenic.

The description of molecules considered in this paper includes the description
of atoms and bonds, augmented with non structural information (five boolean
and numerical attributes) measuring the hydrophobicity of the molecule, the en-
ergy of the molecule lowest unoccupied molecular orbital, and so on. A molecule
a is thus described by a ground clause, an excerpt of which is:

tc(a) : — atom(a, ay, carbon,22,—0.138), - - -, atom(a, azg, oxygen, 40, —0.388), - - -
bond(a,ar,as,7),- -, bond(a, as, ass,2),
logp(a,4.23), lumo(a, —1.246).

where tc stands for the target concept (active or inactive) satisfied by a.

Literal atom(a,ay,carbon,22,—0.138) states that in compound a, atom a;
is a carbon, of type 22, with partial charge —0.138. Literal bond(a,a,az,7)
expresses that there exists a (unique) bond between atoms a; and as in a, the
type of which is 7. This problem typically involves numerical and relational
features.

2.2 Overview

DiVS basically combines the Version Space framework and the divide-and-conquer
strategy [16]. Examples are generalized one at a time; and the star Th(FEz) gen-
eralizing the seed Ez is the version space covering Ez, that is, the set of all
hypotheses covering Ez and rejecting all examples Cey,...Ce, that do not be-
long to the same target concept as Ex, called counter-ezamples to Ex'.

The elementary step in the construction of star Th(Ez) consists in building the
set D(Ex,Ce) of hypotheses that cover Ex and discriminate a counter-example
Ce: Th(Ez) is defined as the conjunction of D(Ez,Ce) for Ce ranging over the
counter-examples to Ex.

1 ol . .
The counter-examples to a positive example Fz are the negative examples, and vice
versa.



The overall theory Th built by DiVSis the disjunction of the version spaces
Th(Ez) for Ex ranging over the training set.

Disjunctive Version Space Algorithm

Th = false.
For each Ex training example
Th(Ex) = True
For each Ce counter-example to Ex
Build D(Ez,Ce) (section 2.3,2.5)
Th(Ez) =Th(Ex) N D(Ez,Ce)
Th = Th v Th(Ex).

Di VS differs from other divide-and-conquer algorithms in one main respect.
For most authors [16, 20], seeds are selected among positive examples only: e.g.
the different versions of AQ, and PROGOL as well, only learn the target concept.
In contrast, DiVS generalizes positive and negative examples; it thereby learns
both the target concept and its negation. This hopefully allows the effects of
noisy positive and negative examples to counterbalance each other.

Another key difference between DiVS and all other learners, as far as we
know, is that DiVS does not set any restriction on the number of candidate so-
lutions: it retains all hypotheses partially complete (covering at least one seed)
and consistent. In opposition, FOIL, FOCL and PROGOL, among others, aim
at finding ”the” best hypothesis covering a training example, according to the
more or less greedy optimization of a numerical criterion (quantity of informa-
tion for FOIL and FOCL, MDL principle for PROGOL). To a lesser extent,
ML-Smart [1, 3] and REGAL [7] also look for concise theories.

Let us focus now on building the set D(Ex,Ce) of hypotheses generalizing
FEx and rejecting Ce, depending on the hypothesis language.

2.3 Attribute-value learning

In an attribute-value language, the construction of D(Ez, Ce) is straightforward.
Consider for instance the positive and negative atoms given in Table 1:

Table 1: Seed and Counter-example

element type electric charge| Concept
Ex carbon 22 3.38 positive
Ce hydrogen 3 -.33 negative

Let hypotheses be conjunctions of selectors (att = V') [16], where V' denotes an
interval in case att is linear (e.g. the type or electric charge of atoms), and a
value otherwise.

The set of hypotheses D(Ex,Ce) is given by the disjunction of maximally dis-
criminant selectors, i.e. of the maximally general selectors that cover Ez and



reject Ce:
D(Ezx,Ce) = (element = carbon) V (type > 3) V (charge > —.33)

Star Th(Ez), given by the conjunction of D(Ex,Ce) for Ce ranging over the
counter-examples to Ez, is built with linear complexity in the number N of
examples and the number P of attributes. And finally the complexity of DiVSis
in O(N? x P) [28].

2.4 First-order logic learning

All positive and negative examples of the target concept are represented via
Horn clauses. Since there exists no “standard” semantics for the negation in
Logic Programming and even less in Constraint Logic Programming, we explic-
itly introduce the negation of the target concept tc, denoted opp_tc: a negative
example is a clause the head of which is built on opp_tc.

Consider two examples of molecules satisfying the opposite target concepts
active and inactive:

Ez : active(ex) :- atom(ex, a, carbon, 3.38), atom(ex, b, carbon, 1.24).
Ce : inactive(ce) :- atom(ce, ¢, hydrogen, -.33), atom(ce, d, carbon, 2.16).

We first decompose the seed Ex into a clause C and a substitution #, respec-
tively the most general clause and the most specific substitution such that

Exz =C# (1)

In our toy example, C stores the structural information of Fx, i.e., that Fx
is an active molecule having two atoms:

C : active(X) : —atom(X',Y, Z,T),atom(X" U, V,W)
and 6 carries all other information in Eux:
0 ={X/ex, X'/ex, X" /ex, Y/a, Z/carbon, T/3.38, U/b, V/carbon, W/1.24}

This decomposition allows induction to simultaneously explore two search
spaces:

— The space of definite clauses generalizing C. Exploring this space is fairly
simple: all variables in C must be distinct for C to be the most general clause
satisfying equation (1); hence, the only way to generalize C is by dropping
literals.

— A space F of logical functions on the variables of C. Depending on whether F
is the set of substitutions on C, or the set of constraints on C, DiVS either
constructs definite clauses [29] or constrained clauses [26, 30]. Note that
substitutions on C are particular cases? of constraints on C [8].

In this paper, F is restricted to a subset of constraints on C, to be made
more precise later on.

% Variable grounding amounts to domain constraint (X = X.0), where X.0 denotes
the constant X is substituted by according to 6; similarly, variable linking amounts
to binary constraint (X =Y).



Building the set D(Ez,Ce) of hypotheses that cover Ex and reject Ce
amounts here to finding out all pairs (C,p), where C generalizes C (e.g. de-
scribes a molecule satisfying the same target concept as Ez and including at
most the same number of atoms and bonds) and p is a constraint on C' that
generalizes #. Furthermore, C' and p must be such that Cp discriminates Cle.

In the general case, discrimination can be based on predicates: if C' involves
a predicate that does not appear in Ce, C' discriminates Ce. Predicate-based
discrimination is not considered in the following: it does not apply for the con-
sidered description of the mutagenesis problem since all molecules involve the
same predicates (atom, bond,..). Besides, it presents no difficulty and can be
formalized as a boolean discrimination problem [30].

Constraint-based discrimination takes place when the body of C (or of the
current hypothesis) generalizes that of Ce. Then there exists at least one sub-
stitution ¢ such that body(C).c C body(Ce). We then say that C matches the
negative example and o is called negative substitution. For instance, in our pre-
vious example, negative substitution ¢ respectively maps the first and second
atoms in C onto the first and second atoms in Ce:

o={X/ce, X'|ce, X" |ce, Y/c, Z|hydrogen, T/-.33, U/d, V/carbon, W/2.16}

Whenever a negative substitution exists, C is inconsistent: its body general-
izes the bodies of both Ex and Ce, which yet satisfy opposite target concepts.
Constraint-based discrimination prevents such inconsistencies by specializing C:
it adds constraints to the body of C such that negative substitution o does not
satisfy these constraints. For instance, constraint

p = (Z = carbon)

is incompatible with o, since Z.c = hydrogen. By the way, p must also gener-
alize the substitution # derived from Ezx, in order for Cp to still generalize Ex;
e.g. p' = (Z = oxygen) is also incompatible with o, but Cp' does not generalize
Ex.

A formal presentation of constraint entailment and generalization order will be
found in [8]; roughly, constraint p; generalizes po (equivalently, po entails py) iff
all substitutions satisfying ps also satisfy p;.

Note that building constraints that generalize 6 and are incompatible with a
negative substitution ¢ amounts to an attribute value discrimination problem.
This is particularly clear if we restrict our language of constraints to domain
constraints, of the form (X = V), where V is a subset of the domain of X (see
section 2.5). This is also true when binary logical and arithmetic constraints are
considered (e.g. (X #Y), (Z < T +10), (S > U — 20)), by introducing aux-
iliary variables (this point is detailed in [30]). However, binary constraints will
not be further considered here, for two reasons. First of all, introducing binary
constraints does not significantly modify the complexity of induction (it only



affects its polynomial part), which is our primary concern in this paper. Second,
unary constraints turned out to be sufficient to reach a good level of predictive
accuracy on the mutagenesis problem.

Finally, our language of constraints is restricted to unary constraints of the
form (X = V), where

— Vis an interval if X is a real or integer-valued variable;
— Vs a value if X is a nominal variable.

In particular, if all variables are considered nominal, the language of hypothe-
ses is a restriction of that of logical clauses (only grounding-based specialization

applies).

2.5 Characterizing D(Ez,Ce)

Let Ex = CO be the seed and let Ce be a counter-example to the seed. Let o be
a negative substitution on C derived from Ce and let us first assume that o is
the only negative substitution derived from Ce.

Building a maximally discriminant domain constraint px . on variable X that
generalizes 6 and is incompatible with ¢ amounts to building a maximally dis-
criminant selector in the attribute-value case (section 2.3). Constraint p, is
defined as the disjunction of maximally discriminant constraints px ,, for X
ranging over discriminant variables (e.g. V' is not discriminant since V.60 = V.o).
In our toy example, variables X, X', X7, Y and U, which respectively iden-
tify the molecule and the atoms, are not considered as they are irrelevant for
discrimination purposes:

X XY z T XTU V. W]
Plerx exr a carbon 3.38 ex b carbon 1.24
ol ce ce c¢ hydrogen —.33 ce d carbon 2.16

poe = (Z = carbon) vV (T > —.33) vV (W < 2.16)

It is shown that any constraint generalizing 6 discriminates o iff it entails
(is generalized by) p, [30]. A clause Cp therefore belongs to D(Ez,Ce) iff Cp
generalizes Fx and p entails p,.

In the general case, let Yg, c. be the set of negative substitutions on C
derived from Ce. A constraint p must be incompatible with all negative substi-
tutions derived from Ce, in order for Cp to be cousistent with Ce. D(Ex, Ce)
can thus be characterized as follows [30]:

Proposition 1. Cp belongs to D(Ez,Ce) iff Cp generalizes Ex and p entails
po for all o in Yg, ce.

To sum up, D(Ex,Ce) is computationally described by C and the set of con-
straints {ps s.t. 0 € X, cc}.



This characterization can be used to reach the two main goals of machine
learning: that of explicitly characterizing the constructed theory and that of
classifying further instances of the problem domain. Some results and a method
addressing the first aim of learning were presented in our previous work [30]. We
therefore concentrate here on the second aim of learning, that is, classification.

2.6 Classifying further examples

As a matter of fact, computational descriptions as above are sufficient to classify
unseen instances of the problem domain, via a nearest neighbor-like decision
process:

e An unseen instance E is termed neighbor of a training example E iff E belongs
to Th(Ez), that is, is covered by a hypothesis in Th(Exz).

e By construction, E belongs to Th(Exz) iff E belongs to all D(Ex,Ce), for Ce
ranging over the counter-examples to Ez.

e The computational characterization of D(Ez, Ce) is sufficient to check whether
an unseen instance E belongs to D(Ex,Ce) [30]:

Proposition 2. E belongs to D(Ex,Ce) iff E can be expressed as Ct, where
C generalizes C and 7 entails p, for all o in Yg,, ce.

Let Yg,, g denote the set of substitutions on C matching E. Then, proposi-
tion 2 is translated as:

Belongs(E, D(Ez,Ce))

For each 7 in Yg, g
If 7 entails p, for all o in Yg,, ce,
return true.
return false.

And

Neighbor (E, Ex) : (E belongs to Th(Ez))

For each Ce counter-example to Ex
if NOT Belongs(E, D(Ex,Ce))
return false
return true.

Simply put, our approach constructs an oracle rather than an explicit theory.
This oracle is made of theory Th, stored as the list of

D(EZL‘,‘,EZL‘]') = (Ci,{pg s.t.o € ZE.’L',j,E.’L'j})



for Ex; and Ex; training examples satisfying different target concepts. Theory
Th, interpreted according to Proposition 2, allows one to compute the boolean
Neighbor(E, Ez) function, and this function together with a standard nearest
neighbor algorithm, achieves the classification of any further instance E.

This approach can be compared to that of RIBL [5] which is also based
on nearest neighbors. The essential difference is the following: in RIBL, the
similarity between E and a training example Ez only depends on E and Ex
(this is true also for the even more sophisticated first-order similarity used in
KBG [2]). But here, the neighborhood of Ex (and the fact that E is neighbor
of Ex or not) depends on E, Ex and the counter-examples Cey,...Ce, to Ex:
the underlying similarity is driven by discrimination.

2.7 Complexity

Under the standard assumption that the domain of any variable is explored with
a bounded cost, the complexity of building p, is linear in the number of variables
in C (it would be quadratic if binary constraints were also considered). Let X
and S respectively denote upper-bounds on the number of variables in C and on
the number of substitutions in Y'gs, g.;. The characterization of D(Ezx;,Ex;)
is then in O(X x S).

Let N be the number of training examples. Since all D(Ez;, Ex;) must be
characterized, the complexity of learning in DiVS'is

O(N? x X x S)

And, since checking whether an instance E belongs to Th(Ez) requires to con-
sider all substitutions in ¥, g, the number of which is upper-bounded by S,
the complexity of classification in DiVS is

O(N? x X x §%)

The crux of complexity lies in factor S, which is exponential in the number
of literals built on a predicate symbol in the examples [29]. This shows up in the
mutagenesis problem, as the number of atoms in a molecule ranges up to 40. S
thus is 40%0...

3 Polynomial Approximate Learning

The presented approach suffers from two major drawbacks: first, it is intractable
for truly relational problems. Second, inasmuch it stems from the Version Space
framework, it is ill-prepared to deal with noisy and sparse data.

The tractability limitation is first addressed via a stochastic bias: the idea
consists in sampling, rather than exhaustively exploring, the set of substitutions
Y Ez,ce- We again illustrate the stochastic sampling mechanism on the mutage-
nesis problem.



Second, two heuristics, taken from the propositional version of DiV'S [28], are
used to relax the standard consistency and generality requirements of Version
Spaces, and cope with noise and sparseness.

3.1 Stochastic Bias

Let us have a closer look at the negative substitutions explored by DiVS.

In the mutagenesis problem, the semantics of a molecule is not modified by
changing the identifiers of the atoms (nominal constants ap,as,...a;). These
identifiers can thus be arbitrarily set to 1,2,...,n, if n denotes the number of
atoms in Fx. A negative substitution o on C is completely defined by associating
each atom in C, which corresponds to a given atom ¢ in Fx w.r.t. #, to an atom
in Ce denoted o(i) by abuse of notation. The intractability of DiVS follows
from the fact that the number of such substitutions is in n’' ™, if n’ denotes the
number of atoms in Ce.

Let us concentrate on atoms for the sake of readability.

Discriminating o from 6 requires to discriminate at least one atom ¢ in Ex from
atom o(i) in Ce. The more “similar” atoms ¢ in Fz and o(i) in Ce, the more
difficult it is to discriminate them, and the more informative the negative substi-
tution o is: this notion parallels that of near-misses in attribute-value languages.
Formally, a partial order can be defined on the substitutions in Y'g, ce, and it
is shown that non-minimal substitutions can soundly be pruned with regards to
discriminant induction [26, 29]: this pruning is analogous to the pruning of non
near-misses examples in the propositional case [32, 27]. Unfortunately, building
the set of such minimal substitutions turns out to be intractable too.

Another possibility would be to consider the best substitution o, defined as

minimizing some distance to 6 in the line of the structural similarity developed
in [2]. For instance, the best substitution in Y'g, ¢. would minimize the sum of
the distances between atom i in Ex and atom o(i) in Ce.
As noted in [33], the description of an atom can be handled as a single tree-
structured feature since the element of an atom commands its atom type (e.g.
the atom type of a hydrogen atom is in [1,3] whereas the atom type of a carbon
atom is in [21,24]) and the atom type similarly commands its electric charge.
Defining a distance between any two atoms thus is straightforward: the distance
of two atoms having same atom type is the difference of their electric charges;
otherwise, if the atoms are of the same element, their distance is the difference of
their atom type, augmented by a sufficiently large constant (twice the maximal
electric charge); otherwise (the atoms are of different elements), their distance
is set to another constant (twice the maximal electric charge plus the maximal
atom type).

However, using an optimization approach to determine which substitution to
consider in ¥, c. raises several problems: first of all, we feel that a single substi-
tution, even optimal, cannot be representative of the whole set Y'g, c.; second,
this combinatorial optimization problem is itself computationally expensive...



Finally, we decided to consider several substitutions, the number of which to
be supplied by the user.
These substitutions could have been purely randomly defined, except that, as
stated above, substitutions nearer to # are more informative. When constructing
a substitution o, one thus associates to any atom ¢ in Ex the atom 7 in C'e which
is most similar to ¢, provided that j is not yet associated to another atom in Ex:
atom j in Ce has same electric charge as atom 7 in Ez, if possible; otherwise, it
has same atom type; otherwise, it is of same element.
Let n and n' respectively denote the number of atoms in Fxz and Ce. The
sampling mechanism of the substitutions in Yg, c. is currently implemented
as follows:

Select o in Y, ce

while possible
Select i in {1,...,n} not yet selected
Select j in {1,...,n'} not yet selected such
that atom j in Ce is as close as possible
to atom ¢ in FEz,
Do o(i)=7j.

Note that index j is deterministically selected depending on i, and ¢ is
stochastically selected with uniform probability in {1,...,n}. This way, any
atom ¢ in Ez will in average be associated to a similar atom in Ce, provided the
sampling mechanism is run a sufficient number of times.

More precisely, the above stochastic sampling mechanism ensures that a set
of samples captures an arbitrarily precise representation of Yg, c. with high
probability, provided the number of samples allowed is “sufficient”. Further work
is concerned with formalizing this intuition, as well as improving the selection
mechanism via taking into account also the bonds between atoms.

3.2 Overview of STILL

The STILL algorithm combines the general approach of DiVS and the above
sampling mechanism. This stochastic bias is used to make both induction and
classification tractable.

Approximate Learning Remember that DiVS constructs the set Th(Ex) of
consistent hypotheses that cover Ex, through exploring the whole sets of substi-
tutions Y'g,, c. for Ce ranging over the counter-examples to Ez. Instead of that,
STILL only processes n substitutions, where 7 is a positive integer supplied by
the user. This way, it constructs a set of hypotheses Th, (Ez) that cover Ex and
are only partially ensured to be consistent, since only sampled substitutions are
ensured to be discriminated.

Concretely, the set of hypotheses Th, (Ez) is characterized by clause C (with
Ezx = (C#) and a set of constraints R, including n discriminant constraints built



as follows. Let n be the number of counter-examples to Ex; for each counter-
example Ce, - samples of substitutions are selected in X'g;, ¢.. R is composed
of the constraints p, discriminating the selected samples of substitutions derived
from all counter-examples.

This heuristics ensures that the specificity of star Th, (Ez) does not depend on
whether the seed Ex belongs to the minority or the majority class (this would
not be the case if the number of constraints in R were proportional to the number
of counter-examples to Ex).

It was adopted for reasons of empirical accuracy, as examples in the mutagenesis

application are distributed two active to one inactive.

Characterize Th,(Ez):

R = 6.
n = Number of counter-examples to Ex
For Ce counter-example to Ex
For j=1...1,
Select 0 in Yg,, ce,
Build p,
Do R=R U{rs}
return (C,R).

The disjunction Th, of theories Th, (Ez) for Ex ranging over the training
set, is termed approzimate theory; the number 7 of allowed samples is termed
rate of approzimation. Note that Th, is more general than Th and tends toward
Th as n increases.

Approximate classification. The classification process in DiVSis based on
checking which training examples are neighbors of the instance E to classify
(section 2.6). In order to check whether E is neighbor of Ez, i.e. belongs to
Th(Ez), DiVS explores the set Yg, g of substitutions on C (where Ex = C8),
matching F. The size of this set similarly makes classification intractable.

STILL again addresses this limitation via the sampling mechanism: instead
of exhaustively exploring Yg. g, it only considers K substitutions in this set,
where K is a positive integer supplied by the user. F is termed approzimate
neighbor of Ex if at least one in K samples of Y, g entails all constraints in
Th(Ex):

Approx_Neighbor (E, Ex) :

(C,R) = Characterize Th, (Ezx)
For i = 1...K
Select 7 in Yg, E
If 7 entails all p in R
return ftrue
return false




The classification in STILL is finally done according to the standard nearest
neighbor algorithm, based on the above Approx_Neighbor function.
Note the above function corresponds to an “interpretation” of Th, (Ez) that
is more specific than Th,, (Ez) itself; this over-specificity decreases as K increases.
Parameter K controls the number of trials allowed to get an answer from
theory Th,; metaphorically speaking, /K corresponds to the “patience” of the
constructed expert.

3.3 Coping with noisy and sparse examples

Th(Ez) (which is the theory Th, (Ex) tends toward as n increases) includes con-
sistent hypotheses only, and maximally general consistent hypotheses in partic-
ular. No doubt this approach is ill-suited to real-world datasets: when erroneous
examples are encountered, strictly consistent hypotheses have few predictive
accuracy [4]. And when examples are sparse, maximally general consistent hy-
potheses are too general: most instances come to be covered by a hypothesis in
most Th, (Ez;), and therefore get unclassified, or classified in the majority class.

These limitations were already encountered in the attribute-value version of
DiVS, and have been addressed by two heuristics [28], which simply extend to
first-order logic owing to the computational characterization of the constructed
theory.

The presence of noise in the data is classically addressed by relaxing the con-
sistency requirement. This is done at classification time, via modifying the test
of neighborhood. By definition, E is considered as neighbor of Ez iff it belongs
to D(Ez, Ce) for all Ce counter-example to Ez. This definition is simply relaxed
as: F is from now on considered as neighbor of Ez iff it belongs to D(Ex,Ce)
for all C'e counter-example to Ex, except at most ¢ of them, where ¢ is a positive
integer supplied by the user. The greater ¢, the wider the neighborhood of Ex is.

The sparseness of the data is addressed by increasing the specificity of the

produced theory. This modification also takes place during classification, and
regards the test of constraint entailment. By construction, constraint p, is the
maximally general constraint that discriminates ¢ and generalizes #; it is the
disjunction of domain constraints px , for X ranging over the variables of C. A
given substitution 7 hence entails p, iff there exists at least one variable X such
that X.7 satisfies px o .
The specificity of the theory is tuned by considering from now on that 7 entails
po iff T satisfies at least M domain constraints px , (instead of one), where M
is a positive integer supplied by the user. This amounts to considering p, as an
M — of — N concept. The greater M, the smaller the neighborhood of Ez is.

Note that the constructed theory does not depend in any way on the values
of parameters ¢ or M. In particular, STILL requires no a prior: knowledge
regarding the rate of noise and representativity of the data. Parameters M and
¢ can be adjusted from the experimental classification results — but with no



need to restart induction. See [28] for a discussion about the advantages of such
a posteriori biases.

3.4 Complexity

As expected, the stochastic bias cuts down the complexity of learning and clas-
sification.

Let X still denote an upper-bound on the number of variables in C. The
complexity of building p, is still linear in X'. The construction of one sample
o is quadratic in X (this is a large over-estimation). Hence, the complexity of
learning Th, (Ez) is in O(X® x 7). Finally, the computational complexity of
induction in STILL is linear in the rate of approximation and in the number of
training examples, and cubic in the number of variables in one example:

O(N x X3 x )

In the mutagenicity problem, N is 188, & is less than 200. The rate of
approximation 7 was set to 300, to be compared with the typical size of a set
Ygz, ce, that is 30%0.

The complexity of classification is that of induction increased by factor I,
which was set to 3 in our experiments:

O(N x X3 xn x K)

Note that the heuristics designed to cope with noise and sparseness do not
modify the computational complexity of classification.

4 Experimentation

This section presents an experimental validation of the algorithms described
above on the well-studied mutagenicity problem (see [33] for a detailed presen-
tation of this problem).

4.1 The data

The dataset is composed of 125 active molecules and 63 inactive molecules. Four
levels of description of these molecules have been considered in the literature [33,
10]: Background knowledge B; includes the description of atoms and bonds in the
molecules. Background knowledge B2 stands for B; augmented with definition
of numeric inequalities. Background knowledge B3 is B, augmented with a non
structural description of the molecules (five numerical and boolean attributes).
Background knowledge B4 stands for B3 augmented with the definition of simple
chemical concepts (e.g. benzenic or methyl group).

The reference results obtained by PROGOL and FOIL on this problem
(reported from [33] and [34]), are given in Table 1. The run times (in seconds)
are measured on HP-735 workstations.



Background knowledge Accuracy | Time
FOIL PROGOL| FOIL PROGOL
By 60+4 76+3 |5000 117000
Bs 81+3 81 +3 |9000 64350
Bs 83+3 83+3 5 42 120
By 82 +3 88 +2 5 40 950

Tuble 1: Results of FOIL and PROGOL on the 188-compound problem:
Average predictive accuracy on the test set

In this paper, all experiments conducted with STILL only consider back-
ground knowledge Bs. The 11 264 ground facts composing Bs are partitioned
in 188 ground clauses, each clause including all information relevant to a given
compound.

4.2 Experimental Aim

Previous experiments with STILL conducted with background knowledge 5>
[31] have shown the validity of this approach in terms of predictive accuracy.
Nevertheless, the reason why STILL obtains such good results is still unclear.

A first explanation is related to the powerful formalism of constraint logic
programming, and the use of inequality constraints relative to either the electric
charge or type of element of the atoms, or the non structural description part
of molecules (attributes logp and lumo). The use of numerical inequalities is
typically responsible for the increase of performance of FOIL from By to B;
(Table 1).

The influence of the hypothesis language is evaluated with two experiments.
In the first one, STILL handles all information in the examples as if it were
nominal; only constraints such as (X = X.0) are learned, which means that
STILL constructs pure definite clauses. In the second experiment, inequality
constraints can be set on numerical variables and STILL thus constructs con-
strained clauses.

A second explanation is related to the redundancy of the constructed the-
ory. It has been suggested that redundant classifiers tend to be more robust
and reliable than concise ones [6, 23]. STILL involves two kinds of redundancy.
First, it both constructs the theory of mutagenic activity and that of inactiv-
ity; in opposition, PROGOL only constructs the theory of activity. Second,
STILL generalizes all examples, whereas both PROGOL and FOIL remove the
examples covered by previous hypotheses.

To check to what extent redundancy is a key factor of accuracy in our ap-
proach, STILL is compared to a variant denoted AQ-STILL, which does include
some selection of the seeds. More precisely, AQ-STILL only generalizes those
examples which are not yet correctly classified at the time they are considered.



In summary, four variants of STILL are implemented® and compared:

— STILLYTP | which corresponds to the approach described throughout this
paper, where all examples are generalized and inequality constraints can be
set on numerical variables;

— STILL™'P  where all examples are generalized but specialization is limited
to variable grounding;

— AQ-STILLCL? | which differs from STILLCELF in the selection of seeds; and

— AQ-STILL'"? | which similarly differs from STILL'"" in the selection of
seeds.

4.3 Experimental Settings

The parameters controlling the stochastic biases are constant in the following
experiments:

The rate of approximation 7, that ensures the tractability of induction, is set to
300.

The parameter I, that ensures the tractability of classification, is set to 3.

Parameter M used to control the specificity of the theory varies from 1 to
10. Parameter ¢, which corresponds to the maximal number of inconsistencies
of a hypothesis, varies from 0 to 4.

All results are averaged over 15 independent runs, where each run consists in
learning from 90% of the 188 compounds (randomly selected such that the ratio
of active/inactive compounds in the training set is same as in the global data, i.e.
about two to one) and classifying the remaining 10% of the data. This protocol
of validation is similar to the ten-fold cross validation used in [33]; the number
of runs is only slightly increased (from 10 to 15), as suggested for stochastic
approaches [9].

For each setting of parameters ¢ and M, the average percentage of test ex-
amples correctly classified, unclassified* and misclassified are indicated (labels
Accur, 7 and Misclass), together with the standard deviation of the accuracy
(label ). The average run time on HP-735 workstations, including the construc-
tion of the theory and the classification of the test examples, is also given (in
seconds).

Last, the average number of seeds is also indicated in the case of AQ-STIL
and AQ-STILL'EP; in the case of STILLCY? and STILLCY, the number of
seeds exactly is the number of training examples (170), and has been omitted.

LCLP

4.4 CLP versus ILP

Table 2 shows the results obtained by STILLYLP and STILL'"F. Remember the
only difference lies in the possibility for STILLCFF to set inequality constraints

>In O
% An example gets unclassified if either it admits no neighbor in the seeds, or if the
majority vote ends up in a tie.



on the type of atom and electric charge of atoms, and on the numerical attributes
logp and lumo.

As noted by [12], one cannot conclude from the presence of numbers in a
problem, that this problem needs a learner with numerical skills: many learn-
ing problems with numbers include in fact very few distinct values, and can
therefore be handled by purely symbolic means. But Table 2 witnesses that the
mutagenesis problem does benefit from a CLP formalism.

€ STILL'LT STILLCLP
Accur. 7 Miscl. + Time Accur. 7?7 Miscl. £ Time
86.7 0.74 126 +6.9 51 88.5 0.37 11.1 +6.1 73
83.3 3.3 133 7.7 57 91.1 0 889 73 78
86.7 3 104 +£81 59 90.7 1.1 8.15 +4.6 82
81.1 9.6 9.26 54 60 91.5 1.1 741 +£38 86
774 14 852 +£11 60 86.7 3.7 9.63 =81 90
689 19 122 +£12 359 91.1 2.2 6.67 +58 93
64.4 26 963 7.7 58 85.2 4.1 10.7 73 97
83.3 0.74 159 +£7.7 49 89.3 13 94 77 69
83.7 1.1 152 +46 55 889 0 11.1 +73 74
83.7 19 144 +12 58 92.5 04 714 +5 77
80.4 3.7 159 +6.5 60 91.5 0 852 +£54 81
796 4.8 156 +£73 59 91.9 0.37 7.78 +54 85
80.7 48 144 +£10 59 87.4 0.37 12.2 +6.1 88
752 9.6 152 +£65 58 874 0.74 119 +£6.5 92
82.6 0.74 16.7 +£8.9 47 81.1 0 189 +5 66
85.6 1.1 133 £6.1 53 8.6 15 13 x85 71
796 19 185 11 57 85.9 0.37 13.7 £85 75
785 26 189 £73 59 89.3 0.37 104 +£89 78
81.1 3 159 +£14 59 88.9 1.5 9.63 6.6 82
7 56 174 +£81 59 84.8 1.1 14.1 +£6.1 85
756 11 13 +14 58 85.9 0.37 13.7 £ 7.7 89
(a) Without inequality constraints (b) With inequality constraints
Table 2: Results of STILL on Bz, n =300, K =3

Note that the optimal accuracy for STILLYLF corresponds to higher values
of M (M = 6-7), than for STILL'LY (M = 2-3). This could be explained as
follows. Hypotheses constructed by STILLCL? are more general than those
constructed by STILL'EF, for numerical inequalities are more often satisfied
than equalities. But the specificity of hypotheses also increases with parameter
M, which offsets the extra generality permitted by the CLP language.

The most striking fact is that the best result of STILLCE® (accuracy 92.5% +
5fore =2 and M = 6) outperforms that of PROGOL (Table 1) and FORS (with
accuracy 89% =+ 6) [10], despite the fact that FORS explores a language of hy-
potheses (including linear expressions of the numerical variables) much richer
than that of STILLCTT.

Of course, a fair comparison would require to see how the predictive accuracy
of other learners varies with their control parameters; e.g. [33] only indicates the
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results obtained with PROGOL for a maximal number of inconsistencies set to
4, and a maximal number of literals in a clause set to 5.

This asks the question of how to automatically adjust the parameters of
STILL. On-going experiments are concerned with using the training set to tune
M and ¢ in the line of [13].

4.5 Pruning the seeds: Pros and Cons

Table 3 shows the results obtained by AQ-STILLC'? and AQ-STILL'"F. Re-
member that the only difference between STILL and AQ-STILL lies in the
selection of the seeds: STILL generalizes all examples whereas AQ-STILL only
generalizes examples that are not correctly classified at the time they are con-
sidered.

€ AQ-STILL'P AQ-STILLCTP
MlAccur. ? Miscl. + Time Seeds||M|Accur. ? Miscl. + Time Seeds
1{83.3 7 963 +£11 59 3631 2| 79.3 12 852 +10 27 21.4
2| 8.6 7 104 £89 8 439 3|87.8 5.6 6.67 £7.3 30 17.6
3| 79.3 10 104 £ 11 117 549 4| 81.9 9.3 889 +£6.9 39 17.6
0|||4| 74.1 17 852 +£7.3 139 653 | 5| 81.9 89 9.26 +96 48 187
5| 77 17 593 +£89 161 77.5(6]| 8.7 93 10 +81 65 23.7
6| 68.1 26 6.3 +10 179 90.4 (7| 82.6 11 593 +£9.2 8 295
71 604 34 519 +£14 189 99.3|[8| 84.1 10 5.56 £ 7.3 113 34.8
1| 80 &85 11.5 +10 54 395| 3| 84.8 6.3 889 +£85 42 32
2| 785 7.8 13.7 +12 T4 4124|793 7 13.7 £6.5 44 26.8
3| 748 14 10.7 £9.2 95 47 ||5]| 844 74 815 +£96 50 255
2114 75.2 12 13 +£9.2 120 579 6| 8.4 81 741 £7.7 62 27.2
5| 69.6 17 133 +12 133 64.6| 7| 84.1 85 741 +81 70 274
6| 69.6 20 10.7 +10 147 73.5(8|86.3 59 7.78 +£10 82 31.4
71722 20 741 +£11 156 82.3||9| 80.7 6.7 12.6 £7.3 95 33.9
1| 82.2 6.7 11.1 £85 49 40.3|/4| 8.2 52 9.63 £85 47 31.8
2| 83.3 48 119 +£6.1 69 42.1(5| 84.8 6.3 889 +8.1 51 289
3| 8.1 59 13 411 94 48.8(6| 8.2 59 889 +81 60 28.3
4/|4] 77.8 9.6 126 +24 113 56.5|7| 85.6 5.6 889 +89 67 295
5 726 15 126 +73 124 6148|833 56 11.1 £73 76 30.1
6 70 19 11.1 £11 138 69.5(9]| 82.2 48 13 +6.8 8 31.1
71 64.8 23 11.9 +96 147 77.2 (10| 81.1 &85 10.4 +10 105 36

(a) Without inequality constraints (a) With inequality constraints
Table 3: Results of AQ-STILL on Bz, n =300, K =3

Again, the use of inequality constraints appears beneficial as AQ-STILLCLY

outperforms AQ-STILL'EF.

In what regards the number of seeds, it increases with M in AQ-STILL''F:
as hypotheses get more and more specific, more and more training examples are
unclassified at the time they are considered, and they are therefore generalized.




In AQ-STILLYLP | the same trend is observed for high values of A/. The number
of seeds also increases for small values of M, but for another reason: when M is
small, stars constructed by AQ-STILLCLY are overly general; more and more
examples are therefore misclassified and generalized.

The important fact is that the best predictive accuracy of AQ-STILLCLP

appears lower than that of STILLCFP (87.8 + 7 against 92.5 + 5). This tends
to support our claim that redundancy is a key factor of predictive accuracy
[30, 28].
Moreover, the benefit of pruning is unclear with regards to the computational
cost: AQ-STILL includes the classification of training examples (in order to
check whether they can be pruned), which means that the computational com-
plexity of learning is in O(N? x X3 x n x K), whereas it is O(N x X3 x n) for
STILL. Factually, the computational cost strongly depends on the number of
seeds: when the number of seeds is high, as it is the case for AQ-STILL'LP,
pruning globally hinders learning.

4.6 General remarks and further experiments

As shown in Tables 2 and 3, the run-times of STILL range from 50 to 180
seconds (these include the construction of the theory and the classification of
the test examples on HP-735 workstations). Similar run-times were obtained
with background knowledge B; and Bz [31]. This fully demonstrates the poten-
tial of the stochastic bias presented in this paper, to master the combinatorial
complexity of induction in first order languages.

However, these good results could be due to the ad hoc sampling mecha-
nism designed for the mutagenicity problem (section 3.1). On-going research is
concerned with a pure random sampling mechanism.

The influence of parameters n and K must also be studied. Preliminary exper-
iments with n = 700 on background knowledge B2 show the expected increase
in the computational cost (linear in 1) but only bring a slight improvement of
the best predictive accuracy.

5 Conclusion

We have experimentally demonstrated the potential of the stochastic approxi-
mate learner STILL for classification purposes.

The main interest of this work, in our sense, is to show how stochastic pro-
cesses can be engineered to cut down the combinatorial complexity pertaining
to ILP. Further research is concerned with improving the sampling mechanism
(e.g. to take into account also the bonds between atoms), while preserving an
acceptable complexity.

Note that this sampling mechanism supports, rather than replaces, induction.
This is a strong difference with the genetic side of machine learning and ILP
[14, 36]: what is sampled here is related to examples rather than to solutions.



Another interest lies in the non-standard use of the Version Space framework:
the computational representation of the constructed theory sidesteps the intrin-
sic combinatorial complexity of Version Spaces. Further, it allows one to relax at
no additional cost the consistency and generality requirements, whenever this is
required by the defects, noise and sparseness of the data. Moreover, experiments
demonstrate the benefit of learning redundant theories; and Version Spaces are
indeed maximally redundant theories.

The main weakness of our learning approach is that it constructs nothing like
an intelligible theory. Further work is concerned with pruning and compacting
the inarticulate theory underlying the classification process; the challenge lies
in providing a readable version of this theory having same predictive accuracy.
The key question is that of the long debated trade-off between intelligibility and
predictive accuracy.

This approach will also be given a learnability model, be it based on PAC-
learnability [35] or U-learnability [19]. In particular, in the Probably Approwi-
mately Correct (PAC) framework, parameter n used to sample the substitutions
naively corresponds to the probability of getting the desired theory, whose ap-
proximate correction is e.
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