Mich Ele Sebag
email: michele.sebag@polytechnique.frceline.rouveirol@lri.fr

C Eline Rouveirol

Polynomial-time Learning in Logic Programming and Constraint Logic Programming

Induction in rst-order logic languages su ers from an additional factor of complexity compared to induction in attribute-value languages: the number of possible matchings between a candidate hypothesis and a training example. This paper investigates the use of a stochastic bias to control this factor of complexity: the exhaustive exploration of the matching space is replaced by considering a xed number of matchings, obtained by random sampling. One thereby constructs from positive and negative examples a theory which is only approximately consistent. Both the degree of approximation and the computational cost of induction are controlled from the number of samples allowed. This approach is illustrated and validated on the mutagenesis problem. An ad hoc sampling mechanism has been purposely designed, and experimental results fully demonstrates the power of stochastic approximate induction, in terms of both predictive accuracy and computational cost. Furthermore, this approach applies for learning both logic programs (as it is usually the case in ILP) and constrained logic programs, i.e. extended logic programs that can naturally handle numerical information. The gain of learning constrained logic programs for the mutagenesis problem is evaluated by comparing the predictive accuracy of the theories induced in both languages.

Introduction

The framework of Inductive Logic Programming (ILP) 21]allows induction to handle relational problems. This very expressive formalism however raises two major questions: that of dealing with numerical values, and that of mastering the computational complexity pertaining to rst-order logic.

Handling numbers in ILP has mainly been tackled via transformation of relational problems into propositional ones ala LINUS 15] (see also 37]), or by using adequate \numerical knowledge", be it built-in as in FOIL [START_REF] Quinlan | Learning logical de nition from relations[END_REF] or provided in declarativeformasin PROGOL 20]. A third possibilityisbasedon Constraint Logic Programming (CLP), which both subsumes logic programming (LP) and allows for the interpretation of prede ned predicates, in particular predicates involving numerical variables 8]. An earlier work 30] has presented a learner named ICP for Inductive Constraint Programming, which uses constraints to prevent negative examples from matching candidate hypotheses. This paper is concerned with bridging the gap between the above theoretical approach and real-world problems. A major di culty is that of computational complexity. This general di culty of induction is usually handled through language biases (e.g. GOLEM considers ij-determinate clauses 22] PROGOL sets an upper bound on the number of literals in a candidate clause 20]) or search biases, (e.g. FOIL considers one literal at a time 25] FOCL restricts the amount of look-ahead 24] FOIL and PROGOL respectively use the quantity of information and the MDL principle to sort the candidate hypotheses). However, adjusting these biases requires a precise a priori knowledge, which is often far from available. This is the reason why our previous works 26, [START_REF] Sebag | Induction of maximally general clauses compatible with integrity constraints[END_REF][START_REF] Sebag | Constraint inductive logic programming[END_REF]were based on a variantof the \bias-free" Version Space framework 18], called Disjunctive Version Space (DiVS) 28]. However, this gets intractable on truly relational problems, for the number of possible matchings between a hypothesis and a negative example is exponential in the size of the examples e.g. in the mutagenicity problem, where molecules involveupto40atoms,thenumber of possible matchings goes to 40 40 .

We therefore propose a new algorithm that builds approximate version spaces with polynomial complexity. This algorithm, named STILL for Stochastic Inductive Learner, combines DisjunctiveV ersion Spaces with a sampling mechanism: it only considers some samples of the possible matchings between a hypothesis and a negative example. It thereby constructs a theory which is only approximately consistent with linear complexity in the number of samples allowed. Besides, classi cation heuristics taken from the propositional DiVS 28] can directly be adapted for STILL to cope with noisy and sparse data, while keeping a polynomial classi cation.

The sampling mechanism allows the expert to control both the computational cost of induction and the degree of approximation of the induced theory, via the number of samples allowed. This heuristics can be used whenever several (many) matchings between a hypothesis and a training example are possible. We study its e ects on learning either de nite or constrained programs.

The paper is organized as follows. Next section brie y reviews the Disjunctive Version Space approach. As the computational pitfall in rst-order logic becomes obvious, section 3 discusses how to restrict the matching search space, and introduces the sampling mechanism implemented in STILL. The algorithms of induction and classi cation in STILL are given, together with the corresponding polynomial complexity results. Section 4 is devoted to experimental validation on the mutagenicity problem STILL results compare favorably to those of PRO-GOL and FOIL, reported from 33]. Finally, some avenues for further research are discussed in section 5.

This section illustrates the Disjunctive Version Space approach on a problem pertaining to organic chemistry 11]: the mutagenicity problem is one most famous testbed in ILP 33,[START_REF] Karalic | First Order Regression[END_REF]. A more detailed presentation of DisjunctiveVersion Spaces in the frame of attribute-value and CLP languages can be found in 28] and 30].

Data and language of examples

The mutagenicity problem consists in discriminating organic molecules (nitroaromatic compounds) depending on their mutagenic activity(active or inactive).

This still open problem is of utmost practical interest, for these compounds occur in car exhaust fumes, and high mutagenic activity is considered carcinogenic.

The description of molecules considered in this paper includes the description of atoms and bonds, augmented with non structural information (veboolean and numerical attributes) measuring the hydrophobicity of the molecule, the energy of the molecule lowest unoccupied molecular orbital, and so on. A molecule a is thus described by a ground clause, an excerpt of whichis: tc(a):; atom(a a 1 carbon 22 ;0:138) atom(a a 26 oxygen 40 ;0:388) bond(a a 1 a 2 [START_REF] Giordana | REGAL: An integrated system for learning relations using genetic algorithms[END_REF] bond(a a 24 a 26 2) logp(a 4:23) lumo(a ;1:246):

where tc stands for the target concept (active or inactive) satis ed by a.

Literal atom(a a 1 carbon 22 ;0:138) states that in compound a, atom a 1 is a carbon, of type 22, with partial charge ;0:138. Literal bond(a a 1 a 2 7) expresses that there exists a (unique) bond between atoms a 1 and a 2 in a,the type of which is 7. This problem typically involves numerical and relational features.

Overview

DiVS basically combines the Version Space framework and the divide-and-conquer strategy 16]. Examples are generalized one at a time and the star Th(Ex) generalizing the seed Ex is the version space covering Ex, that is, the set of all hypotheses covering Ex and rejecting all examples Ce 1 :::Ce n that do not belong to the same target concept as Ex, called counter-examples to Ex 1 . The elementary step in the construction of star Th(Ex) consists in building the set D(Ex Ce)ofhypotheses that cover Ex and discriminate a counter-example Ce: Th(Ex) is de ned as the conjunction of D(Ex Ce) for Ce ranging over the counter-examples to Ex. Another key di erence between DiVS and all other learners, as far as we know, is that DiVS does not set any restriction on the number of candidate solutions: it retains all hypotheses partially complete (covering at least one seed) and consistent. In opposition, FOIL, FOCL and PROGOL, among others, aim at nding "the" best hypothesis covering a training example, according to the more or less greedy optimization of a numerical criterion (quantityofinformation for FOIL and FOCL, MDL principle for PROGOL). To a lesser extent, ML-Smart 1, 3]andREGAL 7] also look for concise theories.

Let us focus now on building the set D(Ex Ce) of hypotheses generalizing Ex and rejecting Ce, depending on the hypothesis language.

Attribute-value learning

In an attribute-value language, the construction of D(Ex Ce) is straightforward. Consider for instance the positive and negative atoms given in Table 1 We rst decompose the seed Ex into a clause C and a substitution , respectively the most general clause and the most speci c substitution suchthat Ex = C

(1)

In our toy example, C stores the structural information of Ex, i.e., that Ex is an active molecule having two atoms: C : active(X):;atom(X 0 Y Z T) atom(X 00 U V W) and carries all other information in Ex: = fX=ex X 0 =ex X 00 =ex Y=a Z=carbon T=3:38 U=b V=carbon W=1:24g In the general case, discrimination can be based on predicates: if C involves a predicate that does not appear in Ce, C discriminates Ce. Predicate-based discrimination is not considered in the following: it does not apply for the considered description of the mutagenesis problem since all molecules involve the same predicates (atom, bond,..). Besides, it presents no di culty and can be formalized as a boolean discrimination problem 30].

Constraint-based discrimination takes place when the body of C (or of the currenthypothesis) generalizes that of Ce. Then there exists at least one substitution such that body(C): body(Ce). We then say that C matches the negative example and is called negative substitution.F or instance, in our previous example, negative substitution respectively maps the rst and second atoms in C onto the rst and second atoms in Ce:

= fX=ce X 0 =ce X 00 =ce Y=c Z=hydrogen T=;:33 U=d V=carbon W=2:16g Whenever a negative substitution exists, C is inconsistent: its body generalizes the bodies of both Ex and Ce,whichyet satisfy opposite target concepts.

Constraint-based discrimination prevents such inconsistencies by specializing C: it adds constraints to the body of C such that negative substitution does not satisfy these constraints. For instance, constraint =(Z = carbon) is incompatible with , since Z: = hydrogen.Bytheway, must also generalize the substitution derived from Ex, in order for C to still generalize Ex e.g. 0 =(Z = oxygen) is also incompatible with ,butC 0 does not generalize Ex.

A formal presentation of constraintentailment and generalization order will be found in 8] roughly, constraint 1 generalizes 2 (equivalently, 2 entails 1)i all substitutions satisfying 2 also satisfy 1 .

Note that building constraints that generalize and are incompatible with a negative substitution amounts to an attribute value discrimination problem. This is particularly clear if we restrict our language of constraints to domain constraints, of the form (X = V), where V is a subset of the domain of X (see section 2.5). This is also true when binary logical and arithmetic constraints are considered (e.g. (X 6 = Y), (Z < T + 10), (S >U; 20)), by introducing auxiliary variables (this point is detailed in 30]). However, binary constraints will not be further considered here, for two reasons. First of all, introducing binary constraints does not signi cantly modify the complexity of induction (it only a ects its polynomial part), which is our primary concern in this paper. Second, unary constraints turned out to be su cient to reach a good level of predictive accuracy on the mutagenesis problem.

Finally, our language of constraints is restricted to unary constraints of the form (X = V), where

{ V is an interval if X isarealorinteger-valued variable { V is a value if X is a nominal variable.
In particular, if all variables are considered nominal, the language of hypotheses is a restriction of that of logical clauses (only grounding-based specialization applies).

Characterizing D(Ex Ce)

Let Ex = C be the seed and let Ce beacounter-example to the seed. Let be a negative substitution on C derived from Ce and let us rst assume that is the only negative substitution derived from Ce. Building a maximally discriminant domain constraint X on variable X that generalizes and is incompatible with amounts to building a maximally discriminant selector in the attribute-value case (section 2.3). Constraint is de ned as the disjunction of maximally discriminant constraints X , for X ranging over discriminantvariables (e.g. V is not discriminantsinceV: = V:). In our toy example, variables X X 0 X " Y and U , which respectively identify the molecule and the atoms, are not considered as they are irrelevant for discrimination purposes: In the general case, let Ex Ce be the set of negative substitutions on C derived from Ce. A constraint must be incompatible with all negativesubstitutions derived from Ce, in order for C to be consistent with Ce. D(Ex Ce) can thus be characterized as follows 30]: Proposition 1. C belongs to D(Ex Ce) i C generalizes Ex and entails for all in Ex Ce .

X X 0 Y Z T X " U V W
To sum up, D(Ex Ce) is computationally described by C and the set of constraints f s:t: 2 Ex Ce g.

This characterization can be used to reach the two main goals of machine learning: that of explicitly characterizing the constructed theory and that of classifying further instances of the problem domain. Some results and a method addressing the rst aim of learning were presented in our previous work 30]. We therefore concentrate here on the second aim of learning, that is, classi cation.

Classifying further examples

As a matter of fact, computational descriptions as above are su cient to classify unseen instances of the problem domain, via a nearest neighbor-like decision process:

An unseen instance E is termed neighbor of a training example E i E belongs to Th(Ex), that is, is covered byahypothesis in Th(Ex). Simply put, our approach constructs an oracle rather than an explicit theory. This oracle is made of theory Th, stored as the list of D(Ex i Ex j)=(C i f s:t: 2 Exi Exj g) for Ex i and Ex j training examples satisfying di erent target concepts. Theory Th,i nterpreted according to Proposition 2, allows one to compute the boolean Neighbor(E, Ex) function, and this function together with a standard nearest neighbor algorithm, achieves the classi cation of any further instance E . This approach can be compared to that of RIBL 5] which is also based on nearest neighbors. The essential di erence is the following: in RIBL, the similarity between E and a training example Ex only depends on E and Ex (this is true also for the even more sophisticated rst-order similarity used in KBG 2]). But here, the neighborhood of Ex (and the fact that E is neighbor of Ex or not) depends on E , Ex and the counter-examples Ce 1 :::Ce n to Ex: the underlying similarity is driven by discrimination.

By construction, E belongs to

Complexity

Under the standard assumption that the domain of anyvariable is explored with a bounded cost, the complexity of building is linear in the number of variables in C (it would be quadratic if binary constraints were also considered). Let X and S respectively denote upper-bounds on the numberofvariables in C and on the number of substitutions in Exi Exj . The characterization of D(Ex i Ex j) is then in O(X S).

Polynomial Approximate Learning

The presented approach su ers from two major drawbacks: rst, it is intractable for truly relational problems. Second, inasmuch it stems from the Version Space framework, it is ill-prepared to deal with noisy and sparse data.

The tractability limitation is rst addressed via a stochastic bias: the idea consists in sampling, rather than exhaustively exploring, the set of substitutions Ex Ce .We again illustrate the stochastic sampling mechanism on the mutagenesis problem.

Second, two heuristics, taken from the propositional version of DiVS 28], are used to relax the standard consistency and generality requirements of Version Spaces, and cope with noise and sparseness.

Stochastic Bias

Let us haveacloserlookatthenegative substitutions explored by DiVS.

In the mutagenesis problem, the semantics of a molecule is not modi ed by changing the identi ers of the atoms (nominal constants a 1 a 2 :::a i). These identi ers can thus be arbitrarily set to 1 2 ::: n ,ifn denotes the number of atoms in Ex. A negative substitution on C is completely de ned by associating each atom in C, which corresponds to a given atom i in Ex w.r.t. ,toanatom in Ce denoted (i) by abuse of notation. The intractability of DiVS follows from the fact that the number of such substitutions is in n 0 n ,ifn 0 denotes the number of atoms in Ce.

Let us concentrate on atoms for the sake of readability. Discriminating from requires to discriminate at least one atom i in Ex from atom (i)inCe. The more \similar" atoms i in Ex and (i) in Ce,t hemore di cult it is to discriminate them, and the more informative the negative substitution is: this notion parallels that of near-misses in attribute-value languages. Formally, a partial order can be de ned on the substitutions in Ex Ce ,andit is shown that non-minimal substitutions can soundly be pruned with regards to discriminant induction 26,29]: this pruning is analogous to the pruning of non near-misses examples in the propositional case [START_REF] Smith | Incremental non-backtracking focusing: A polynomially bounded generalization algorithm for version space[END_REF][START_REF] Sebag | Using constraints to building version spaces[END_REF]. Unfortunately, building the set of such minimal substitutions turns out to be intractable too.

Another possibilitywould be to consider the best substitution , de ned as minimizing some distance to in the line of the structural similaritydeveloped in 2]. For instance, the best substitution in Ex Ce would minimize the sum of the distances between atom i in Ex and atom (i)inCe. As noted in 33], the description of an atom can be handled as a single treestructured feature since the element of an atom commands its atom type (e.g. the atom type of a hydrogen atom is in 1,3] whereas the atom type of a carbon atom is in [START_REF] Muggleton | Inductive logic programming: Theory and methods[END_REF][START_REF] Pazzani | The role of prior knowledge in inductive learning[END_REF]) and the atom type similarly commands its electric charge. De ning a distance between anytwo atoms thus is straightforward: the distance of two atoms having same atom type is the di erence of their electric charges otherwise, if the atoms are of the same element, their distance is the di erence of their atom type, augmented by a su ciently large constant(twice the maximal electric charge) otherwise (the atoms are of di erent elements), their distance is set to another constant(twice the maximal electric charge plus the maximal atom type).

However, using an optimization approach to determine which substitution to consider in Ex C e raises several problems: rst of all, we feel that a single substitution, even optimal, cannot be representative of the whole set Ex Ce second, this combinatorial optimization problem is itself computationally expensive... Finally,we decided to consider several substitutions, the number of whichto be supplied by the user. These substitutions could have been purely randomly de ned, except that, as stated above, substitutions nearer to are more informative. When constructing a substitution ,onethus associates to any atom i in Ex the atom j in Ce which is most similar to i, provided that j is not yet associated to another atom in Ex: atom j in Ce has same electric charge as atom i in Ex, if possible otherwise, it has same atom type otherwise, it is of same element. Let n and n 0 respectively denote the number of atoms in Ex and Ce. The sampling mechanism of the substitutions in Ex Ce is currently implemented as follows:

Select in Ex Ce while possible Select i in f1 ::: n g not yet selected Select j in f1 ::: n 0 g not yet selected such that atom j in Ce is as close as possible to atom i in Ex, Do (i)=j. Note that index j is deterministically selected depending on i, and i is stochastically selected with uniform probability in f1 ::: n g. This way, any atom i in Ex will in average be associated to a similar atom in Ce,p rovided the sampling mechanism is run a su cientnumber of times.

More precisely, the abovestochastic sampling mechanism ensures that a set of samples captures an arbitrarily precise representation of Ex Ce with high probability,provided the number of samples allowed is \su cient". Further work is concerned with formalizing this intuition, as well as improving the selection mechanism via taking into account also the bonds between atoms.

Overview of STILL

The STILL algorithm combines the general approachof DiVS and the above sampling mechanism. This stochastic bias is used to make both induction and classi cation tractable.

Approximate Learning Remember that DiVS constructs the set Th(Ex) of consistenthypotheses that cover Ex, through exploring the whole sets of substitutions Ex Ce for Ce ranging over the counter-examples to Ex. Instead of that, STILL only processes substitutions, where is a positiveinteger supplied by the user. This way, it constructs a set of hypotheses Th (Ex) that cover Ex and are only partially ensured to be consistent, since only sampled substitutions are ensured to be discriminated.

Concretely, the set of hypotheses Th (Ex) is characterized by clause C (with Ex = C) and a set of constraints R, including discriminant constraints built as follows. Let n be the number of counter-examples to Ex for eachcounterexample Ce, n samples of substitutions are selected in Ex Ce . R is composed of the constraints discriminating the selected samples of substitutions derived from all counter-examples. This heuristics ensures that the speci cityofstarTh (Ex) does not depend on whether the seed Ex belongs to the minority or the majority class (this would not be the case if the number of constraints in R were proportional to the number of counter-examples to Ex). It was adopted for reasons of empirical accuracy, as examples in the mutagenesis application are distributed two active to one inactive.

(C R) = Characterize Th (Ex) For i = 1:::K Select in Ex E If entails all in R
return true return false

The classi cation in STILL is nally done according to the standard nearest neighbor algorithm, based on the above Approx Neighbor function.

Note the above function corresponds to an \interpretation" of Th (Ex) that is more speci c than Th (Ex) itself this over-speci city decreases as K increases.

Parameter K controls the number of trials allowed to get an answer from theory Th metaphorically speaking, K corresponds to the \patience" of the constructed expert.

Coping with noisy and sparse examples

Th(Ex) (which is the theory Th (Ex) tends toward as increases) includes consistenthypotheses only, and maximally general consistenthypotheses in particular. No doubt this approach is ill-suited to real-world datasets: when erroneous examples are encountered, strictly consistent hypotheses have few predictive accuracy 4]. And when examples are sparse, maximally general consistenthypotheses are too general: most instances come to be covered byahypothesis in most Th (Ex i), and therefore get unclassi ed, or classi ed in the majority class.

These limitations were already encountered in the attribute-value version of DiVS, and have been addressed bytwo heuristics 28], which simply extend to rst-order logic owing to the computational characterization of the constructed theory.

The presence of noise in the data is classically addressed by relaxing the consistency requirement. This is done at classi cation time, via modifying the test of neighborhood. By de nition, E is considered as neighbor of Ex i it belongs to D(Ex Ce) for all Ce counter-example to Ex. This de nition is simply relaxed as: E is from now on considered as neighbor of Ex i it belongs to D(Ex Ce) for all Ce counter-example to Ex, except at most " of them, where " is a positive integer supplied by the user. The greater ", the wider the neighborhood of Ex is.

The sparseness of the data is addressed by increasing the speci city of the produced theory. This modi cation also takes place during classi cation, and regards the test of constraintentailment. By construction, constraint is the maximally general constraint that discriminates and generalizes it is the disjunction of domain constraints X for X ranging over the variables of C.A given substitution hence entails i there exists at least one variable X such that X: satis es X .

The speci city of the theory is tuned by considering from now on that entails i satis es at least M domain constraints X (instead of one), where M is a positiveinteger supplied by the user. This amounts to considering as an M ; of ; N concept. The greater M, the smaller the neighborhood of Ex is.

Note that the constructed theory does not depend in anywayonthevalues of parameters " or M. In particular, STILL requires no a priori knowledge regarding the rate of noise and representativity of the data. Parameters M and " can be adjusted from the experimental classi cation results | but with no need to restart induction. See 28] for a discussion about the advantages of such ap osteriori biases.

Complexity

As expected, the stochastic bias cuts down the complexity of learning and classi cation.

Let X still denote an upper-bound on the number of variables in C. The complexity of building is still linear in X. The construction of one sample is quadratic in X (this is a large over-estimation). Hence, the complexityof learning Th (Ex) is in O(X 3). Finally, the computational complexity of induction in STILL is linear in the rate of approximation and in the number of training examples, and cubic in the number of variables in one example: O(N X 3) In the mutagenicity problem, N 188, X is less than 200. The rate of approximation was set to 300, to be compared with the typical size of a set Ex Ce ,thatis30 30 . The complexity of classi cation is that of induction increased byfactorK, whichwas set to 3 in our experiments:

O(N X 3 K)
Note that the heuristics designed to cope with noise and sparseness do not modify the computational complexity of classi cation.

Experimentation

This section presents an experimental validation of the algorithms described above on the well-studied mutagenicity problem (see 33] for a detailed presentation of this problem).

The data

The dataset is composed of 125 active molecules and 63 inactive molecules. Four levels of description of these molecules have been considered in the literature 33, 10]: Background knowledge B 1 includes the description of atoms and bonds in the molecules. Background knowledge B 2 stands for B 1 augmented with de nition of numeric inequalities. Background knowledge B 3 is B 2 augmented with a non structural description of the molecules (venumerical and boolean attributes).

Background knowledge B 4 stands for B 3 augmented with the de nition of simple chemical concepts (e.g. benzenic or methyl group).

The reference results obtained by PROGOL and FOIL on this problem (reported from 33] and 34]), are given in Table 1

Experimental Aim

Previous experiments with STILL conducted with background knowledge B 2 31] have shown the validity of this approach in terms of predictive accuracy. Nevertheless, the reason why STILL obtains such good results is still unclear.

A rst explanation is related to the powerful formalism of constraintlogic programming, and the use of inequality constraints relative to either the electric charge or type of element of the atoms, or the non structural description part of molecules (attributes logp and lumo). The use of numerical inequalities is typically responsible for the increase of performance of FOIL from B 1 to B 2 (Table 1).

The in uence of the hypothesis language is evaluated with two experiments. In the rst one, STILL handles all information in the examples as if it were nominal only constraints such as (X = X:) are learned, which means that STILL constructs pure de nite clauses. In the second experiment, inequality constraints can be set on numerical variables and STILL thus constructs constrained clauses.

A second explanation is related to the redundancy of the constructed theory. It has been suggested that redundant classi ers tend to be more robust and reliable than concise ones 6, 23]. STILL involves two kinds of redundancy. First, it both constructs the theory of mutagenic activityandthat of inactivity in opposition, PROGOL only constructs the theory of activity. Second, STILL generalizes all examples, whereas both PROGOL and FOIL removethe examples covered by previous hypotheses.

Tochecktowhat extent redundancy is a key factor of accuracy in our approach, STILL is compared to a variant denoted AQ-STILL,which does include some selection of the seeds. More precisely, AQ-STILL only generalizes those examples whicharenotyet correctly classi ed at the time they are considered.

In summary,fourvariants of STILL are implemented 3 and compared: { STILL CLP , which corresponds to the approach described throughout this paper, where all examples are generalized and inequality constraints can be set on numerical variables { STILL ILP , where all examples are generalized but specialization is limited to variable grounding { AQ-STILL CLP , which di ers from STILL CLP in the selection of seeds and { AQ-STILL ILP , which similarly di ers from STILL ILP in the selection of seeds.

Experimental Settings

The parameters controlling the stochastic biases are constant in the following experiments:

The rate of approximation , that ensures the tractability of induction, is set to 300.

The parameter K, that ensures the tractability of classi cation, is set to 3.

Parameter M used to control the speci city of the theory varies from 1to 10. Parameter ", which corresponds to the maximal number of inconsistencies of a hypothesis, varies from 0 to 4.

All results are averaged over 15 independent runs, where each run consists in learning from 90% of the 188 compounds (randomly selected such that the ratio of active/inactive compounds in the training set is same as in the global data, i.e. about two to one) and classifying the remaining 10% of the data. This protocol of validation is similar to the ten-fold cross validation used in 33] the number of runs is only slightly increased (from 10 to 15), as suggested for stochastic approaches 9].

For each setting of parameters " and M, the average percentage of test examples correctly classi ed, unclassi ed 4 and misclassi ed are indicated (labels Accur,?andMisclass), together with the standard deviation of the accuracy (label). The average run time on HP-735 workstations, including the construction of the theory and the classi cation of the test examples, is also given (in seconds).

Last, the average number of seeds is also indicated in the case of AQ-STILL CLP and AQ-STILL ILP in the case of STILL CLP and STILL CLP ,thenumber of seeds exactly is the number of training examples (170), and has been omitted.

CLP versus ILP

Table 2 shows the results obtained by STILL CLP and STILL ILP . Remember the only di erence lies in the possibility for STILL CLP to set inequality constraints on the type of atom and electric charge of atoms, and on the numerical attributes logp and lumo.

As noted by 12], one cannot conclude from the presence of numbers in a problem, that this problem needs a learner with numerical skills: many learning problems with numbers include in fact very few distinct values, and can therefore be handled by purely symbolic means. But Table 2 Note that the optimal accuracy for STILL CLP corresponds to higher values of M (M = 6-7), than for STILL ILP (M = 2-3). This could be explained as follows. Hypotheses constructed by STILL CLP are more general than those constructed by STILL ILP , for numerical inequalities are more often satis ed than equalities. But the speci cityofhypotheses also increases with parameter M,which o sets the extra generality permitted by the CLP language.

The most striking fact is that the best result of STILL CLP (accuracy 92:5% 5for" =2andM = 6) outperforms that of PROGOL (Table 1) and FORS (with accuracy 89% 6) 10], despite the fact that FORS explores a language of hypotheses (including linear expressions of the numerical variables) much richer than that of STILL CLP .

Of course, a fair comparison would require to see how the predictive accuracy of other learners varies with their control parameters e.g. 33] only indicates the results obtained with PROGOL for a maximal number of inconsistencies set to 4, and a maximal number of literals in a clause set to 5.

This asks the question of how to automatically adjust the parameters of STILL. On-going experiments are concerned with using the training set to tune M and " in the line of 13]. In what regards the number of seeds, it increases with M in AQ-STILL ILP :

as hypotheses get more and more speci c, more and more training examples are unclassi ed at the time they are considered, and they are therefore generalized.

In AQ-STILL CLP , the same trend is observed for high values of M . The number of seeds also increases for small values of M , but for another reason: when M is small, stars constructed by AQ-STILL CLP are overly general more and more examples are therefore misclassi ed and generalized.

The important fact is that the best predictive accuracy of AQ-STILL CLP appears lower than that of STILL CLP (87:8 7 against 92:5 5). This tends to support our claim that redundancy is a key factor of predictive accuracy [START_REF] Sebag | Constraint inductive logic programming[END_REF][START_REF] Sebag | Delaying the choice of bias: A disjunctiveversion space approach[END_REF]. Moreover, the bene t of pruning is unclear with regards to the computational cost: AQ-STILL includes the classi cation of training examples (in order to check whether they can be pruned), which means that the computational complexity of learning is in O(N 2 X 3 K), whereas it is O(N X 3) for STILL. Factually, the computational cost strongly depends on the number of seeds: when the number of seeds is high, as it is the case for AQ-STILL ILP , pruning globally hinders learning.

General remarks and further experiments

As shown in Tables 2 and3, the run-times of STILL range from 50 to 180 seconds (these include the construction of the theory and the classi cation of the test examples on HP-735 workstations). Similar run-times were obtained with background knowledge B 1 and B 2 31]. This fully demonstrates the potential of the stochastic bias presented in this paper, to master the combinatorial complexity of induction in rst order languages.

However, these good results could be due to the ad hoc sampling mechanism designed for the mutagenicity problem (section 3.1). On-going researchis concerned with a pure random sampling mechanism.

The in uence of parameters and K must also be studied. Preliminary experiments with = 700 on background knowledge B 2 show the expected increase in the computational cost (linear in) but only bring a slight improvementof the best predictive accuracy.

Conclusion

We have experimentally demonstrated the potential of the stochastic approximate learner STILL for classi cation purposes.

Themaininterest of this work, in our sense, is to showhow stochastic processes can be engineered to cut down the combinatorial complexity pertaining to ILP.F urther research is concerned with improving the sampling mechanism (e.g. to takeinto account also the bonds between atoms), while preserving an acceptable complexity. Note that this sampling mechanism supports, rather than replaces, induction. This is a strong di erence with the genetic side of machine learning and ILP 14,[START_REF] Wong | Combining genetic programming and inductive logic programming using logic grammars[END_REF]: what is sampled here is related to examples rather than to solutions.

Another interest lies in the non-standard use of the Version Space framework: the computational representation of the constructed theory sidesteps the intrinsic combinatorial complexityofVersion Spaces. Further, it allows one to relax at no additional cost the consistency and generality requirements, whenever this is required by the defects, noise and sparseness of the data. Moreover, experiments demonstrate the bene t of learning redundant theories and Version Spaces are indeed maximally redundant theories.

The main weakness of our learning approach is that it constructs nothing like an intelligible theory.F urther work is concerned with pruning and compacting the inarticulate theory underlying the classi cation process the challenge lies in providing a readable version of this theory having same predictive accuracy. The key question is that of the long debated trade-o between intelligibility and predictive accuracy.

This approach will also be given a learnability model, be it based on PAClearnability 35] or U-learnability 19]. In particular, in the Probably Approximately Correct (PAC) framework, parameter used to sample the substitutions naively corresponds to the probability of getting the desired theory, whose approximate correction is .

1

 The counter-examples to a positive example Ex are the negative examples, and vice versa. The overall theory Th built by DiVS is the disjunction of the version spaces Th(Ex) for Ex ranging over the training set. Disjunctive Version Space Algorithm Th = false. For each Ex training example Th(Ex)=True For each Ce counter-example to Ex Build D(Ex Ce) (section 2.3,2.5) Th(Ex)=Th(Ex) ^D(Ex Ce) Th = Th _ Th(Ex). DiVS di ers from other divide-and-conquer algorithms in one main respect. For most authors 16,20], seeds are selected among positive examples only: e.g. the di erentversions of AQ,and PROGOL as well, only learn the target concept. In contrast, DiVS generalizes positive and negative examples it thereby learns both the target concept and its negation. This hopefully allows the e ects of noisy positive and negative examples to counterbalance each other.

 :33 ce d carbon 2:16 =(Z = carbon) _ (T > ;:33) _ (W < 2:16) It is shown that any constraint generalizing discriminates i it entails (is generalized by) 30]. A clause C therefore belongs to D(Ex Ce) i C generalizes Ex and entails .

 Let N be the number of training examples. Since all D(Ex i Ex j)must be characterized, the complexity of learning in DiVS is O(N 2 X S) And, since checking whether an instance E belongs to Th(Ex) requires to consider all substitutions in Ex E ,thenumber of which is upper-bounded by S, the complexity of classi cation in DiVS is O(N 2 X S 2) The crux of complexity lies in factor S,whichisexponential in the number of literals built on a predicate symbol in the examples 29]. This shows up in the mutagenesis problem, as the number of atoms in a molecule ranges up to 40. S thus is 40 40 ...

 Star Th(Ex), given by the conjunction of D(Ex Ce) for Ce ranging over the counter-examples to Ex, is built with linear complexity in the number N of examples and the number P of attributes. And nally the complexityof DiVS is in O(N 2 P) 28].

	reject Ce:	
	D(Ex Ce)=(element = carbon) _ (type > 3) _ (charge > ;:33)
	2.4 First-order logic learning
	All positive and negative examples of the target concept are represented via Horn clauses. Since there exists no \standard" semantics for the negation in Logic Programming and even less in Constraint Logic Programming, we explic-itly introduce the negation of the target concept tc, denoted opp tc: a negative example is a clause the head of which is built on opp tc. Consider two examples of molecules satisfying the opposite target concepts active and inactive:
	Ex : active(ex) :-atom(ex, a, carbon, 3.38), atom(ex, b, carbon, 1.24).
	Ce : inactive(ce) :-atom(ce, c, hydrogen, -.33), atom(ce, d, carbon, 2.16).
		:
	Ex Ce	Table 1: Seed and Counter-example element typeelectric charge Concept carbon 22 3.38 positive hydrogen 3 -.33 negative
	Let hypotheses be conjunctions of selectors (att = V) 16], where V denotes an interval in case att is linear (e.g. the type or electric charge of atoms), and a value otherwise. The set of hypotheses D(Ex Ce)i sgiven by the disjunction of maximally dis-criminant selectors, i.e. of the maximally general selectors that cover Ex and

 Th(Ex) i E belongs to all D(Ex Ce), for Ce ranging over the counter-examples to Ex. The computational characterization of D(Ex Ce) is su cienttocheckwhether an unseen instance E belongs to D(Ex Ce) 30]: Proposition 2. E belongs to D(Ex Ce) i E can be expressed as C , where C generalizes C and entails for all in Ex Ce .Let Ex E denote the set of substitutions on C matching E . Then, proposition 2 is translated as:

	Belongs(E, D(Ex Ce))		
	For each	in Ex E		
	If	entails	for all	in Ex Ce ,
		return true.		
	return false.		
	And			
	Neighbor (E, Ex) :		(E belongs to Th(Ex))
	For each Ce counter-example to Ex
	if NOT Belongs(E, D(Ex Ce))
		return false		
	return true.		

 The disjunction Th of theories Th (Ex) for Ex ranging over the training set, is termed approximate theory the number of allowed samples is termed rate of approximation. Note that Th is more general than Th and tends toward Th as increases.Approximate classi cation. The classi cation process in DiVS is based onchecking which training examples are neighbors of the instance E to classify (section 2.6). In order to check whether E is neighbor of Ex, i.e. belongs to Th(Ex), DiVS explores the set Ex E of substitutions on C (where Ex = C), matching E . The size of this set similarly makes classi cation intractable.STILL again addresses this limitation via the sampling mechanism: instead of exhaustively exploring Ex E , it only considers K substitutions in this set, where K is a positive integer supplied by the user. E is termed approximate neighbor of Ex if at least one in K samples of Ex E entails all constraints in Th(Ex):

	Characterize Th (Ex):	
	R = .	
	n = Number of counter-examples to Ex
	For Ce counter-example to Ex For j =1::: n ,
	Select	in Ex Ce ,
	Build Do R = R S f g return (C R).
	Approx Neighbor (E, Ex) :

Table 1 :

 1 . The run times (in seconds) are measured on HP-735 workstations. Results of FOIL and PROGOL on the 188-compound problem:Average predictive accuracy on the test set

	Background knowledge B 1 B 2 B 3 B 4	Accuracy FOIL PROGOL FOIL PROGOL Time 60 4 76 3 5 000 117 000 81 3 81 3 9 000 64 350 83 3 83 3 .5 42 120 82 3 88 2 .5 40 950
	In this paper, all experiments conducted with STILL only consider back-ground knowledge B 3 . The 11 264 ground facts composing B 3 are partitioned in 188 ground clauses, each clause including all information relevanttoagiven compound.

 witnesses that the mutagenesis problem does bene t from a CLP formalism.

	" 0 4 81.1 9.6 9.26 5.4 60 7 91.5 1.1 7.41 3.8 86 STILL ILP STILL CLP M Accur. ? Miscl. Time M Accur. ? Miscl. Time 1 86.7 0.74 12.6 6.9 51 4 88.5 0.37 11.1 6.1 73 2 83.3 3.3 13.3 7.7 57 5 91.1 0 8.89 7.3 78 3 86.7 3 10.4 8.1 59 6 90.7 1.1 8.15 4.6 82 5 77.4 14 8.52 11 60 8 86.7 3.7 9.63 8.1 90 6 68.9 19 12.2 12 59 9 91.1 2.2 6.67 5.8 93 7 64.4 26 9.63 7.7 58 10 85.2 4.1 10.7 7.3 97 1 83.3 0.74 15.9 7.7 49 4 89.3 1.3 9.4 7.7 69 2 83.7 1.1 15.2 4.6 55 5 88.9 0 11.1 7.3 74 3 83.7 1.9 14.4 12 58 6 92.5 0.4 7.14 5 77 2 4 80.4 3.7 15.9 6.5 60 7 91.5 0 8.52 5.4 81 5 79.6 4.8 15.6 7.3 59 8 91.9 0.37 7.78 5.4 85 6 80.7 4.8 14.4 10 59 9 87.4 0.37 12.2 6.1 88 7 75.2 9.6 15.2 6.5 58 10 87.4 0.74 11.9 6.5 92 1 82.6 0.74 16.7 8.9 47 4 81.1 0 18.9 5 66 2 85.6 1.1 13.3 6.1 53 5 85.6 1.5 13 8.5 71 3 79.6 1.9 18.5 11 57 6 85.9 0.37 13.7 8.5 75 4 4 78.5 2.6 18.9 7.3 59 7 89.3 0.37 10.4 8.9 78 5 81.1 3 15.9 14 59 8 88.9 1.5 9.63 6.6 82 6 77 5.6 17.4 8.1 59 9 84.8 1.1 14.1 6.1 85 7 75.6 11 13 14 58 10 85.9 0.37 13.7 7.7 89 (a) Without inequality constraints (b) With inequality constraints

Table 2 :

 2 Results of STILL on B 3 , =300, K =3

Table 3 :

 3 Results of AQ-STILL on B 3 , =300, K =3 Again, the use of inequality constraints appears bene cial as AQ-STILL CLP outperforms AQ-STILL ILP .

Variable grounding amounts to domain constraint(X = X:), where X: denotes the constant X is substituted by according to similarly,variable linking amounts to binary constraint(X = Y).

In C ++ .

An example gets unclassi ed if either it admits no neighbor in the seeds, or if the majorityvote ends up in a tie.

This article was processed using the L a T E X macro package with LLNCS style

Acknowledgments. We are grateful to S. Muggleton, A. Srinivasan and R. King, who formalized, studied and made available the mutagenicity problem: this nice problem was determinant for the orientation of the presented work. The work of the authors has been partially supported by the ESPRIT BRA 6020 Inductive Logic Programming and by the ESPRIT LTR 20237 ILP 2 .