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Abstract

Most evolutionary algorithms concerned with
a memory of evolution aim at memorizing
and reusing the recipes of past successes �e�g�
fruitful operators or fruitful mutation direc�
tions��
The scheme proposed here follows the oppo�
site track� and memorizes the past failures
of evolution �un�t o�spring� through a vir�
tual individual termed the virtual loser� The
underlying metaphor is that o�spring should
attempt to get further away from the vir�
tual loser than their parents� This is done
by a new evolution operator� termed �ee�
mutation� as an alternative to standard re�
combination and mutation� Special atten�
tion is paid to adjusting the �ee�mutation
step size� Experiments on large sized prob�
lems validate this approach� and unexpect�
edly show that a constant �ee�mutation step
size over a population is desirable�

� Introduction

In the framework of Evolutionary Computation �Gold�
berg ����� Schwefel ����� Fogel ���	�� the population
can be viewed as an implicit memory of the past evo�
lution� the population is indeed representative of the
successes �most �t individuals� encountered so far�

This paper rather focuses on explicit collective mem�
ory �EC�memory�� meant as any kind of information
which re�ects the past history of evolution and is
stored apart from the individuals themselves� This
general de�nition notably encompasses all global pa�
rameters that are adaptively adjusted �Davis �����
Eiben � Ruttkay ���
� Hansen� Ostermeier� � Gawel�
czyk ���	� Baluja � Caruana ���	� Dorigo � Gi�
ambardella ���
� as well as rules or beliefs learned
over several generations �Reynolds � Matelik �����
Reynolds ����� Sebag � Schoenauer ����� Ravise �
Sebag ���
��

EC�memory can be analyzed with regards to both its
use and its contents� As a matter of fact� EC�memory
can be used to drive most components of evolution� the
selection of individuals �Eiben � Ruttkay ���
�� the
choice of evolution operators �Davis ������ the way
recombination and mutation operate �e�g� localiza�
tion of crossing points and�or �ipped bits� continu�
ous mutation directions� �Sebag � Schoenauer �����
Ravise � Sebag ���
� Hansen� Ostermeier� � Gawel�
czyk ���	�� and it can also control the generation of
new individuals� providing an alternative to standard
recombination and mutation �Baluja � Caruana ���	�
Dorigo � Giambardella ���
��
As to its contents� EC�memory can either re�ect
uniquely the past successes of evolution� i�e� who are
the �ttest individuals and how they were found �Davis
����� Baluja � Caruana ���	� Dorigo � Giambardella
���
�� or� it can re�ect both successes and errors �e�g�
un�t individuals� disruptive operators� �Eiben � Rut�
tkay ���
� Reynolds ����� Sebag � Schoenauer ������

This paper continues a previous work devoted to
�civilized evolution�� and based on coupling evolu�
tion and machine learning �Sebag � Schoenauer �����
Ravise � Sebag ���
�� the knowledge learned from
the past errors of evolution is used to prevent the fur�
ther generations from repeating the past errors� In the
present work� the EC�memory of errors is no longer ex�
pressed within rules� but as a template of past un�t
o�spring� termed the virtual loser� The virtual loser
is used to directly evolve individuals via a new opera�
tor� termed Flee�mutation� The underlying metaphor
is that o�spring should attempt to be more di�erent
from the virtual loser� than their parents�

Flee�mutation combines mutation and recombination
in the following respects� Like mutation� it proceeds
by �ipping some bits in the parent� one di�erence with
regards to standard GA mutation� is that much more
bits are �ipped� The advantages of large�rate mutation
have been emphasized for real�valued search spaces
�see �M�uhlenbein ����� among others�� and these have
been con�rmed for some binary problems too �Jones
���	��



On the other hand� �ee�mutation resembles recombi�
nation� in that the probability of modifying a given
bit depends on other individuals� This contrasts with
both standard mutation and self adaptive mutation�
where the modi�cations are respectively done at ran�
dom or depend only on the individual at hand� The
di�erence between recombination and �ee�mutation is
that the modi�cations are biased from the past popu�
lations �instead of the current population only��

This paper is organized as follows� Section � describes
some works related to the explicit collective memory of
evolution� without pretending to exhaustivity� Section
� details the �ee�mutation scheme� the critical points
concern both the mutation step size �how many bits
should �ipped� and the choice of these bits� Section
� presents and discusses an experimental validation of
this scheme on large sized binary problems ���� bits�
taken from �Baluja ���	�� We conclude with some
perspectives for further research�

� State of the art

In a majority of works related to EC�memory� memo�
rization proceeds by counting desirable events and�or
rewarding fruitful options� it produces numerical infor�
mations �Davis ����� Eiben � Ruttkay ���
� Dorigo �
Giambardella ���
� Baluja � Caruana ���	� Hansen�
Ostermeier� � Gawelczyk ���	�� In other works�
memorization is based on machine learning �Michalski
����� Mitchell ������ and proceeds by inducing logical
rules or beliefs from examples drawn from evolution
�Reynolds ����� Ravise � Sebag ���
�� These two
types of memory are respectively referred to as nu�
merical and symbolic�

��� Numerical memory

Among the global parameters of evolution are the op�
erator rates� Davis proposed an adaptive mechanism
to control these parameters and choose between sev�
eral types of recombination and mutation operators
�Davis ������ The idea is to gradually increase the
rate of those operators which actually lead to �t indi�
viduals� In this frame� the EC�memory consists of the
operator rates and it controls the choice of operators�
The memorization process proceeds by relaxation��

Another example of collective memory in the context
of SAT problems� is given by the SAW�GA �Eiben �
Ruttkay ���
�� In this approach� the violation of con�
straints is accounted for by penalization� the penal�

�Relaxation is commonly used �e�g� in neural nets� to
ensure smooth updates and prevent numerical oscillations�
it reads

p �� ��� ��p	 �
p

where � �� ��� �� is the relaxation factor and governs the
speed of changes� and 
p is the instant amount to be added
or removed from p�

ization for violating a constraint decreases when the
constraint is often satis�ed in the population� An in�
dividual which violates a widely satis�ed constraint
while being the only one to satisfy another constraint
will thus more likely be selected� The underlying idea
is that such an individual brings new valuable genetic
material� whereas its failures can be repaired by re�
combination� as the corresponding genetic material is
widely available in the population�
The EC�memory here consists of the penalization
weights� and controls the selection step� The weights
are also updated by relaxation�

As third example� PBIL memorizes the �ttest individ�
uals of the past generations into a virtual individual
�in ��� ��N if N denotes the dimension of the search
space� �Baluja � Caruana ���	� Baluja ���	�� This
virtual individual� which can be thought of as virtual
leader� is interpreted as a vector of probabilities and
used to construct the next population from scratch�
For instance� if the virtual leader takes value �� for the
�rst bit� the �rst bit will be set to � for ��� of the
individuals in the population� The EC�memory here
consists of the virtual leader� and it allows to sidestep
recombination and mutation� Again� the memory is
updated by relaxation�

Still another example of evolution guided by numer�
ical EC�memory is provided by arti�cial ants and
pheronome trails �see �Dorigo � Giambardella ���
�
among others�� The pheronome trails re�ect the in�
teresting events of the recent history of ants �for bi�
ologic ants� the paths actually leading to some food�
for arti�cial ants� for instance the best tours in the
frame of TSP�� These trails act as attractors� the more
pheronome on a path� the more ants follow this path�
and if this path still leads to something interesting� the
more ants will add pheronome on this path�
Like in PBIL� this EC�memory can be viewed as a vir�
tual individual�� It is used to generate the individuals
�or their actions� and it is built by relaxation�

A last example is provided by �Hansen� Ostermeier� �
Gawelczyk ���	�� The history of one individual �real�
valued vector� is constructed by relaxation from its
successive climbing steps �di�erence between the par�
ent and the o�spring�� The EC�memory consists of the
history of the �ttest individuals� eventually rearranged
as to form a basis of the search space� The mutation of
one individual is expressed as a linear combination in
this basis� whose coe�cients undergo self�adaptation�
One advantage of this scheme is to allow self�adaptive
mutation to be independent of the given coordinate
system�

�For instance� in the TSP with N cities� an individual
is a permutation over f� � � � Ng while the EC�memory is a
matrix �N �N�� whose coe�cients belong to ��� ��



��� Symbolic memory

Other works that explicitly refer to the memory of
evolution are based on machine learning from exam�
ples �Michalski ����� Mitchell ������ In cultural al�
gorithms �Reynolds � Matelik ����� Reynolds ������
one gradually learns from the individuals in the cur�
rent population� and thus constructs beliefs about the
relevance of schemas� EC�memory here consists of a
lattice of beliefs� used to drive the generation of o��
spring�

In civilized evolution �Sebag � Schoenauer �����
Ravise � Sebag ���
�� one learns from the operators
�crossover and mutation masks� and thus constructs
rules characterizing disruptive operators� an example
of such a rule would be� if there exists a crossing
point between the �nd and the �rd bit� the crossover
is disruptive�� or If bit � is mutated� the mutation is
disruptive� These rules are used to control the oper�
ators and decrease the odds of disruptive evolution�
EC�memory here consists of logical rules�

In both cases� EC�memory encodes some knowledge�
this knowledge �about �t�un�t individuals in cultural
algorithms� and fruitful�disruptive evolution operators
in civilized evolution� is used to guide the recombina�
tion and mutation of individuals� The Darwinian evo�
lution paradigm thereby shifts toward  advanced evo�
lution�� some knowledge �culture� moral principles�����
is acquired along evolution� and the capitalization of
knowledge expectedly speeds up evolution�

��� Lesson

This induction�based approach brought some gain
with respect to the number of function evaluations
needed to reach the optimum� Unfortunately� the cost
of induction o�sets or even exceeds this gain� This
may be partly due to the fact that most test functions
are inexpensive� in this context� control must be ei�
ther exceedingly e�cient� or of negligible cost to be
competitive�

Still� civilized evolution gives some insights into how
evolution actually works� For instance� it enables to
compare the control of crossover and the control of mu�
tation� since the same mechanism can be used to con�
trol either one or the other� And� despite the fact that
the mutation rate was one or several orders of magni�
tude lower than that of crossover in these experiments�
the control of mutation appeared much more e�cient
than that of crossover� In retrospect� it becomes clear
that the disruptiveness of crossover decreases as evo�
lution proceeds and the population gets homogeneous�
But nothing� except control� can ever act against the

�Rules related to crossover are valid during a more or
less short period of time� typically� after a relevant schema
involving bits � and � has emerged� and before this schema
has crowded the population�

disruptiveness of mutation� this can explain why the
control of mutation� determining which bits should not
be mutated� makes such a di�erence �Ravise � Sebag
���
��

In summary� what would be needed is a preventive
memory� telling what not to do� easy to acquire and
use� This leads to investigate numerical� rather than
symbolic� EC�memory�

� Inhibitions and Flee�Mutation

This section �rst motivates the choice of memorizing
errors only� It describes how this memory is con�
structed and how it guides the choice of the bits to
mutate� A last issue concerns the number of bits to
mutate�

��� When are inhibitions reliable �

Let us assume that the �tness landscape is �xed and
that the �tness of an individual does not depend on
the other individuals in the population� These as�
sumptions are most often satis�ed in applications of
evolutionary computation� We further assume that
the selection scheme is elitist� such as in the �� ! ��
evolution strategy scheme �Schwefel ������

Under these assumptions� if some o�spring is not �t
enough to survive selection at step t� it has no chance
to survive selection in later steps� In other words� the
generation of this o�spring is a pure waste of time
" an error of evolution " and will remain so in the
future of evolution� Inhibiting the generation of such
individuals thus makes sense�

The strategy based on the memorization and repeti�
tion of past successes �e�g� �Dorigo � Giambardella
���
� Baluja � Caruana ���	�� is basically oriented to�
ward exploitation� it can be deceptive as it breaks the
balance between exploration and exploitation �Gold�
berg ������ In opposition� the strategy based on the
memorization and avoidance of past errors restricts the
scope of both exploitation and exploration� it just for�
bids to consider some un�t individuals� regardless of
whether these individuals are close to current �ttest
individuals or not�

The strategy based on inhibitions �memorizing the er�
rors in order not to repeat them� is closely related to
the Tabu search �Glover ������ where the last trials
are stored in order not to be considered again� How�
ever� this is not directly applicable in the context of
evolutionary search� the list of past individuals either
covers a negligible fraction of the search space� or is
intractable�



��� Utility of Inhibitions

The goal is to construct a tractable description of the
past errors� and see how this can support evolution�
Indeed� errors give some hints as to which bits should
be mutated in relevant individuals� Let individuals X �
Y � Z and T be as in Table �� where X � termed leader�
has a �comparatively� high �tness� and Y � Z and T �
termed losers� all have a low �tness�

Bit � takes di�erent values for the leader X and the
losers Y� Z and T � By induction� this di�erence in
their genotypes may be considered a  cause� for the
di�erence in their �tness� one should therefore preserve
this feature in X � Inversely� nothing can be said as to
the in�uence of bit 	 regarding the �tness� as this bit
takes same value for all individuals� Hence� mutation
of X should rather a�ect bit 	 than bit ��

Let the average of Y � Z and T be noted V L for virtual
loser� the probability of mutating bit i in individual X
should re�ect how much it discriminates Xi from V L�
that is� it should increase with �� jV Li �Xij�

Table � � Comparing a winner and some losers

bit � � � � 	 Fitness
X � � � � � high
Y � � � � � low
Z � � � � � low
T � � � � � low
V L � �

 ��� �

 �

In this framework� EC�memory consists of the virtual
loser V L �in ��� ��N�� It is updated by relaxation from
a fraction of the worse individuals in the current popu�
lation� If � denotes some relaxation factor and dV L is
the average of these worse individuals�

V Lt�� # ��� ��V Lt ! � � dV L

��� Flee	mutation

Let X be the current individual and let pi denote the
quantity � � jV Li � Xij� The �ee�mutation operator
can be viewed as a hill�climber where �p�� ��pN � cor�
responds to the climbing direction �discrete gradient��
the climbing direction consists in getting away from
V L�

Let M denote the number of bits to mutate �see be�
low�� In a previous work� devoted to the no�memory
case �� # ��� the bits to mutate were selected by a
roulette wheel on the pi �Sebag � Schoenauer ���
��
However� this showed ill�suited for � � �� as all pi
then get very close in the end of evolution� A strong
selection pressure is therefore needed� which leads to
mutate a restricted set of bits� which in turn entails a
loss of genetic diversity and premature convergence�
In the present work� each bit to mutate is selected by
tournament� This requires to know in advance the to�
tal number of bits to mutate in an individual�

Flee�mutation thus di�ers from standard mutation
in that the probability of mutating one bit depends
on both the bit itself and the individual at hand�
The di�erence with self�adaptive mutation �mostly
used in continuous search spaces �Schwefel ������ but
which has been extended to boolean search spaces
�B�ack � Sch�utz ���	��� is that the individual climb�
ing directions are here correlated by force through the
EC�memory� whereas these are independent in self�
adaptive mutation�

��
 Flee	mutation step size

The tradeo� between exploitation and exploration in
the �ee�mutation scheme is governed by the numberM
of bits to mutate per individual� termed �ee step size�
like standard mutation� �ee�mutation achieves ex�
ploitation for small values of M and does more and
more exploration as M increases�

Adaptive adjustment� The ideal solution would be
to adaptively adjust the number of bits to mutate�
Several heuristics to this aim were tried� self adap�
tation of M � encoded as an integer in the individuals�
global adjustment of M based on rewards� a la Davis
�Davis ������ Unfortunately� these strategies rapidly
lead to �ip only one bit� and �ee�mutation thus gets
trapped in local optima�
In retrospect� it appears that rewards�based adjust�
ment tends to favor options that bring small frequent
gains rather than large rare ones� the less a risky op�
tion is chosen� the less it is rewarded� and the less it
will be chosen��� The same goes for self�adaptation�
both mechanisms are risk adverse and favor conser�
vative options� And obviously� small values of M do
result in more frequent� if smaller� performance gains�

At the population level� It was therefore decided
to use �xed schedules to set the �ee step size M t at
the evolution step t� The simplest possibility consists
of using a single M for all evolution steps� A more
sophisticated possibility is taken from �B�ack � Sch�utz
���
�� M t decreases with t according to an hyperbolic
schedule �determined as optimal for the sphere prob�
lem�� It reads

M t #
�

�

M� ! t � ��
�

M�

T��

���

where T is the allowed number of generations and M�

the initial value�

At the individual level� In most approaches� muta�
tion employs a probability of mutation per bit �Gold�
berg ����� Schwefel ����� B�ack � Sch�utz ���
�� If the
sum of these probabilities equals M t� the number of
�ipped bits is indeed M t on the average� But in the
�ee�mutation scheme� the number of bits to mutate
must be known in advance for these bits are selected
by tournament �section ����� Again� the simplest pos�
sibility consists of mutating exactly M t bits for each



individual of the current population� But this makes
impossible to explore the whole search space� in the
case where M t is constant and even� And in all cases�
some  stripes� of the space will be more di�cult to
reach than others�

Varying the number of bits to mutate at the individual
level thus appears highly desirable� This is obtained by
taking advantage of the following remark� The limit of
the sum ofN independent boolean random variables of

probabilities qi� when N goes to in�nity while
P

N

i��
qi

goes to a �nite value �� is the Poisson distribution of
parameter � �Pitman ������ The Poisson distribution

of parameter � is given by P �X # k� # e�� �
k

k�
� and is

easily numerically realized by counting the number of
uniform random variables in ����� needed before their
product becomes less than exp��� The Poisson ap�
proximation for the sum of random boolean variables
is considered accurate for high values of N �N � 	���
and hence holds for the problems considered in the
following �N # �����

How does this apply to our problem $ If �ee�mutation
were based on probabilities of mutation per bit� the
sum of these probabilities should beM t� and the num�
ber of bits e�ectively mutated would follow a Poisson
distribution of parameter M t� One may thus select an
integer according to the Poisson distribution of param�
eter M t� and use this integer as the number of bits to
mutate for a given individual� Thereby� an % integer %
number of bits to mutate per individual is determined�
approximating the % real % M t on the average� Yet�
this number may widely vary from one individual to
another�

Four kinds of �ee�mutation are �nally considered� by
combining the following possibilities�

� At the population level� the �ee step size M t can
be set to a user�supplied value M � or it can de�
crease from an initial value M� according to the
hyperbolic schedule given by equation ����

� At the individual level� the �ee step size can be
set to M t or it can be selected according to the
Poisson distribution of parameter M t�

��� Overview of the algorithm

Flee�mutation is embedded into ��!���ES� the popu�
lation includes � parents� � o�spring are derived from
the parents by �ee�mutation� and the selection is deter�
ministic among the � parent and � o�spring� Besides
� and �� this algorithm involves 
 parameters�

� the scope and fading of inhibitions� meant as the
fraction of the worse individuals used to update
V L and the relaxation factor � �section �����

� the strength of inhibitions� meant as the tourna�
ment size used to select the bits to mutate accord�
ing to V L �section �����

� the speed of evolution� parameterized by either
the �xed �ee step size M � or its initial value M�

within an hyperbolic schedule �section �����

� the variability of inhibitions over individuals
�boolean�� controlling whether the number of bits
to mutate per individual is �xed over the popula�
tion or obtained by Poisson�based selection �sec�
tion �����

� Experimental Validation

The experimentations consider some problems taken
from �Baluja ���	��


�� Test cases

These problems aim at optimizing six functions on
f�� �g���� These respectively correspond to the binary
and Gray encoding of three functions F�� F� and F� of
��� numerical variables xi coded on � bits each and
varying in ����	
���	
��

y� # x�

yi # xi ! yi��� i � � F� #
���

���	 !&ijyij
y� # x�

yi # xi ! sin�yi���� i � � F� #
���

���	 !&ijyij

F� #
���

���	 !&ij���� � �i! ��� xij
All functions admit a single optimum� The discretized
F� and F� have same optimum as the continuous F�
and F�� ���


 is obtained for ��� � � � � ���� The discretized
F� culminates at ��
�
�� �the optimum ��
 is obtained
for �xi # ���� � �i!���� which does not belongs to the
discretized space��
Note that F� with Gray coding is equivalent to the
Onemax problem� for any individual X � there exists a
path �X� # X�X�� ���Xmax� linkingX to the optimum�
with Xi and Xi�� di�ering by one bit� and F��Xi� �
F��Xi����


�� Reference algorithms

Multiple restart hill�climbers denoted HC� and HC��
as well as two genetic algorithms denoted SGA and
GA�scale� have been used in �Baluja ���	� as reference
algorithms�

� HC� randomly considers the neighbors of the seed
�di�ering from the seed by one bit�� the seed is
replaced by the �rst neighbor which strictly im�
proves on the seed� If all neighbors have been
considered� HC� is restarted with another seed�



Table �� Average best �tness ��� runs� after ������� evaluations� Results of AES and TES have been obtained
using the algorithms described in the text� other results are taken from �Baluja ���	�� On the average� PBIL
slightly outperforms Adaptive ES and both outperform other algorithms� except on the Onemax�like F� gray�

F� binary
F� Gray
F� binary
F� Gray
F� binary
F� Gray

HC� HC� SGA GA�scale AES TES PBIL
���� ���� ���
 ���� ���� ���� ����
���� ���� ���� ���� ���� ��

 ���
���� ���
 ��	� ��
� ���� ��
� 
�
�
���� ���� ��
� ��
� 	��� ��

 ���
���� ���� ���� ����� ���
 ����
 ��
�


��� 
��� ����	 ������ ����� 
��� �

���

Table �� Average best �tness ��� runs� after ������� evaluations� obtained for �ee�mutation and free�mutation
�no inhibitions�� and corresponding to optimal values of M and M� �between parentheses�� The best strategy

appears to decrease the mutation step size over generations and keep it constant over a population�

Flee�Mutation Free�Mutation
Mt �xed Mt decreases Mt �xed Mt decreases

Poisson Cst Poisson Cst Poisson Cst Poisson Cst
F�b ���� ��� ���� ��� ���
 ��� ���� ��� ���� ��� ���� ��� ���	 ��� ���� ����
F�g ���� ��� ��
	 ��� ���
 ��	�� ��� ��	� ���� ��� ���� ��� ���� ��	�� ��
� ��	��
F�b ��	� ��� ���� ��� ��	� ��	�� ���� ��	�� ���
 ��� ��	� ��� ���� ��	� 	��� ��	�
F�g 	��	 ��� 
��
 ��� 	��� ��	� ��� ��	� 	��� ��� 	��� ��� 	��� ��	�� 
��� ����
F�b ����� ��� ����� ��� �
��� ���� ����� ��	� ����� ��� ���

 ��� �
��� ��	�� ����� ����
F�g �����
 ��� ����� 
��� ��
��� ��� 
��� ��
��� ��� 
��� ��	��� ���

� HC� di�ers from HC� in that it allows to replace
the seed by a neighbor having similar �tness�

� SGA is a standard GA which uses two point
crossover� with crossover rate ����� mutation
rate ����� population size ��� and elitist selec�
tion�

� GA�scale di�ers from SGA in two respects� it uses
uniform crossover with rate ���� and the �tness
of the worst individual is subtracted from the �t�
ness of all individuals in the population before
selection� A more detailed description of these al�
gorithms� as well as their results on the considered
problems� can be found in �Baluja ���	��

Two additional reference algorithms have been consid�
ered here�

� TES �for Traditional evolution strategy� is a bi�
nary �� ! ���ES involving a single mutation rate
per bit � � � is modi�ed according to the Rechen�
berg�s ��	 rule �Rechenberg ������ The geomet�
rical factor used to increase � ranges from ��� to
��

� AES �for Adaptive ES� is a binary ��!���ES that
uses the adaptive mutation of �Obalek ����� as
described in �B�ack � Sch�utz ���	�� each individ�
ual is attached one mutation rate per bit � which
itself undergoes mutation according to the follow�
ing Obalek�s rule�

� �#
�
� ! ���

�
�exp�	 � N��� ���

�
� 	 # ��	p

�
p
N

We further require � � �
N to guarantee e�ective
mutation� In both cases� � is �� and � is ����


�� Results

The experimental settings of the �ee�mutation scheme
are the following� the ES parameters are � # �� and
� # 	�� the inhibitions are constructed from the only
worse o�spring� and the relaxation factor � is set to
���� the strength of inhibitions is set to �� These pa�
rameters were found rather robust for all problems�
On the opposite� the value of M appears critical de�
pending on the �tness landscape�

In order to check the importance of inhibitions� the
�ee�mutation scheme is compared to an �free� scheme
�legend Free�mutation in Table ��� free�mutation
performs like �ee�mutation based on void inhibitions
�V L # ��	� � � � � �	��� In both cases� the number of
bits to mutate M t is either �xed or decreases after
an hyperbolic schedule at the population level� and it
is either constant or follows a Poisson distribution at
the individual level� Note that the free scheme with
Poisson�based selection of the bits to mutate corre�
sponds to �ipping all bits with probability M t
N � as
done in �B�ack � Sch�utz ���
��

Several values of M �in the �xed schedule� and M�

�in the hyperbolic schedule� have been tried� Table �
reports the best results� together with the correspond�
ing value of M �varying in ���	� and M� �varying in ��
�	� ��� �	���



All algorithms are allowed ������� �tness calculations
per run� Results are averaged over �� independent
runs� The best results are indicated in bold �Table
� and Table �� several results are in bold for F�b� as
their di�erence is not statistically signi�cant from the
standard deviations��


�
 Discussion

These results ask for several comments�
First of all� the best results obtained with the �ee�
mutation scheme improve on PBIL and signi�cantly
outperform standard GAs et ESs� But the question of
determining the optimal value for M or M� remains
open�

Second� as expected and in agreement with �B�ack
� Sch�utz ���
�� results are better when the
�ee step size decreases along evolution �hyperbolic
schedule�� Yet� if we except the Onemax�like F� Gray�
evolution stops quite far from the global optimum� it
therefore should not need �ne tuning �M # ���

Third� and this was unexpected� varying the
�ee step size over the individuals �Poisson distribu�
tion� degrades the results compared to keeping it con�
stant� For both �ee� and free�mutation� the best choice
is to decrease the �ee step sizeM t along evolution� and
mutate exactly �int�M t bits for all individuals in the
population�

Last� �ee�mutation improves on free�mutation " but
not that much� This may imply that the real e�ciency
rather comes from setting the mutation step size� than
the mutation direction� and from the third remark� it
is better to use a �xed mutation step size� rather than
scattering the o�spring� Still� this may be an arti�
fact due to the arti�cial test functions considered� on
the Long Path problem for instance �Horn � Goldberg
���	�� no wonder tremendous results were obtained by
setting the mutation step size M to � �Sebag � Schoe�
nauer ���
��
Another possible explanation is that the contents and
strength of inhibitions were too restricted to cause a
great di�erence� inhibitions are constructed from the
single worse individual and the inhibition strength was
low �the bits to mutate were selected with a tourna�
ment size of ��� Still� the gain is statistically signi��
cant�
Further work will address both issues� consider less
regular binary functions� e�g� obtained from F�� F�
and F� by a rotation on IR���� and investigate what
happens when the in�uence of inhibitions is increased�

� Conclusion and Perspectives

In the framework of biologic evolution� the acquisition
of inhibitions based on the past of evolution might be
irrelevant� such inhibitions may turn out to be de�

ceptive as the environment and the �tness landscape
change�

But most EC applications deal with �xed �tness land�
scapes� refraining from repeating past errors thus con�
stitutes a sensible inhibition� The proposed scheme
therefore combines evolution and some ideas of Tabu
search� the list of past trials is replaced by a distribu�
tion� the virtual loser� Flee�mutation evolves the indi�
viduals to get away from the virtual loser� it extends
recombination �modi�cations are biased according to
the past populations� and yet enjoys a desirable prop�
erty of mutation� the distance between o�spring and
parents ��ee step size� can be controlled�

The potentialities of this scheme are demonstrated on
several large sized problems� The main weakness pre�
cisely concerns the setting of the �ee step size� Fur�
ther research will investigate how a priori estimates�
inspired for instance by the Fitness Distance Correla�
tion �Jones � Forrest ���	�� could support this setting�

Another direction of research is to extend �ee�
mutation to continuous search spaces� The memory
itself can still be represented as a distribution over the
search space� but the critical point will be how to use
it�

Last� the ideal scheme would be to take advantage of
two memories� that of errors and that of successes
�acquiring motivations as well as inhibitions�� Com�
paring both memories might also give hints regarding
the setting of the �ee step size�

References

B�ack� T�� and Sch�utz� M� ���	� Evolution strategies
for mixed�integer optimization of optical multilayer
systems� In McDonnell� J� R�� Reynolds� R� G�� and
Fogel� D� B�� eds�� Proceedings of the 	th Annual Con�
ference on Evolutionary Programming� MIT Press�

B�ack� T�� and Sch�utz� M� ���
� Intelligent muta�
tion rate control in canonical gas� In Ras� Z� W�� and
Michalewicz� M�� eds�� Foundation of Intelligent Sys�
tems 
th International Symposium� ISMIS �
�� �	�%
�
�� Springer Verlag�

Baluja� S�� and Caruana� R� ���	� Removing the
genetics from the standard genetic algorithms� In
Prieditis� A�� and Russel� S�� eds�� Proceedings of
ICML
�� ��%�
� Morgan Kaufmann�

Baluja� S� ���	� An empirical comparizon of
seven iterative and evolutionary function optimiza�
tion heuristics� Technical Report CMU�CS��	�����
Carnegie Mellon University�

Davis� L� ����� Adapting operator probabilities in
genetic algorithms� In Scha�er� J� D�� ed�� Proceed�
ings of the �rd International Conference on Genetic
Algorithms� 
�%
�� Morgan Kaufmann�



Dorigo� M�� and Giambardella� L� ���
� A study of
some properties of Ant�Q� In Voigt� H��M�� Ebeling�
W�� Rechenberg� I�� and Schwefel� H��P�� eds�� Pro�
ceedings of the �th Conference on Parallel Problems
Solving from Nature� volume ���� of LNCS� 
	
%

	�
Springer Verlag�

Eiben� A�� and Ruttkay� Z� ���
� Self�adaptivity for
constraint satisfaction� Learning penalty functions�
In Fukuda� T�� ed�� Proceedings of the Third IEEE
International Conference on Evolutionary Computa�
tion� �	�%�
�� IEEE Service Center�

Fogel� D� B� ���	� Evolutionary Computation To�
ward a New Philosophy of Machine Intelligence� Pis�
cataway� NJ� IEEE Press�

Glover� F� ����� Heuristics for integer program�
ming using surrogate constraints� Decision Sciences
������	
%�

�

Goldberg� D� E� ����� Genetic algorithms in search�
optimization and machine learning� Addison Wesley�

Hansen� N�� Ostermeier� A�� and Gawelczyk� A� ���	�
On the adaptation of arbitrary normal mutation dis�
tributions in evolution strategies� The generating set
adaptation� In Eshelman� L� J�� ed�� Proceedings of
the 
th International Conference on Genetic Algo�
rithms� 	�%
�� Morgan Kaufmann�

Horn� J�� and Goldberg� D� ���	� Genetic algorithms
di�culty and the modality of �tness landscapes� In
Whitley� L� D�� and Vose� M� D�� eds�� Foundations of
Genetic Algorithms �� ���%�
�� Morgan Kaufmann�

Jones� T�� and Forrest� S� ���	� Fitness distance cor�
relation as a measure of problem di�culty for genetic
algorithms� In Eshelman� L� J�� ed�� Proceedings of the

th International Conference on Genetic Algorithms�
���%���� Morgan Kaufmann�

Jones� T� ���	� Crossover� macromutation and
population�based search� In Eshelman� L� J�� ed��
Proceedings of the 
th International Conference on
Genetic Algorithms� ��%��� Morgan Kaufmann�

Michalski� R� ����� A theory and methodology of in�
ductive learning� In Michalski� R�� Carbonell� J�� and
Mitchell� T�� eds�� Machine Learning � an arti�cial
intelligence approach� volume �� Morgan Kaufmann�
��%����

Mitchell� T� ����� Generalization as search� Arti�cial
Intelligence ������%��
�

M�uhlenbein� H� ����� How genetic algorithms re�
ally work� I� mutation and hill�climbing� In Manner�
R�� and Manderick� B�� eds�� Proceedings of the �nd

Conference on Parallel Problems Solving from Na�
ture� �	%�	� Morgan Kaufmann�

Obalek� J� ����� Rekombinationsoperatoren f�ur Evo�
lutionsstrategieren� Ph�D� Dissertation� Universit�at
Dortmund� Fachbereich Informatik�

Pitman� J� ����� Probability� Springer Verlag�

Ravise� C�� and Sebag� M� ���
� An advanced evolu�
tion should not repeat its past errors� In Saitta� L��

ed�� Proceedings of the ��th International Conference
on Machine Learning� ���%����

Rechenberg� I� ����� Evolutionstrategie� Optimierung
Technisher Systeme nach Prinzipien des Biologischen
Evolution� Stuttgart� Fromman�Holzboog Verlag�

Reynolds� R�� and Matelik� ����� The Use of Ver�
sion Space controlled Genetic Algorithms to Solve the
Boole Problem� In Int J on Arti�cial Intelligence
Tools� Vol �� N�� ���%����

Reynolds� R� ����� An introduction to cultural algo�
rithms� In Proceedings of the �rd Annual Conference
on Evolutionary Programming� ���%���� World Sci�
enti�c�

Schwefel� H��P� ����� Numerical Optimization of
Computer Models� New�York� John Wiley � Sons�
���	 % �nd edition�

Sebag� M�� and Schoenauer� M� ����� Controlling
crossover through inductive learning� In Davidor� Y��
Schwefel� H��P�� and Manner� R�� eds�� Proceedings of
the �rd Conference on Parallel Problems Solving from
Nature� ���%���� Springer�Verlag� LNCS �

�

Sebag� M�� and Schoenauer� M� ���
� Mutation by
imitation in boolean evolution strategies� In Voigt�
H��M�� Ebeling� W�� Rechenberg� I�� and Schwefel� H��
P�� eds�� Proceedings of the �th Conference on Parallel
Problems Solving from Nature� �	
%�
	� Springer�
Verlag� LNCS �����


