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Toward Civilized Evolution: Developing Inhibitions

Most evolutionary algorithms concerned with a memory of evolution aim at memorizing and reusing the recipes of past successes (e.g. fruitful operators or fruitful mutation directions). The scheme proposed here follows the opposite track, and memorizes the past failures of evolution (un t o spring) through a virtual individual termed the virtual loser. The underlying metaphor is that o spring should attempt to get further away from the virtual loser than their parents. This is done by a new evolution operator, termed eemutation, as an alternative to standard recombination and mutation. Special attention is paid to adjusting the ee-mutation step size. Experiments on large sized problems validate this approach, and unexpectedly show that a constant ee-mutation step size over a population is desirable.

Introduction

In the framework of Evolutionary Computation [START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF][START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF][START_REF] Fogel | Evolutionary Computation. Toward a New Philosophy of Machine Intelligence[END_REF], the population c a n b e v i e w ed as an implicit memory of the past evolution: the population is indeed representative o f t h e successes (most t individuals) encountered so far. This paper rather focuses on explicit collective memory (EC-memory), meant as any kind of information which re ects the past history of evolution and is stored apart from the individuals themselves. This general de nition notably encompasses all global parameters that are adaptively adjusted [START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF][START_REF] Eiben | Self-adaptivity for constraint satisfaction: Learning penalty functions[END_REF][START_REF] Hansen | On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation[END_REF][START_REF] Baluja | Removing the genetics from the standard genetic algorithms[END_REF][START_REF] Dorigo | A study of some properties of Ant-Q[END_REF] as well as rules or beliefs learned over several generations [START_REF] Reynolds | The Use of Version Space controlled Genetic Algorithms to Solve t h e Boole Problem[END_REF][START_REF] Reynolds | An introduction to cultural algorithms[END_REF][START_REF] Sebag | Controlling crossover through inductive learning[END_REF][START_REF] Ravis E | An advanced evolution should not repeat its past errors[END_REF].

EC-memory can be analyzed with regards to both its use and its contents. As a matter of fact, EC-memory can be used to drive most components of evolution: the selection of individuals [START_REF] Eiben | Self-adaptivity for constraint satisfaction: Learning penalty functions[END_REF] the choice of evolution operators [START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF]) the way recombination and mutation operate (e.g. localization of crossing points and/or ipped bits, continuous mutation directions) [START_REF] Sebag | Controlling crossover through inductive learning[END_REF][START_REF] Ravis E | An advanced evolution should not repeat its past errors[END_REF][START_REF] Hansen | On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation[END_REF] and it can also control the generation of new individuals, providing an alternative to standard recombination and mutation [START_REF] Baluja | Removing the genetics from the standard genetic algorithms[END_REF][START_REF] Dorigo | A study of some properties of Ant-Q[END_REF]. As to its contents, EC-memory can either re ect uniquely the past successes of evolution, i.e. who are the ttest individuals and how they were found [START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF][START_REF] Baluja | Removing the genetics from the standard genetic algorithms[END_REF][START_REF] Dorigo | A study of some properties of Ant-Q[END_REF] or, it can re ect both successes and errors (e.g. un t individuals, disruptive operators) [START_REF] Eiben | Self-adaptivity for constraint satisfaction: Learning penalty functions[END_REF][START_REF] Reynolds | An introduction to cultural algorithms[END_REF][START_REF] Sebag | Controlling crossover through inductive learning[END_REF]. This paper continues a previous work devoted to "civilized evolution", and based on coupling evolution and machine learning [START_REF] Sebag | Controlling crossover through inductive learning[END_REF][START_REF] Ravis E | An advanced evolution should not repeat its past errors[END_REF]: the knowledge learned from the past errors of evo l u t i o n i s u s e d t o p r e v ent the further generations from repeating the past errors. In the present w ork, the EC-memory of errors is no longer expressed within rules, but as a template of past un t o spring, termed the virtual loser. The virtual loser is used to directly evolve individuals via a new operator, termed Flee-mutation. The underlying metaphor is that o spring should attempt to be more di erent from the virtual loser, than their parents. Flee-mutation combines mutation and recombination in the following respects. Like m utation, it proceeds by ipping some bits in the parent one di erence with regards to standard GA mutation, is that much more bits are ipped. The advantages of large-rate mutation have been emphasized for real-valued search spaces (see (M uhlenbein 1992) among others) and these have been con rmed for some binary problems too [START_REF] Jones | Crossover, macromutation and population-based search[END_REF].

On the other hand, ee-mutation resembles recombination, in that the probability of modifying a given bit depends on other individuals. This contrasts with both standard mutation and self adaptive mutation, where the modi cations are respectively done at random or depend only on the individual at hand. The di erence between recombination and ee-mutation is that the modi cations are biased from the past populations (instead of the current population only). This paper is organized as follows. Section 2 describes some works related to the explicit collective memory of evolution, without pretending to exhaustivity. Section 3 details the ee-mutation scheme the critical points concern both the mutation step size (how many bits should ipped) and the choice of these bits. Section 4 presents and discusses an experimental validation of this scheme on large sized binary problems (900 bits) taken from (Baluja 1995). We conclude with some perspectives for further research.

State of the art

In a majority o f w orks related to EC-memory, memorization proceeds by c o u n ting desirable events and/or rewarding fruitful options it produces numerical informations [START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF][START_REF] Eiben | Self-adaptivity for constraint satisfaction: Learning penalty functions[END_REF][START_REF] Dorigo | A study of some properties of Ant-Q[END_REF][START_REF] Baluja | Removing the genetics from the standard genetic algorithms[END_REF][START_REF] Hansen | On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation[END_REF]. In other works, memorization is based on machine learning [START_REF] Michalski | A theory and methodology of inductive learning[END_REF][START_REF] Mitchell | Generalization as search[END_REF], and proceeds by inducing logical rules or beliefs from examples drawn from evolution [START_REF] Reynolds | An introduction to cultural algorithms[END_REF][START_REF] Ravis E | An advanced evolution should not repeat its past errors[END_REF]. These two types of memory are respectively referred to as numerical and symbolic.

Numerical memory

Among the global parameters of evolution are the operator rates. Davis proposed an adaptive mechanism to control these parameters and choose between several types of recombination and mutation operators [START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF]). The idea is to gradually increase the rate of those operators which actually lead to t individuals. In this frame, the EC-memory consists of the operator rates and it controls the choice of operators. The memorization process proceeds by relaxation 1 . Another example of collective memory in the context of SAT problems, is given by the SAW-GA [START_REF] Eiben | Self-adaptivity for constraint satisfaction: Learning penalty functions[END_REF]. In this approach, the violation of constraints is accounted for by penalization the penal-1 Relaxation is commonly used (e.g. in neural nets) to ensure smooth updates and prevent n umerical oscillations it reads p := (1 ; )p + p where (2 0 1]) is the relaxation factor and governs the speed of changes, and p is the instant a m o u n t t o b e a d d e d or removed from p. ization for violating a constraint decreases when the constraint is often satis ed in the population. An individual which violates a widely satis ed constraint while being the only one to satisfy another constraint will thus more likely be selected. The underlying idea is that such an individual brings new valuable genetic material, whereas its failures can be repaired by recombination, as the corresponding genetic material is widely available in the population. The EC-memory here consists of the penalization weights, and controls the selection step. The weights are also updated by relaxation. As third example, PBIL memorizes the ttest individuals of the past generations into a virtual individual (in 0 1] N if N denotes the dimension of the search space) [START_REF] Baluja | Removing the genetics from the standard genetic algorithms[END_REF]Baluja 1995). This virtual individual, which can be thought o f a s virtual leader, is interpreted as a vector of probabilities and used to construct the next population from scratch. For instance, if the virtual leader takes value .9 for the rst bit, the rst bit will be set to 1 for 90% of the individuals in the population. The EC-memory here consists of the virtual leader, and it allows to sidestep recombination and mutation. Again, the memory is updated by relaxation. Still another example of evolution guided by numerical EC-memory is provided by arti cial ants and pheronome trails (see [START_REF] Dorigo | A study of some properties of Ant-Q[END_REF] among others). The pheronome trails re ect the interesting events of the recent history of ants (for biologic ants, the paths actually leading to some food for arti cial ants, for instance the best tours in the frame of TSP). These trails act as attractors: the more pheronome on a path, the more ants follow this path and if this path still leads to something interesting, the more ants will add pheronome on this path. Like in PBIL, this EC-memory can be viewed as a virtual individual2 . It is used to generate the individuals (or their actions) and it is built by relaxation. A last example is provided by [START_REF] Hansen | On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation[END_REF]. The history of one individual (realvalued vector) is constructed by relaxation from its successive c l i m bing steps (di erence between the parent and the o spring). The EC-memory consists of the history of the ttest individuals, eventually rearranged as to form a basis of the search space. The mutation of one individual is expressed as a linear combination in this basis, whose coe cients undergo self-adaptation. One advantage of this scheme is to allow self-adaptive mutation to be independent of the given coordinate system.

Symbolic memory

Other works that explicitly refer to the memory of evolution are based on machine learning from examples [START_REF] Michalski | A theory and methodology of inductive learning[END_REF][START_REF] Mitchell | Generalization as search[END_REF]. In cultural algorithms [START_REF] Reynolds | The Use of Version Space controlled Genetic Algorithms to Solve t h e Boole Problem[END_REF][START_REF] Reynolds | An introduction to cultural algorithms[END_REF], one gradually learns from the individuals in the current population, and thus constructs beliefs about the relevance of schemas. EC-memory here consists of a lattice of beliefs, used to drive the generation of ospring. In civilized evolution [START_REF] Sebag | Controlling crossover through inductive learning[END_REF][START_REF] Ravis E | An advanced evolution should not repeat its past errors[END_REF], one learns from the operators (crossover and mutation masks) and thus constructs rules characterizing disruptive operators an example of such a rule would be: if there exists a crossing point between the 2nd and the 3rd bit, the crossover is disruptive3 or If bit 1 is mutated, the mutation is disruptive. These rules are used to control the operators and decrease the odds of disruptive evolution. EC-memory here consists of logical rules. In both cases, EC-memory encodes some knowledge: this knowledge (about t/un t individuals in cultural algorithms, and fruitful/disruptive e v olution operators in civilized evolution) is used to guide the recombination and mutation of individuals. The Darwinian evolution paradigm thereby shifts toward \advanced evolution": some knowledge (culture, moral principles,...) is acquired along evolution, and the capitalization of knowledge expectedly speeds up evolution.

Lesson

This induction-based approach brought some gain with respect to the number of function evaluations needed to reach the optimum. Unfortunately, the cost of induction o sets or even exceeds this gain. This may be partly due to the fact that most test functions are inexpensive in this context, control must be either exceedingly e cient, or of negligible cost to be competitive. Still, civilized evolution gives some insights into how evolution actually works. For instance, it enables to compare the control of crossover and the control of mutation, since the same mechanism can be used to control either one or the other. And, despite the fact that the mutation rate was one or several orders of magnitude lower than that of crossover in these experiments, the control of mutation appeared much more e cient than that of crossover. In retrospect, it becomes clear that the disruptiveness of crossover decreases as evolution proceeds and the population gets homogeneous. But nothing, except control, can ever act against the disruptiveness of mutation: this can explain why t h e control of mutation, determining which bits should not be mutated, makes such a di erence (Ravis e & Sebag 1996). In summary, what would be needed is a preventive memory, telling what not to do, easy to acquire and use. This leads to investigate numerical, rather than symbolic, EC-memory.

Inhibitions and Flee-Mutation

This section rst motivates the choice of memorizing errors only. It describes how this memory is constructed and how it guides the choice of the bits to mutate. A last issue concerns the number of bits to mutate.

When are inhibitions reliable ?

Let us assume that the tness landscape is xed and that the tness of an individual does not depend on the other individuals in the population. These assumptions are most often satis ed in applications of evolutionary computation. We further assume that the selection scheme is elitist, such a s i n the ( + ) evolution strategy scheme [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF]. Under these assumptions, if some o spring is not t enough to survive selection at step t, i t h a s n o c hance to survive selection in later steps. In other words, the generation of this o spring is a pure waste of time | an error of evolution | and will remain so in the future of evolution. Inhibiting the generation of such individuals thus makes sense. The strategy based on the memorization and repetition of past successes (e.g. [START_REF] Dorigo | A study of some properties of Ant-Q[END_REF][START_REF] Baluja | Removing the genetics from the standard genetic algorithms[END_REF]) is basically oriented toward exploitation it can be deceptive as it breaks the balance between exploration and exploitation (Goldberg 1989). In opposition, the strategy based on the memorization and avoidance of past errors restricts the scope of both exploitation and exploration: it just forbids to consider some un t individuals, regardless of whether these individuals are close to current ttest individuals or not. The strategy based on inhibitions (memorizing the errors in order not to repeat them) is closely related to the Tabu search [START_REF] Glover | Heuristics for integer programming using surrogate constraints[END_REF], where the last trials are stored in order not to be considered again. However, this is not directly applicable in the context of evolutionary search: the list of past individuals either covers a negligible fraction of the search space, or is intractable.

Utility of Inhibitions

The goal is to construct a tractable description of the past errors, and see how this can support evolution. Indeed, errors give some hints as to which bits should bemutated in relevant individuals. Let individuals X , Y , Z and T be as in Table 1, where X , termed leader, has a (comparatively) high tness, and Y , Z and T , termed losers, all have a l o w tness. Bit 1 t a k es di erent values for the leader X and the losers Y Z and T . By induction, this di erence in their genotypes may be considered a \cause" for the di erence in their tness one should therefore preserve this feature in X . Inversely, nothing can be said as to the in uence of bit 5 regarding the tness, as this bit takes same value for all individuals. Hence, mutation of X should rather a ect bit 5 than bit 1. Let the average of Y , Z and T be noted V L for virtual loser the probability o f m utating bit i in individual X should re ect how m uch it discriminates X i from V L , that is, it should increase with 1 ; j V L i ; X i j. 

0 0 0 0 0 high Y 1 1 1 1 0 low Z 1 0 0 1 0 low T 1 1 0 0 0 low V L
1 .66 .33 .66 0

In this framework, EC-memory consists of the virtual loser V L (in 0 1] N ). It is updated by relaxation from a fraction of the worse individuals in the current population. If denotes some relaxation factor and dV L is the average of these worse individuals,

V L t+1 = ( 1 ; )V L t + dV L 3.3 Flee-mutation Let X be the current individual and let p i denote the quantity 1 ; j V L i ; X i j. The ee-mutation operator can be viewed as a hill-climber where (p 1 ::p N ) corresponds to the climbing direction (discrete gradient): the climbing direction consists in getting away from V L . Let M denote the number of bits to mutate (see below). In a previous work, devoted to the no-memory case ( = 1), the bits to mutate were selected by a roulette wheel on the p i [START_REF] Sebag | Mutation by imitation in boolean evolution strategies[END_REF]. However, this showed ill-suited for < 1, as all p i then get very close in the end of evolution. A strong selection pressure is therefore needed, which leads to mutate a restricted set of bits, which i n t u r n e n tails a loss of genetic diversity and premature convergence. In the present w ork, each b i t t o m utate is selected by tournament. This requires to know i n a d v ance the total numb e r o f b i t s t o m utate in an individual.

Flee-mutation thus di ers from standard mutation in that the probability of mutating one bit depends on both the bit itself and the individual at hand. The di erence with self-adaptive mutation (mostly used in continuous search spaces [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF], but which has been extended to boolean search spaces (B ack & Sch utz 1995)), is that the individual climbing directions are here correlated by force through the EC-memory, whereas these are independent in selfadaptive m utation.

Flee-mutation step size

The tradeo between exploitation and exploration in the ee-mutation scheme is governed by t h e n umberM of bits to mutate per individual, termed ee step size: like standard mutation, ee-mutation achieves exploitation for small values of M and does more and more exploration as M increases.

Adaptive adjustment. The ideal solution would be to adaptively adjust the number of bits to mutate. Several heuristics to this aim were tried: self adaptation of M , encoded as an integer in the individuals global adjustment o f M based on rewards, a l a Davis [START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF]). Unfortunately, these strategies rapidly lead to ip only one bit, and ee-mutation thus gets trapped in local optima. In retrospect, it appears that rewards-based adjustment tends to favor options that bring small frequent gains rather than large rare ones: the less a risky option is chosen, the less it is rewarded, and the less it will be chosen... The same goes for self-adaptation: both mechanisms are risk adverse and favor conservative options. And obviously, small values of M do result in more frequent, if smaller, performance gains.

At the population level. It was therefore decided to use xed schedules to set the ee step size M t at the evolution step t. The simplest possibility consists of using a single M for all evolution steps. A more sophisticated possibility is taken from (B ack & S c h utz 1996): M t decreases with t according to an hyperbolic schedule (determined as optimal for the sphere problem). It reads

M t = 1 1 M 0 + t 1; 1 M 0 T;1 (1)
where T is the allowed number of generations and M 0 the initial value.

At the individual level. In most approaches, mutation employs a probability o f m utation per bit (Goldberg 1989[START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF]B ack & S c h utz 1996)). If the sum of these probabilities equals M t , the number of ipped bits is indeed M t on the average. But in the ee-mutation scheme, the number of bits to mutate must be known in advance for these bits are selected by tournament (section 3.3). Again, the simplest possibility consists of mutating exactly M t bits for each individual of the current population. But this makes impossible to explore the whole search space, in the case where M t is constant and even. And in all cases, some \stripes" of the space will be more di cult to reach than others. Varying the number of bits to mutate at the individual level thus appears highly desirable. This is obtained by taking advantage of the following remark. The limit of the sum of N independent boolean random variables of probabilities q i , w h e n N goes to in nity while P N i=1 q i goes to a nite value , is the Poisson distribution of parameter [START_REF] Pitman | Probability[END_REF]. The Poisson distribution of parameter is given by P X = k] = e ; k k! , a n d i s easily numerically realized by counting the numberof uniform random variables in 0,1] needed before their product becomes less than exp ; . The Poisson approximation for the sum of random boolean variables is considered accurate for high values of N (N > 50), and hence holds for the problems considered in the following (N = 900). How does this apply to our problem ? If ee-mutation were based on probabilities of mutation per bit, the sum of these probabilities should be M t and the number of bits e ectively mutated would follow a P oisson distribution of parameter M t . One may t h us select an integer according to the Poisson distribution of parameter M t , and use this integer as the numberofbitsto mutate for a given individual. Thereby, a n { i n teger { number of bits to mutate per individual is determined, approximating the { real { M t on the average. Yet, this number may widely vary from one individual to another. Four kinds of ee-mutation are nally considered, by combining the following possibilities:

At the population level, the ee step size M t can be set to a user-supplied value M , or it can decrease from an initial value M 0 according to the hyperbolic schedule given by equation ( 1) At the individual level, the ee step size can be set to M t or it can be selected according to the Poisson distribution of parameter M t .

Overview of the algorithm

Flee-mutation is embedded into ( + )-ES: the population includes parents, o spring are derived from the parents by ee-mutation, and the selection is deterministic among the parent a n d o spring. Besides and , this algorithm involves 6 parameters: the scope and fading of inhibitions, meant a s t h e fraction of the worse individuals used to update V L and the relaxation factor (section 3.2). the strength of inhibitions, meant as the tournament size used to select the bits to mutate according to V L (section 3.3).

the speed of evolution, parameterized by either the xed ee step size M , or its initial value M 0 within an hyperbolic schedule (section 3.4). the variability of inhibitions over individuals (boolean), controlling whether the number of bits to mutate per individual is xed over the population or obtained by P oisson-based selection (section 3.4).

Experimental Validation

The experimentations consider some problems taken from (Baluja 1995).

Test cases

These problems aim at optimizing six functions on f0 1g 900 . These respectively correspond to the binary and Gray encoding of three functions F 1 F 2 and F 3 of 100 numerical variables x i coded on 9 bits each and varying in -2.56,2.56 .

y 1 = x 1 y i = x i + y i;1 i 2 F 1 = 100 10 ;5 + i jy i j y 1 = x 1 y i = x i + sin(y i;1 ) i 2 F 2 = 100 10 ;5 + i jy i j F 3 = 100 10 ;5 + i j:024 (i + 1 ) ; x i j

All functions admit a single optimum. The discretized F 1 and F 2 have same optimum as the continuous F 1 and F 2 , (10 7 is obtained for (0 : : : 0)). The discretized F 3 culminates at 416:649 (the optimum 10 7 is obtained for (x i = :024 (i + 1)), which does not belongs to the discretized space). Note that F 3 with Gray coding is equivalent to the Onemax problem: for any individual X , there exists a path (X 0 = X X 1 : : : X max ) linking X to the optimum, with X i and X i+1 di ering by one bit, and F 3 (X i ) < F 3 (X i+1 ).

Reference algorithms

Multiple restart hill-climbers denoted HC1 and HC2, as well as two genetic algorithms denoted SGA and GA-scale, have been used in (Baluja 1995) as reference algorithms:

HC1 randomly considers the neighbors of the seed (di ering from the seed by one bit) the seed is replaced by the rst neighbor which strictly improves on the seed. If all neighbors have been considered, HC1 is restarted with another seed. 416.65 246.22 (3) 416.65 385.90 (9) HC2 di ers from HC1 in that it allows to replace the seed by a neighborhaving similar tness. SGA is a standard GA which uses two point crossover, with crossover rate 100%, mutation rate 10 ;3 , population size 100 and elitist selection. GA-scale di ers from SGA in two respects: it uses uniform crossover with rate 80%, and the tness of the worst individual is subtracted from the tness of all individuals in the population before selection. A more detailed description of these algorithms, as well as their results on the considered problems, can be found in (Baluja 1995).

Two additional reference algorithms have been considered here: TES (for Traditional evolution strategy) is a binary ( + )-ES involving a single mutation rate perbit is modi ed according to the Rechenberg's 1/5 rule [START_REF] Rechenberg | Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution[END_REF]. The geometrical factor used to increase ranges from 1.1 to 2. AES (for Adaptive ES) is a binary ( + )-ES that uses the adaptive mutation of [START_REF] Obalek | Rekombinationsoperatoren f ur Evolutionsstrategieren[END_REF] as described in (B ack & S c h utz 1995): each individu a l i s a t t a c hed one mutation rate per bit which itself undergoes mutation according to the following Obalek's rule: := ; 1 + 1; :exp( : N (0 1)) = 0:5 p 2 p N

We further require 1=N to guarantee e ective mutation. In both cases, is 10 and is 100.

Results

The experimental settings of the ee-mutation scheme are the following: the ES parameters are = 1 0 a n d = 50 the inhibitions are constructed from the only worse o spring, and the relaxation factor is set to :01 the strength of inhibitions is set to 3. These parameters were found rather robust for all problems. On the opposite, the value of M appears critical depending on the tness landscape. In order to check the importance of inhibitions, the ee-mutation scheme is compared to an "free" scheme (legend Free-mutation in Table 3) free-mutation performs like ee-mutation based on void inhibitions (V L = (:5 : : : : 5)). In both cases, the number of bits to mutate M t is either xed or decreases after an hyperbolic schedule at the population level, and it is either constant or follows a Poisson distribution at the individual level. Note that the free scheme with Poisson-based selection of the bits to mutate corresponds to ipping all bits with probability M t =N , a s done in (B ack & S c h utz 1996). Several values of M (in the xed schedule) and M 0 (in the hyperbolic schedule) have been tried. Table 3 reports the best results, together with the corresponding value of M (varying in 2..5) and M 0 (varying in 9, 45, 90, 450).

All algorithms are allowed 200,000 tness calculations per run. Results are averaged over 20 independent runs. The best results are indicated in bold (Table 2 and Table 3 several results are in bold for F 1b, as their di erence is not statistically signi cant f r o m t h e standard deviations).

Discussion

These results ask for several comments. First of all, the best results obtained with the eemutation scheme improve on PBIL and signi cantly outperform standard GAs et ESs. But the question of determining the optimal value for M or M 0 remains open. Second, as expected and in agreement with [START_REF] Sch Utz | Intelligent mutation rate control in canonical gas[END_REF], results are better when the ee step size decreases along evolution (hyperbolic schedule). Yet, if we except the Onemax-like F 3 Gray, evolution stops quite far from the global optimum it therefore should not need ne tuning (M = 1 ) . Third, and this was unexpected, varying the ee step size over the individuals (Poisson distribution) degrades the results compared to keeping it constant. For both ee-and free-mutation, the best choice is to decrease the ee step size M t along evolution, and mutate exactly (int)M t bits for all individuals in the population. Last, ee-mutation improves on free-mutation | but n o t t h a t m uch. This may imply that the real e ciency rather comes from setting the mutation step size, than the mutation direction and from the third remark, it is better to use a xed mutation step size, rather than scattering the o spring. Still, this may be an artifact due to the arti cial test functions considered on the Long Path problem for instance [START_REF] Horn | Genetic algorithms di culty and the modality o f tness landscapes[END_REF], no wonder tremendous results were obtained by setting the mutation step size M to 2 [START_REF] Sebag | Mutation by imitation in boolean evolution strategies[END_REF]. Another possible explanation is that the contents and strength of inhibitions were too restricted to cause a great di erence: inhibitions are constructed from the single worse individual and the inhibition strength was low (the bits to mutate were selected with a tournament size of 3). Still, the gain is statistically signicant. Further work will address both issues: consider less regular binary functions, e.g. obtained from F 1 F 2 and F 3 by a rotation on IR 100 and investigate what happens when the in uence of inhibitions is increased.

Conclusion and Perspectives

In the framework of biologic evolution, the acquisition of inhibitions based on the past of evolution might b e irrelevant: such inhibitions may turn out to be de-ceptive a s the environment and the tness landscape change. But most EC applications deal with xed tness landscapes: refraining from repeating past errors thus constitutes a sensible inhibition. The proposed scheme therefore combines evolution and some ideas of Tabu search: the list of past trials is replaced by a d i s t r i b ution, the virtual loser. Flee-mutation evolves the individuals to get away from the virtual loser it extends recombination (modi cations are biased according to the past populations) and yet enjoys a desirable property o f m utation: the distance between o spring and parents ( ee step size) can be controlled. The potentialities of this scheme are demonstrated on several large sized problems. The main weakness precisely concerns the setting of the ee step size. Further research will investigate how a priori estimates, inspired for instance by the Fitness Distance Correlation [START_REF] Jones | Fitness distance correlation as a measure of problem di culty for genetic algorithms[END_REF], could support this setting. Another direction of research is to extend eemutation to continuous search spaces. The memory itself can still be represented as a distribution over the search space, but the critical point will be how t o u s e it. Last, the ideal scheme would be to take advantage of two memories: that of errors and that of successes (acquiring motivations as well as inhibitions). Comparing both memories might also give h i n ts regarding the setting of the ee step size.

Table 1 :

 1 Comparing a winner and some losers bit 1 2 3 4 5 Fitness

X

Table 2 :

 2 Average best tness (20 runs) after 200,000 evaluations. Results of AES and TES have been obtained using the algorithms described in the text other results are taken from(Baluja 1995). On the average, PBIL slightly outperforms Adaptive ES and both outperform other algorithms, except on the Onemax-like F3 gray.

	F1 binary F1 Gray F2 binary F2 Gray F3 binary F3 Gray	HC1 1.04 1.21 3.08 4.34 8.07 416.65 416.65 28.35 210.37 380.3 416.65 366.77 HC2 SGA GA-scale AES TES PBIL 1.01 1.96 1.72 2.37 1.87 2.12 1.18 1.92 1.78 2.04 1.66 2.62 3.06 3.58 3.68 3.94 3.61 4.40 4.38 3.64 4.63 5.18 4.66 5.61 8.10 9.17 12.30 9.06 10.46 16.43

Table 3 :

 3 Average best tness (20 runs) after 200,000 evaluations, obtained for ee-mutation and free-mutation (no inhibitions), and corresponding to optimal values of M and M 0 (between parentheses). The best strategy appears to decrease the mutation step size over generations and keep it constant o ver a population.

	Flee-Mutation M t decreases Cst Poisson Cst F1b 2.48 (4) 2.92 (3) 2.36 (9) M t xed Poisson 2.99 (9) 2.48 (4) 2.79 (3) Free-Mutation M t xed M t decreases Poisson Cst Poisson Cst 2.35 (9) 2.98 (90) F1g 2.30 (3) 2.65 (3) 2.26 (450) 2.69 (45) 2.11 (4) 2.48 (4) 2.09 (450) 2.61 (450) F2b 4.53 (4) 4.93 (4) 4.52 (450) 5.35 (450) 4.16 (4) 4.52 (4) 4.09 (45) 5.13 (45) F2g 5.85 (3) 6.46 (3) 5.74 (45) 6.78 (45) 5.12 (3) 5.82 (3) 5.42 (450) 6.48 (90) F3b 12.83 (4) 12.94 (3) 16.38 (90) 17.89 (45) 12.71 (4) 13.66 (3) 16.74 (450) 18.85 (90) F3g 414.96 (3) 72.43 416.65 246.23 (9)

For instance, in the TSP with N cities, an individual i s a p e r m utation over f1 : : : N g while the EC-memory is a matrix (N N), whose coe cients belong to 0 1].

Rules related to crossover are valid during a more or less short period of time: typically, after a relevant s c hema involving bits 2 and 3 has emerged, and before this schema has crowded the population.