
HAL Id: hal-00116479
https://hal.science/hal-00116479

Submitted on 3 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Inductive learning of mutation step-size in evolutionary
parameter optimization

Michèle Sebag, Marc Schoenauer, Caroline Ravisé

To cite this version:
Michèle Sebag, Marc Schoenauer, Caroline Ravisé. Inductive learning of mutation step-size in evolu-
tionary parameter optimization. Evolutionary Programming VI, 1997, Detroit, United States. pp.247-
261, �10.1007/BFb0014816�. �hal-00116479�

https://hal.science/hal-00116479
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Inductive Learning of Mutation Step-Size in 
Evolutionary Parameter Optimization 

Michele Se bag 

LMS - URA CNRS 317 
Ecole Polytechnique, 91128 Palaiseau Cedex, France 

Marc Schoenauer 

CMAP - URA CNRS 756 
Ecole Polytechnique, 91128 Palaiseau Cedex, France 

Caroline Ravise 
LMS - URA CNRS 317 

Ecole Polytechnique, 91128 Palaiseau Cedex, France 

Abstract. The problem of setting the mutation step-size for real-coded 
evolutionary algorithms has received different answers: exogenous rules 
like the 1/5 rule, or endogenous factor like the self-adaptation of the step­
size in the Gaussian mutation of modern Evolution Strategies. On the 
other hand, in the bitstring framework, the control of both crossover and 
mutation by means of Inductive Leaning has proven beneficial to evolu­
tion, mostly by recognizing - and forbidding - past errors (i.e. crossover 
or mutations leading to offspring that will not survive next selection 
step). This Inductive Learning-based control is transposed to the con­
trol of mutation step-size in evolutionary parameter optimization, and 
the resulting algorithm is experimentally compared to the self-adaptive 
step-size of Evolution Strategies. 

1 Introduction 

In the framework of stochastic optimization methods, Evolutionary Algorithms 
(EAs) have proven successful on many difficult problems in recent history. The 
general outlook of an EA is a crude mimic of the Darwinian evolution of a pop­
ulation (i.e. a P-tuple) of individuals (i.e. points of the search space). After a -
generally -- random initialization, the population undergoes a series of genera­
tion.�, whereas a generation can be described as: 

•selection (based on fitness values) 
of some individuals for reproduction; 

•reproduction through evolution operators 

(e.g. crossover, mutation) to generate offspring 

•replacement (based on fitness values) 

of some parents by some off spring 

1



The main branches of EAs - Genetic Algorithms (GAs) [11, 10], Evolution 
Strategies (ES) [24, 27) and Evolutionary Programming (EP) [9, 6] - can be 
distinguished by the way they perform selection and replacements: GAs use pro­
portional selection and global replacements of parents by offspring; ES and EP 
do not use any selection, ES uses deterministic replacement and EP a stochas­
tic tournament among parents and offspring. Moreover, GAs favor crossover as 
main evolution operator, whereas ES and EP use mostly mutation. 

Another major historical difference lies in the search spaces these methods 
consider. Roughly, canonical GAs solve the problem at hand on a binary space by 
employing standard binary evolution operators. Several works have shown how 
much the feasibility of optimization depends on the particular binary mapping 
[3, 14). EP and ES have developed algorithms suited to the "natural" formulation 
of the problem, i.e. they directly work in the real-valued search space in case of 
continuous parameter optimization. 

However, as many real-world problems involve real-valued variables, real­
parameter optimization has lately encountered an increasing interest among all 
branches of Evolutionary Computation. 

This paper is concerned with mutation operators on Rn. In practice, the 
mutation of a real-valued vector is often achieved through the addition of Gaus­
sian noise. The main question remains to determine the desired variance of this 
Gaussian law, that is, the mutation step. This mutation step should ideally de­
pend on the individual at hand (and on its proximity to the optima) and on the 
current state of evolution. Several heuristics have been proposed in the litera­
ture to control the mutation step, which are either deterministic [24], or based 
on evolution itself [27, 7]. This paper investigates another means based on Ma­
chine Learning (ML), for the control of the mutation step; it extends previous 
works [29, 23, 22], devoted to the control of crossover and mutation operators in 
binary spaces. The idea consists in observing evolution and learning online from 
these observations; from examples of trials and errors, learning extracts rules 
discriminating successful trials from errors. These rules can notably be used for 
"avoiding evolution to repeat its past errors" and filtering disruptive evolution 
events in the following generations. 

This paper is organized as follows. The next section briefly describes the 
current trends for real-valued optimization in EAs, and summarizes the state 
of the art in mutation step-size control. Section 3 details how ML can be used 
to support the control of evolution and focuses on two questions: what can 
be learnt from observing evolution, and how to use this knowledge to provide 
evolution with relevant advises in the next generations. An ML-controlled scheme 
of mutation is applied to several test-problems of the literature; these results are 
compared to those of other evolutionary algorithms in section 4. The last section 
sketches several avenues for further research. 

2



2 State of the art 

This section describes the current trends in evolutionary optimization with re­
spect to two search spaces: the first one, referred to as phenotype space is that of 
the fitness function; in that space, individuals are evaluated and selected. The 
second one, referred to as genotype space is the space the evolution operators 
apply to; in that space, individuals are represented and evolved. 

Let us first discuss GA, EP, and ES, before detailing the control of mutation. 

2.1 GAs and real coding 

Genetic Algorithms [11, 10] have been designed to operate binary strings. Canon­
ical GAs therefore used to tackle parameter optimization problems (the pheno­
type space is a subset of R,n) through a binary representation of individuals (the
genotype space is {O, 1 }k). This is done by discretizing the domain of every real­
valued parameters into 2k intervals; a real-value is thereafter discretized, and 
encoded into a bitstring of length k using either the standard digit or the Gray 
coding [3]. However, beside the loss of information induced by the discretization 
step, Genetic Algorit.hms using binary coding and the corresponding standard 
binary operators violate some basic principles related to the so-called schemata 
analysis [20]. Most people working in the area of parameter optimization us­
ing Genetic Algorithms now rely on real-encoded GAs, where both the genotype 
space and the phenotype space are subsets of Rn. This implies the definition of
specific real-valued crossover and mutation operators. 

The most popular real-valued crossover operators are based on a linear com­
bination of the parents, ranking from the "Guaranteed average recombination" 
of Wright [31] to the general BLX-a recombination of Eshelman & Schaffer (5] 
through the flat recombination of Radcliffe [21] and Michalewicz's arithmetical 
recombination [12, 16]. A question that remains unresolved is to decide to what 
extent such operators actually are crossover operators (i.e. obey some equivalent 
of the bit.string schema theorem of Holland [11]), or can be viewed as yet another 
type of mutation operator (see [5] and [13] for more detailed discussions on this 
hot topic). 

The most popular real-valued mutation operator is inspired from ES and EP, 
and is detailed below. 

2.2 EP and ES 

Since their inception, Evolution Strategies (24, 27] have been designed to handle 
real-valued parameters, and do work directly in the space of real-valued vectors. 
Similarly, Evolutionary Programming (9, 6), whose general approach is to directly 
evolve the phenotypes themselves, uses real-vector representations for real-valued 
parameters. Further, the original versions of both these algorithms used mutation 
as the only evolution operator. 

3



Both methods use Gaussian mutation in which a random variable with nor­
mal (Gaussian) distribution and zero mean is added to the current value of each 
coordinate of the vector of real-valued parameters: 

x ER. --t x + N(O, a) , (1) 

where a is the standard deviation of the normally distributed 0-mean random 
variable N. Parameter a is referred to as the mutation step size: The larger a, 
the more likely the occurence of large mutations. The expected value for the 
amplitude of mutation can therefore be controlled by adjusting a. Eventually, a 
specific mutation step size O"i is associated to every coordinate xi of the individual 
at hand. 

Note that recent trends in ES now incorporate some form of recombination 
(cross-over), including the above mentioned linear recombination [2]. Thus, apart 
from the selection/replacement scheme, t.he main difference remaining between 
GAs on the one hand, and ES and EP on the other hand, is t.he systematic use of 
mutation of the latter methods, compared to the historically parsimonious GA 
way of mutating. 

2.3 Tuning the mutation step-size 

Since its inception in the early days of Evolution Strategies [24, 27], many dif­
ferent. methods have been proposed to control Gaussian mutation and tune the 
standard deviation a. 

An early approach to exogenous adaptation of a (used at that time for 
one-parameter problems) is the well-known 1/5 rule of Rechenberg [24]. In this 
scheme, a is modified according to the results obtained by mutation in the last 
few generations: if more than one-fifth of the mutations have been successful 
(i.e. led to an offspring more fit than the parent), increase a, otherwise decrease 
a. The schedules for increasing and decreasing a are geometrical schedules; the
factors suggested by Schwefel [27] are 1.1 and 0.9. 

In the early real-valued EP, the standard deviation of mutation was deter­
mined on the basis of the fitness of the individual at hand, in such way that 
most fit individuals undergo small Gaussian mutations, i.e. with small standard 
deviations [6]. 

Nevertheless, both ES and EP now use the self-adaptive mutation [27]: The 
description of an individual x includes both the n object variables (its coor­
dinates (xi, . . .  , Xn)) and the corresponding standard deviations (ai, . . . , an)1.
When mutating x, the step sizes O"i first undergo mutation; the coordinates Xi 
are modified afterwards using the new values of the deviations <Yi as in equation 
1. The standard deviations themselves can therefore get adjusted "for free" along
evolution [27, 2). 

1 The more general version of adaptive mutation actually uses the complete covariance 
matrix of normal distribution in n dimensions. But the simplified version using only 
the standard deviations is the most widely studied and used. 

4



Early works in EP used Gaussian mutation described in equation (1) to 
evolve the standard deviations <Ii [7]. But there is now an almost total agreement 
(26], with the noticeable exception of noisy domains [1], on using a log-normal 
mutation for mutating the standard deviations <Ti: 

(2) 

where T and T' are robust exogenous parameters for which Schwefel [27] sug­

gests the values ( v'27n)-l and ( /2n)-1. The log-normal mutation preserves

positive values for the standard deviations, and each parameter is modified by 
a random geometric factor symmetric around the mean neutral value of 1. 

Of evidence, the successes of evolutionary optimization make it a good can­
didate for adjusting the parameters of evolution itself, as done in the self­
adaptation method described above. However, comparative experiments showed 
that, whenever an optimization problem could be tackled by other (determin­
istic) methods, these deterministic methods were faster than evolutionary opti­
mization by one or several orders of magnitude. 

The q1wstion then becomes: how could a (deterministic) method handle the 
optimization of the parameters of evolution? As far as we know, the only possi­
bility studied so far was that of the 1/5 rule (24), developped by careful analysis 
of two simplifed models (the sphere and the corridor). However, its generaliza­
tion to other situations is not clear [8]. Moreover, this deterministic method is 
limited in that it can only globally handle the vector of standard deviations 
(<Ti), since it simply counts the number of successes and failures (offspring more 
or less fit than the parents): counting does not supply enough information to 
increase the standard deviation ai for some coordinate i while decreasing it for 
some other coordinates. 

It is suggested that Machine Learning could bring some answers for adjusting 
the evolution parameters, through a more thorough analysis of the successes and 
failures of mutation depending on the actual vectors ai. 

3 Inductive learning-based control of evolution 

The use of Machine LP.arning for evolution control relies on the following con­
jcctnres: 

- Evolution is made of events and one can categorize these events into successes 
and failures. 

- The history of past generations contains useful information as to the trials 
which should - or should not - take place in the next generations. 

One may doubt the collection of past successful events to give (reliable) hints 
as to further successful events: any strategy could be misleading on a pre­
determined problem. 

5



In opposition, there is no contest that the collection of past errors gives sound 
- though partial - information as to give undesirable further events: whenever 
the fitness landscape does not change along evolution, it is a pure waste of time 
to repeat trials which showed errors in the past. 

A strategy of control would then be to explicitly store the history of evolution, 
and use this memory to avoid the repetition of past errors. Note this strategy is 
ensured to be safe, i.e. it incurs no chance of misleading evolution. 

Building explicitly and exploiting the whole history of evolution is intractable. 
Machine Learning, and more precisely induction from examples [ 17, 18], allows 
one to overcome this potential limitation, through summarizing examples of suc­
cesses and errors into rules. Further, these rules can be used to estimate whether 
any unseen trial will likely be an error or a success. Several strategies of control 
relying on this estimate are thereafter possible; some have proven successful in 
the context of canonical bitstring GAs, on several well-studied binary problems 
[29, 23, 22]. 

This paper is concerned with extending this ML-based approach of the con­
trol of evolution, from binary to real-valued search spaces, and from GAs to ESs. 
We first briefly describe how to learn from and about evolution, and how to use 
on-line the rules extracted by induction. A hybrid scheme coupling evolution 
and induction is described last. 

3.1 Learning from evolution 

In this paper, the events of evolution are defined as the evolution operators that 
give birth to offspring. An event is categorized as being an error or a success de­
pending on whether the offspring reach lower or higer fitness than their parents2.
This definition is somewhat short-sighted since actually reaching the optimum is 
the result of a whole "dynasty" . Further research will be concerned with evalu­
ating the success or failure of an event from its descendants, in the line of Davis 
[4]. 

This study is restricted to mutation operators for two reasons. First, previous 
experiments in binary search spaces unexpectedly showed that mutation control 
is far more efficient than crossover control, in spite of the relative rarity of 
mutations compared to crossovers [23, 22]. Second, mutation traditionally plays 
the primary role in the evolutionary framework as far as real-valued individuals 
are considered. 

A mutation event is completely described by the parent it applies onto, rep­
resented as the real-valued vector (xi) ,  and the quantity added to the parent in 
order to get the offspring, represented as a real-valued vector (8i)· 

Examples of mutation events together with the corresponding category, are 
represented in Table 1. 

2 Another category of events was introduced in [22]: that of inactive events, giving rise 
to offspring equally as fit as parents. However, in contrast with binary search spaces, 
there are almost no inactive events in real-valued search spaces. 

6



Tahle 1 : Induction from examples of mutation. Rule R is a generalization of 
examples E3 and E4 not contradicting examples Ei and E2· 

Individual Mutation Class 

Et 3.21 4.48 -5.56 0.26 .22 0.18 -0.35 0.63 success 

E2 6.41 -1.33 -0.3 0.61 .14 0.04 1.02 0.18 .�uccess 

E3 7.52 -2.51 1.4 0.33 -.32 -0.27 1.15 0.56 erro1 
E1 7.23 0.58 0.55 0.39 -.08 0.33 2.01 0.69 erro1 
R (xi > 6.41) * (x3 > -.3) * (61 < .14) * (h3 > 1.02) * erro1 

From such examples, induction constructs discriminant rules, that is, con­
junction of conditions of the kind attribute Ai lies in Vj, where Vj is a subset
of the domain of attribute Vi, such that these conditions are satisfied by exam­
ples which all belong to the same category. See (17, 18, 15] for a comprehensive 
introduction to inductive learning from examples. 

In our toy example, rule R states that for any individual such that x1 > 6.41 
and x3 > -.3, augmenting the first component by a small or negative amount 15i 
(15i < . 14) and augmenting the third component by a large amount (83 > 1.02)
will be an error, i.e. lead to an offspring less fit than the parent. 

Roughly, induction either proceeds in a top-down or in a bottom-up man­
ner. Top-down induction repeatedly selects the attribute (here, Xi or dj) that is
most, informative regarding the category of the example, e.g. in the sense of the 
quantity of information [19]. It thereby builds a decision tree whose nodes are 
attributes, branches are conditions on the father node attribute, and leaves are 
categories of examples. 

Bottom-up induction repeatedly considers one example Ex at a time, and 
determines the conjunction(s) of conditions which are satisfied by Ex and by 
examples belonging the same category as Ex only. 

For the sake of convenience, we used a home-made learner named DIVS, 
which is detailed in (28], though any other learner could probably have been 
used. DIVS is a bottom-up algorithm the complexity of which is linear in the 
number of attributes and quadratic in the number of examples. 

The parameters of most learners, among which DIVSbelongs, control: 

- the generality of the rules, that is the fraction of the example space they 
cover. The degree of generality commands both the applicability and the 
reliability of the rules: intuitively, general rules are not as reliable as specific 
rules; but they apply much more often. 

-- the significance and consistency of the rules, that is, respectively the number 
of examples they explain, and the fraction of examples in the other categories 
they cover. The degrees of significance and consistency altogether control the 
number of rules extracted from examples. 

The precise tuning of these parameters depends on the further use of the 
rules. 

7



3.2 Knowledge-controlled evolution 

The category of a further mutation event can be estimated from the rule(s) this 
event satisfies3• This estimate can accommodate several control strategies: 

- Effecting only events estimated as successful. In that perspective, general 
rules should be preferred. Otherwise, this control would favor mutation 
events "close" to past successful mutation events. And this strategy would 
likely break the balance between the exploration and exploitation tasks 
achieved by evolutionary optimization [10]. 

- Rejecting events estimated as errors. In that perspective, specific rules should 
inversely be preferred, in order to ensure that only mutation events close to 
past error events are rejected. When the specificity of rules increases, they are 
satisfied by fewer and fewer examples; other examples are thus unclassified, 
and considered admissible. In the limit, this strategy corresponds to the pure 
avoidance of past errors. 

Only the second strategy of control will be investigated in this paper. The degree 
of specificity is adjusted so as to ensure that only one-half of the mutation 
events will be rejected; (other events are either estimated as successes, or, more 
frequently, satisfy no rules and are unclassified). This way, only mutations most 
"similar" to past unsuccessful mutations are filtered. 

It should be noted that this strategy does not break the balance between 
exploration and exploitation. Rather, the rules delineate regions where explo­
ration or exploitation have led to bad or null results. This allows one to bias 
both exploration and exploitation toward other regions. 

For these first experiments, however, only the vector 8i is stored into the 
description of a mutation event, because most of the evolution time is spent 
with a ne�rly homogeneous population (the description of the parent thereby 
gives no usable information). This entails two consequences: examples may be 
inconsistent, i.e. a vector 8i could be considered successful when added to a given 
parent, and unsuccessful when applied to another parent. However, this has no 
important consequence on the learning task as DIVScan deal with a limited 
amount of inconsistency. But this also means that the category associated to 
a given vector 8i might change when the population moves toward regions of 
better fitness. 

This in turn implies that the lifetime of the rules should be limited: rules 
must be periodically updated in order to follow the evolution of the population 
and remain relevant. 

3.3 Integrating evolution and induction 

The scheme integrating evolution and induct.ion can be described as follows: 

3 In case it satisfies several rules concluding to different categories, the actual category
of the event is determined by a majority vote. 

8



- Examples needed for induction are gleened from evolution. One therefore 
gathers a set of examples, the size of which is set by the user (by default 
the size P of the population). Special attention is paid to representing both 
categories of events in this set of examples. Typically, if only bad events are 
gathered, induction will learn a single rule (all is error), which leads to a 
poor estimate of the event categories. 

- Every L generations, these examples are considered. If both successes and 
errors are represented, rules are learnt. Otherwise the rule set is set to the 
empty set. 

- The specificity of the rules is tuned so as 50% of P randomly generated 
mutation events are admissible (i.e. not classified errors). DIVS, in contrast 
with most other learners, allows to meet this constraint a posteriori, at clas­
sification time (see [28] for details). 

- During the next L generations, mutations events are filtered depending on 
the rule set (if it is not empty): vectors Oi estimated error are rejected. 

The cost of ML-control includes the building and the use of the above esti­
mate: 

- The cost of induction, which is in N x P2, where N denotes the dimension
of the search space and P the size of the evolutionary population; and this 
costs intervenes every L generations. 

- The cost of using the rules, which is equally in N x P2, and is the main factor
of complexity of this approach, as every mutation requires to be classified 
admissible before being allowed to apply. 

4 First experimental results 

This section presents preliminary validation experiments of the above scheme on 
two well-studied benchmark functions. 

4.1 The sphere problem 

Tlw first and simplest possible test case is the sphere problem. On the one hand, 
it can be thought of as the real-valued equivalent of the "Count the bits" binary 
problem. On the other hand, it is used in Evolution Strategies as a fundamen­
tal test problem: Theoretical results prove that ESs using the self-adaptation 
mechanism do achieve a log-linear progress rate [25]. 

The problem is to find the minimum of the quadratic function f defined on
(0, l)n by f (x) = °E�=O xr 

Experimental settings Three algorithms are compared on the sphere problem: 

- Standard ES with self-adaptation mechanism based on the log-normal up­
date of the standard deviations, as described in section 2.3 

9



) .. , 

The same algorithm (ES with self-adaptation), but with the addition of the 
ML-control described in section 3.3: only mutations classified admissible are 
actually performed. 

),, 

Fig.1. Fitnes.s landscape for function g. (a) Zoom around the optimum, on sub-domain 
F-10, 10] x [-10, 10]. (b) On the larger sub-domain (-100, 100] x (-100, 100]. 

-- A degraded ES algorithm, where the standard deviations of the mutations 
do not use self-adaptation: they are kept constant all along evolution. 

The dimension of the search space n is set to 10. The population size is set 
to 10, each parent generating 6 offspring by mutation only, and the replace­
ment step selects the best 10 individuals out of the 60 offspring (this is termed 
(10, 60)-ES in ES terminology). The algorithms stop when 50 generations show 
no improvement of the overall best fitness. 

The values of the exogenous parameters for the log-normal update of standard 
deviations are those described in section 2.3. All results are averaged over 25 
independent runs. 

Results The performances of the three algorithms are almost indistinguishable. 
However, positive conclusions can be drawn from such tight results: 

- The addition of ML-control does not improve on the self-adaptation mecha­
nism: this was predictable, as the self-adaptation mechanism is known to be 
optimal on the sphere problem. 

- The addition of ML-control does not degrade the optimal self adaptation 
mechanism: it was argued in section 3 that the proposed control -- avoid 
past errors - cannot be misleading in a fixed fitness landscape. Hence, at 
least. on t.he sphere problem, it is not. 

10



- Substituting ML-control to self-adaptation did not make significant differ­
ence: This is the first sign that indeed ML-control can be beneficial to evo­
lution in the framework of parameter optimization, as it is able to provide 
similar performances than the optimal self-adaptation. 

4.2 Generalized Griewank function 

The second problem we consider here is to minimize the Griewank function (cur­
rently used for multi-modal optimization, both evolutionary and deterministic 
(30]) defined by: 

l 
n n 

g (x) = 
4000 

l:x7 - II cos(� ) + 1,
i=O i=O i 

where variables Xi belong to [-600, 600]. This function has a global minimum 
at point (0, . . .  , 0), and several local optima: see Figure 1-a for a closed view 
around the optimum, and Figure 1-b for a larger view. Notice that the z-scale 
has increased by a factor 10 between both figures, and that a view of the fitness 
landscape on the whole (-600, 600] domain would only show a smooth bowl-like 
surface. 

Experimental settings The aim is here to try to demonstrate that our ap­
proach can improve the overall results of evolutionary algorithms. So only the 
first two algorithms described in the above section 4.1 are compared (i.e. stan­
darcl ES, and standard ES plus ML-control) .

The dimension of the search space is set to 30, and both algorithms, use 
the (100, 600) - ES scheme with log-normal self-adaptation of the standard
deviations described in section 2.3. All results are averages over 25 independent 
runs. 

Results Figure 2 shows plots of the average best fitness vs the number of 
function evaluations for the standard ES and three trials of the ML-controlled 
step-size, for the different frequencies of learning: the number of generations L 
between two successive learning phases (see section 3.3) is set respectively to 3,
5 and 10. 

11



"' "' 

� 
'!;; ., .J:J 

' .. ., ;.. 
< 

0.2 r-:r---,r----..,.---.,...---,..---�----. 

0.15 

0.1 

-- Standard ES 
·········· L=lO 
----- L =5 

,... ··-·-· L =3 

\\ 
\(,, 

.. :\.', 

""I:'.::-....-.::.:-::.-::�:.�=-�:�:·.-�---�:-�:·�------· 

0.05 L--�--�--�--�--�5::--� 
0 LIO 

Number off1mction evaluations 

Figure 2: Resnlts for Gricwank function. 

The first conclusion is t.hat, on function g, the addition of ML control to 
standard ES seems to improve the overall performance: as can be seen on figure 
2, the average values of best fitness along evolution are more than 20% lower for 
the case L = 3 than for the standard ES (and the best result obtained in the 
c11se L = 3 is 0.052317, compared to 0.069351 for the standard ES). 

Furthermore, the frequency of learning is important: if too many generations 
elapse between two successive learning phases, the rules tend to become less 
accnrate with respect to the current population, leading to degraded results. 
Not.ice however that this phenomenon did not occur on the sphere problem: 
dnc to the highly smooth and isotropic sphere surface, when mutation steps are 
good on that. surface, they stay good for quite a long period of time. Nevertheless, 
further experiments will involve learning at every generation, in spite of the extra 
cost this will require. 

However, as discussed in section 3.3, the main cost does not come from the 
learning phase, but from the classification phase, which is totally independent 
of L. But it should be noted that this cost is the main limitation to the use 
of the ML-control: for both problems described above, it increases the total 
computation time by one order of magnitude. Hence, ML-control should be used 
only on very expensive fitness functions, for which the eta cost of learning and 
classification (independent of the fitness) would be relatively small. 

5 Discussion and perspectives 

These preliminary results show that ML-control can adjust the mutation step 
size as well or better than self-adaptation, which is regarded as the optimal 
method for t.Imt task in evolutionary computation. 

The strengths and weaknesses of ML-based control and self adaptation are 
quite different: 

-- Self-adaptation proceeds by "stochastic recommendations": it selects the 

12



best mutation step size. Furthermore, these recommendations apply on one 
single individual, and are based on the fitness of this individual. 

- In opposition, ML-based control proceeds by "deterministic inhibitions": it 
detects regions of actual mutation to be forbidden. These inhibitions apply 
on the whole population (or regions of the individual space in case the de­
scription of mutation events includes the description of the parent), and are 
based on the recent history of the evolution. 

The advantage of ML-based control is twofold: suitable recommendations are 
much less numerous than suitable inhibitions, and therefore an inhibition-based 
control strategy is less likely misleading. Second, it offers a deterministic alter­
native to evolutionary self-adaptation, and will hopefully demonstrate improve­
ment of the overall computational time of evolutionary algorithms - as soon as 
the role and potentialities of ML will be better understood and adjusted. 

In particular, further research is concerned with learning the direction of 
mutation. A straightforward extension of the presented work consists in learning 
from both the parent and the direction of mutation. Rules can thereby determine 
which directions are to be preferred or avoided when starting from a given region. 
This strategy is to be compared to the general form of self-adaptive mutation 
in ES, based on the full covariance matrix (which in n dimension includes the 
n standard deviations as well as the n(n - 1) covariance factors). Note that, in
the case where the fitness is differentiable, this strategy is nothing but building 
and using it.s gradient! 

A comprehensive study will compare the performances of standard and gen­
eralized self-adaptation, the ML-based control of mutation amplitude and di­
rect.ion, and also the arithmetical crossover [5], which can also be viewed as a 
population-driven mutation operator. 

Another perspective is concerned with building an rule-based model of the 
fitness landscape from the current population; induction is used here to discrim­
inate better from less fit individuals in the population. This rule-based model 
could in turn be used to directly derive next population. The main difficulty 
remains to characterize the regions which are yet unexplored. From rules char­
acterizing both promising regions and "terra incognita", evolution could then 
sample the desired amount of followers and explorers in these regions to build 
next population. 

References 

I. P.J. Angeline. The effects of noise on self-adaptive evolutionary optimization. In 
L. J. Fogel, P. J. Angeline, and T. Back, editors, Proceedings of the !J1-h Annual 
Conference on Evolutionary Programming, pages 433-439. MIT Press, 1996. 

2. T. Back and H.-P. Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1(1):1-23, 1993. 

3. R. A. Caruna and J. D. Schaffer. Representation and hidden bias : Gray vs binary
coding for genetic algorithms. In Proceedings of ICML-88, International Confer­
ence on Machine Learning. Morgan Kaufmann, 1988. 

13



4. L. Davis. Adapting operator probabilities in genetic algorithms. In J. D. Schaffer, 
editor, Proceedings of the 3rd International Conference on Genetic Algorithms, 
pages 61-69. Morgan Kaufmann, 1989. 

5. L. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval­
schemata. In L. D. Whitley, editor, Foundations of Genetic Algorithms 2, pages 
187-202, Los Altos, CA, 1993. Morgan Kaufmann. 

6. D. B. Fogel. An analysis of evolutionary programming. In D. B. Fogel and 
W. Atmar, editors, Proceedings of the 1st Annual Conference on Evolutionary Pro­
gramming, pages 43-51. Evolutionary Programming Society, 1992.

7. D. B. Fogel, L. J. Fogel, W. Atmar, and G. B. Fogel. Hierarchic methods of evo­
lutionary programming. In D. B. Fogel and W. Atmar, editors, Proceedings of the 

1st Annual Conference on Evolutionary Programming, pages 175-182, La Jolla, 
CA, 1992. Evolutionary Programming Society. 

8. D. B. Fogel and A. Ghozeil. Using fitness distributions to design more efficient 
evolutionary computations. In T. Fukuda, editor, Proceedings of the Third IEEE 
International Conference on Evolutionary Computation, pages 11-19. IEEE, 1996.

9. L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated 
Evolution. New York: John Wiley, 1966.

10. D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. 
Addison Wesley, 1989.

11. J. H. Holland. Adaptation in natural and artificial systems. University of Michigan 
Press, Ann Arbor, 1975.

12. C. Z. Janikow and Z. Michalewicz. An experimental comparison of binary and 
:Boating point representations in genetic algorithms. In R. K. Belew and L. B. 
Booker, editors, Proceedings of 4th International Conference on Genetic Algo­
rithms, pages 31-36. Morgan Kaufmann, July 1991.

13. T. Jones. Crossover, macromutation and population-based search. In L. J. Es­
helman, editor, Proceedings of the 6th International Conference on Genetic Algo­
rithms, pages 73-80. Morgan Kaufmann, 1995. 

14. T. Jones and S. Forrest. Fitness distance correlation as a measure of problem dif­
ficulty for genetic algorithms. In L. J. Eshelman, editor, Proceedings of the 6th
International Conference on Genetic Algorithms, pages 184-192. Morgan Kauf­
mann, 1995.

15. Y. Kodratoff. Introduction to Machine Learning. Pitman Publishing, London, 
1988. 

16. Z. Michalewicz. Genetic Algorithms+Data Structures=Evolution Programs. 
Springer Verlag, New-York, 1996. 3rd edition. 

17. R.S. Michalski. A theory and methodology of inductive learning. In R.S Michal­
ski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning : an artificial 
intelligence approach, volume 1, pages 83-134. Morgan Kaufmann, 1983.

18. T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
19. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
20. N. J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems, 

5:183-20, 1991.
21. N. J. Radcliffe. Forma analysis and random respectful recombination. In R. K. 

Belew and L. B. Booker, editors, Proceedings of the 4th International Conference 
on Genetic Algorithms, pages 222-229. Morgan Kaufmann, 1991.

22. C. Ravise and M. Sebag. An advanced evolution should not repeat its past errors. 
In L. Saitta, editor, Proceedings of the 1:fh International Conference on Machine
Learning, pages 400-408, 1996. 

14



23. C. Ravise, M. Sebag, and M. Schoenauer. An induction-based control for genetic 
algorithms. In J.-M. Alliot, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, 
editors, Artificial Evolution. Springer-Verlag, 1996.

24. I. Rechenberg. Evolutionstrategie: Optimieru.ng Technisher Systeme nach Prinzip­
ien des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart, 1973.

25. G. Rudolph. Convergence of non-elitist strategies. In Z. Michalewicz, J. D. Schaf­
fer, H.-P. Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings of the F irst 

IEEE International Conference on Evolutionary Computation, pages 63--66. IEEE
Press, 1994.

26. N. Saravanan, D. B. Fogel, and K. M. Nelson. A comparison of methods for self­
adaptation in evolutionary algorithms. Biosystems, 36:157-166, 1995.

27. H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,
New-York, 1981. 1995 - 2nd edition. 

28. M. Sebag. Delay ing the choice of bias: A disjunctive version space approach. In 
L. Saitta, editor, Proceedings of the 1ath International Conference on Machine
Leaming, pages 444--452. Morgan Kaufmann, 1996.

29. M. Sebag and M. Schoenauer. Controlling crossover through inductive learning. In 
Y. Davidor, H.-P. Schwefel, and R. Manner, editors, Proceedings of the 3rd Confer­
ence on Parallel Problems Solving from Nature. Springer-Verlag, LNCS 866, 1994.

30. A. Torn and A. Zilinskas. Global Optimization. Springer Verlag, New-York, 1989.
31. A. Wright. Genetic algorithms for real parameter optimization. In G. J. E. Rawl­

ins, editor, Foundations of Genetic Algorithms, pages 205-218. Morgan Kaufmann, 
1991. 

15


