Michele Se

Marc Schoenauer

Caroline Ravise

Inductive Learning of Mutation Step-Size in Evolutionary Parameter Optimization

The problem of setting the mutation step-size for real-coded evolutionary algorithms has received different answers: exogenous rules like the 1/5 rule, or endogenous factor like the self-adaptation of the step size in the Gaussian mutation of modern Evolution Strategies. On the other hand, in the bitstring framework, the control of both crossover and mutation by means of Inductive Leaning has proven beneficial to evolu tion, mostly by recognizing -and forbidding -past errors (i.e. crossover or mutations leading to offspring that will not survive next selection step). This Inductive Learning-based control is transposed to the con trol of mutation step-size in evolutionary parameter optimization, and the resulting algorithm is experimentally compared to the self-adaptive step-size of Evolution Strategies.

Introduction

In the framework of stochastic optimization methods, Evolutionary Algorithms (EAs) have proven successful on many difficult problems in recent history. The general outlook of an EA is a crude mimic of the Darwinian evolution of a pop ulation (i.e. a P-tuple) of individuals (i.e. points of the search space). After agenerally --random initialization, the population undergoes a series of genera tion.�, whereas a generation can be described as:

•selection (based on fitness values) of some individuals for reproduction;

•reproduction through evolution operators (e.g. crossover, mutation) to generate offspring

•replacement (based on fitness values) of some parents by some off spring

The main branches of EAs -Genetic Algorithms (GAs) [START_REF] Holland | Adaptation in natural and artificial systems[END_REF][START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF], Evolution Strategies (ES) [START_REF] Rechenberg | Evolutionstrategie: Optimieru.ng Technisher Systeme nach Prinzip ien des Biolog ischen Evolution[END_REF][START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF] and Evolutionary Programming (EP) [START_REF] Fogel | Artificial Intelligence through Simulated Evolution[END_REF][START_REF] Fogel | An analysis of evolutionary programming[END_REF] can be distinguished by the way they perform selection and replacements: GAs use pro portional selection and global replacements of parents by offspring; ES and EP do not use any selection, ES uses deterministic replacement and EP a stochas tic tournament among parents and offspring. Moreover, GAs favor crossover as main evolution operator, whereas ES and EP use mostly mutation.

Another major historical difference lies in the search spaces these methods consider. Roughly, canonical GAs solve the problem at hand on a binary space by employing standard binary evolution operators. Several works have shown how much the feasibility of optimization depends on the particular binary mapping [START_REF] Caruna | Representation and hidden bias : Gray vs binary coding for genetic algorithms[END_REF][START_REF] Jones | Fitness distance correlation as a measure of problem dif ficulty for genetic algorithms[END_REF]. EP and ES have developed algorithms suited to the "natural" formulation of the problem, i.e. they directly work in the real-valued search space in case of continuous parameter optimization.

However, as many real-world problems involve real-valued variables, real parameter optimization has lately encountered an increasing interest among all branches of Evolutionary Computation. This paper is concerned with mutation operators on Rn. In practice, the mutation of a real-valued vector is often achieved through the addition of Gaus sian noise. The main question remains to determine the desired variance of this Gaussian law, that is, the mutation step. This mutation step should ideally de pend on the individual at hand (and on its proximity to the optima) and on the current state of evolution. Several heuristics have been proposed in the litera ture to control the mutation step, which are either deterministic [START_REF] Rechenberg | Evolutionstrategie: Optimieru.ng Technisher Systeme nach Prinzip ien des Biolog ischen Evolution[END_REF], or based on evolution itself [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF][START_REF] Fogel | Hierarchic methods of evo lutionary programming[END_REF]. This paper investigates another means based on Ma chine Learning (ML), for the control of the mutation step; it extends previous works [START_REF] Sebag | Controlling crossover through inductive learning[END_REF][START_REF] Ravise | An induction-based control for genetic algorithms[END_REF][START_REF] Ravise | An advanced evolution should not repeat its past errors[END_REF], devoted to the control of crossover and mutation operators in binary spaces. The idea consists in observing evolution and learning online from these observations; from examples of trials and errors, learning extracts rules discriminating successf ul trials from errors. These rules can notably be used for "avoiding evolution to repeat its past errors" and filtering disruptive evolution events in the following generations. This paper is organized as follows. The next section briefly describes the current trends for real-valued optimization in EAs, and summarizes the state of the art in mutation step-size control. Section 3 details how ML can be used to support the control of evolution and focuses on two questions: what can be learnt from observing evolution, and how to use this knowledge to provide evolution with relevant advises in the next generations. An ML-controlled scheme of mutation is applied to several test-problems of the literature; these results are compared to those of other evolutionary algorithms in section 4. The last section sketches several avenues for further research.

2

State of the art

This section describes the current trends in evolutionary optimization with re spect to two search spaces: the first one, referred to as phenotype space is that of the fitness function; in that space, individuals are evaluated and selected. The second one, referred to as genotype space is the space the evolution operators apply to; in that space, individuals are represented and evolved.

Let us first discuss GA, EP, and ES, before detailing the control of mutation.

GAs and real coding

Genetic Algorithms [START_REF] Holland | Adaptation in natural and artificial systems[END_REF][START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF] have been designed to operate binary strings. Canon ical GAs therefore used to tackle parameter optimization problems (the pheno type space is a subset of R, n) through a binary representation of individuals (the genotype space is {O, 1 }k). This is done by discretizing the domain of every real valued parameters into 2k intervals; a real-value is thereafter discretized, and encoded into a bitstring of length k using either the standard digit or the Gray coding [START_REF] Caruna | Representation and hidden bias : Gray vs binary coding for genetic algorithms[END_REF]. However, beside the loss of information induced by the discretization step, Genetic Algorit.hms using binary coding and the corresponding standard binary operators violate some basic principles related to the so-called schemata analysis [START_REF] Radcliffe | Equivalence class analy sis of genetic algorithms[END_REF]. Most people working in the area of parameter optimization us ing Genetic Algorithms now rely on real-encoded GAs, where both the genotype space and the phenotype space are subsets of R n . This implies the definition of specific real-valued crossover and mutation operators.

The most popular real-valued crossover operators are based on a linear com bination of the parents, ranking from the "Guaranteed average recombination" of Wright [START_REF] Wright | Genetic algorithms for real parameter optimization[END_REF] to the general BLX-a recombination of Eshelman & Schaffer [START_REF] Eshelman | Real-coded genetic algorithms and interval schemata[END_REF] through the flat recombination of Radcliffe [START_REF] Radcliffe | Forma analysis and random respectful recombination[END_REF] and Michalewicz's arithmetical recombination [START_REF] Janikow | An experimental comparison of binary and :Boating point representations in genetic algorithms[END_REF][START_REF] Michalewicz | Genetic Algorithms+Data Structures=Evolution Programs[END_REF]. A question that remains unresolved is to decide to what extent such operators actually are crossover operators (i.e. obey some equivalent of the bit.string schema theorem of Holland [START_REF] Holland | Adaptation in natural and artificial systems[END_REF]), or can be viewed as yet another type of mutation operator (see [START_REF] Eshelman | Real-coded genetic algorithms and interval schemata[END_REF] and [START_REF] Jones | Crossover, macromutation and population-based search[END_REF] for more detailed discussions on this hot topic).

The most popular real-valued mutation operator is inspired from ES and EP, and is detailed below.

EP and ES

Since their inception, Evolution Strategies [START_REF] Rechenberg | Evolutionstrategie: Optimieru.ng Technisher Systeme nach Prinzip ien des Biolog ischen Evolution[END_REF][START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF] have been designed to handle real-valued parameters, and do work directly in the space of real-valued vectors. Similarly, Evolutionary Programming [START_REF] Fogel | Artificial Intelligence through Simulated Evolution[END_REF][START_REF] Fogel | An analysis of evolutionary programming[END_REF], whose general approach is to directly evolve the phenotypes themselves, uses real-vector representations for real-valued parameters. Further, the original versions of both these algorithms used mutation as the only evolution operator.

Both methods use Gaussian mutation in which a random variable with nor mal (Gaussian) distribution and zero mean is added to the current value of each coordinate of the vector of real-valued parameters:

x ER. --t x + N(O, a), (1
)
where a is the standard deviation of the normally distributed 0-mean random variable N. Parameter a is referred to as the mutation step size: The larger a, the more likely the occurence of large mutations. The expected value for the amplitude of mutation can therefore be controlled by adjusting a. Eventually, a specific mutation step size O"i is associated to every coordinate xi of the individual at hand. Note that recent trends in ES now incorporate some form of recombination (cross-over), including the above mentioned linear recombination [START_REF] Back | An overview of evolutionary algorithms for parameter optimization[END_REF]. Thus, apart from the selection/replacement scheme, t.he main difference remaining between GAs on the one hand, and ES and EP on the other hand, is t.he systematic use of mutation of the latter methods, compared to the historically parsimonious GA way of mutating.

Tun ing the mutation step-size

Since its inception in the early days of Evolution Strategies [START_REF] Rechenberg | Evolutionstrategie: Optimieru.ng Technisher Systeme nach Prinzip ien des Biolog ischen Evolution[END_REF][START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF], many dif ferent. methods have been proposed to control Gaussian mutation and tune the standard deviation a.

An early approach to exogenous adaptation of a (used at that time for one-parameter problems) is the well-known 1/5 rule of Rechenberg [START_REF] Rechenberg | Evolutionstrategie: Optimieru.ng Technisher Systeme nach Prinzip ien des Biolog ischen Evolution[END_REF]. In this scheme, a is modified according to the results obtained by mutation in the last few generations: if more than one-fifth of the mutations have been successful (i.e. led to an offspring more fit than the parent), increase a, otherwise decrease a. The schedules for increasing and decreasing a are geometrical schedules; the factors suggested by Schwefel [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF] are 1.1 and 0.9.

In the early real-valued EP, the standard deviation of mutation was deter mined on the basis of the fitness of the individual at hand, in such way that most fit individuals undergo small Gaussian mutations, i.e. with small standard deviations [START_REF] Fogel | An analysis of evolutionary programming[END_REF].

Nevertheless, both ES and EP now use the self-adaptive mutation [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF]: The description of an individual x includes both the n object variables (its coor dinates (xi, ... , X n)) and the corresponding standard deviations (ai, . . . , a n)1. When mutating x, the step sizes O"i first undergo mutation; the coordinates Xi are modified afterwards using the new values of the deviations <Yi as in equation 1. The standard deviations themselves can therefore get adjusted "for free" along evolution [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF][START_REF] Back | An overview of evolutionary algorithms for parameter optimization[END_REF].

Early works in EP used Gaussian mutation described in equation (1) to evolve the standard deviations <Ii [START_REF] Fogel | Hierarchic methods of evo lutionary programming[END_REF]. But there is now an almost total agreement [START_REF] Saravanan | A comparison of methods for self adaptation in evolutionary algorithms[END_REF], with the noticeable exception of noisy domains [1], on using a log-normal mutation for mutating the standard deviations <Ti:

(2)

where T and T' are robust exogenous parameters for which Schwefel [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF] sug gests the values (v'27n)-l and (/2n)-1. The log-normal mutation preserves positive values for the standard deviations, and each parameter is modified by a random geometric factor symmetric around the mean neutral value of 1.

Of evidence, the successes of evolutionary optimization make it a good can didate for adjusting the parameters of evolution itself, as done in the self adaptation method described above. However, comparative experiments showed that, whenever an optimization problem could be tackled by other (determin istic) methods, these deterministic methods were faster than evolutionary opti mization by one or several orders of magnitude.

The q1wstion then becomes: how could a (deterministic) method handle the optimization of the parameters of evolution? As far as we know, the only possi bility studied so far was that of the 1/5 rule [START_REF] Rechenberg | Evolutionstrategie: Optimieru.ng Technisher Systeme nach Prinzip ien des Biolog ischen Evolution[END_REF], developped by careful analysis of two simplifed models (the sphere and the corridor). However, its generaliza tion to other situations is not clear [START_REF] Fogel | Using fitness distributions to design more efficient evolutionary computations[END_REF]. Moreover, this deterministic method is limited in that it can only globally handle the vector of standard deviations (<Ti), since it simply counts the number of successes and failures (offspring more or less fit than the parents): counting does not supply enough information to increase the standard deviation ai for some coordinate i while decreasing it for some other coordinates.

It is suggested that Machine Learning could bring some answers for adjusting the evolution parameters, through a more thorough analysis of the successes and failures of mutation depending on the actual vectors ai.

3

Inductive learning-based control of evolution

The use of Machine LP. arning for evolution control relies on the following con jcctnres:

-Evolution is made of events and one can categorize these events into successes and failures. -The history of past generations contains useful information as to the trials which should -or should not -take place in the next generations.

One may doubt the collection of past successful events to give (reliable) hints as to further successful events: any strategy could be misleading on a pre determined problem.

In opposition, there is no contest that the collection of past errors gives sound though partial -information as to give undesirable further events: whenever the fitness landscape does not change along evolution, it is a pure waste of time to repeat trials which showed errors in the past.

A strategy of control would then be to explicitly store the history of evolution, and use this memory to avoid the repetition of past errors. Note this strategy is ensured to be safe, i.e. it incurs no chance of misleading evolution.

Building explicitly and exploiting the whole history of evolution is intractable. Machine Learning, and more precisely induction from examples [START_REF] Michalski | A theory and methodology of inductive learning[END_REF][START_REF] Mitchell | Generalization as search[END_REF], allows one to overcome this potential limitation, through summarizing examples of suc cesses and errors into rules. Further, these rules can be used to estimate whether any unseen trial will likely be an error or a success. Several strategies of control relying on this estimate are thereafter possible; some have proven successful in the context of canonical bitstring GAs, on several well-studied binary problems [START_REF] Sebag | Controlling crossover through inductive learning[END_REF][START_REF] Ravise | An induction-based control for genetic algorithms[END_REF][START_REF] Ravise | An advanced evolution should not repeat its past errors[END_REF].

This paper is concerned with extending this ML-based approach of the con trol of evolution, from binary to real-valued search spaces, and from GAs to ESs. We first briefly describe how to learn from and about evolution, and how to use on-line the rules extracted by induction. A hybrid scheme coupling evolution and induction is described last.

Learning from evolution

In this paper, the events of evolution are defined as the evolution operators that give birth to offspring. An event is categorized as being an error or a success de pending on whether the offspring reach lower or higer fitness than their parents 2 . This definition is somewhat short-sighted since actually reaching the optimum is the result of a whole "dynasty" . Further research will be concerned with evalu ating the success or failure of an event from its descendants, in the line of Davis [4].

This study is restricted to mutation operators for two reasons. First, previous experiments in binary search spaces unexpectedly showed that mutation control is far more efficient than crossover control, in spite of the relative rarity of mutations compared to crossovers [START_REF] Ravise | An induction-based control for genetic algorithms[END_REF][START_REF] Ravise | An advanced evolution should not repeat its past errors[END_REF]. Second, mutation traditionally plays the primary role in the evolutionary framework as far as real-valued individuals are considered.

A mutation event is completely described by the parent it applies onto, rep resented as the real-valued vector (xi), and the quantity added to the parent in order to get the offspring, represented as a real-valued vector (8i From such examples, induction constructs discriminant rules, that is, con junction of conditions of the kind attribute Ai lies in Vj, where Vj is a subset of the domain of attribute Vi, such that these conditions are satisfied by exam ples which all belong to the same category. See [START_REF] Michalski | A theory and methodology of inductive learning[END_REF][START_REF] Mitchell | Generalization as search[END_REF][START_REF] Kodratoff | Introduction to Machine Learning[END_REF] for a comprehensive introduction to inductive learning from examples.

In our toy example, rule R states that for any individual such that x1 > 6.41 and x3 > -.3, augmenting the first component by a small or negative amount 15i (15i < .14) and augmenting the third component by a large amount (83 > 1.02) will be an error, i.e. lead to an offspring less fit than the parent.

Roughly, induction either proceeds in a top-down or in a bottom-up man ner. Top-down induction repeatedly selects the attribute (here, Xi or dj) that is most, informative regarding the category of the example, e.g. in the sense of the quantity of information [START_REF] Quinlan | Induction of decision trees[END_REF]. It thereby builds a decision tree whose nodes are attributes, branches are conditions on the father node attribute, and leaves are categories of examples.

Bottom-up induction repeatedly considers one example Ex at a time, and determines the conjunction(s) of conditions which are satisfied by Ex and by examples belonging the same category as Ex only.

For the sake of convenience, we used a home-made learner named DIVS, which is detailed in [START_REF] Sebag | Delay ing the choice of bias: A disjunctive version space approach[END_REF], though any other learner could probably have been used. DIVS is a bottom-up algorithm the complexity of which is linear in the number of attributes and quadratic in the number of examples.

The parameters of most learners, among which DIVSbelongs, control:

-the generality of the rules, that is the fraction of the example space they cover. The degree of generality commands both the applicability and the reliability of the rules: intuitively, general rules are not as reliable as specific rules; but they apply much more often. --the significance and consistency of the rules, that is, respectively the number of examples they explain, and the fraction of examples in the other categories they cover. The degrees of significance and consistency altogether control the number of rules extracted from examples.

The precise tuning of these parameters depends on the further use of the rules.

Knowledge-controlled evolution

The category of a further mutation event can be estimated from the rule(s) this event satisfies3• This estimate can accommodate several control strategies:

-Effecting only events estimated as successful. In that perspective, general rules should be preferred. Otherwise, this control would favor mutation events "close" to past successful mutation events. And this strategy would likely break the balance between the exploration and exploitation tasks achieved by evolutionary optimization [START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF]. -Rejecting events estimated as errors. In that perspective, specific rules should inversely be preferred, in order to ensure that only mutation events close to past error events are rejected. When the specificity of rules increases, they are satisfied by fewer and fewer examples; other examples are thus unclassified, and considered admissible. In the limit, this strategy corresponds to the pure avoidance of past errors.

Only the second strategy of control will be investigated in this paper. The degree of specificity is adjusted so as to ensure that only one-half of the mutation events will be rejected; (other events are either estimated as successes, or, more frequently, satisfy no rules and are unclassified). This way, only mutations most "similar" to past unsuccessful mutations are filtered.

It should be noted that this strategy does not break the balance between exploration and exploitation. Rather, the rules delineate regions where explo ration or exploitation have led to bad or null results. This allows one to bias both exploration and exploitation toward other regions.

For these first experiments, however, only the vector 8i is stored into the description of a mutation event, because most of the evolution time is spent with a ne�rly homogeneous population (the description of the parent thereby gives no usable information). This entails two consequences: examples may be inconsistent, i.e. a vector 8i could be considered successful when added to a given parent, and unsuccessful when applied to another parent. However, this has no important consequence on the learning task as DIVScan deal with a limited amount of inconsistency. But this also means that the category associated to a given vector 8i might change when the population moves toward regions of better fitness.

This in turn implies that the lifetime of the rules should be limited: rules must be periodically updated in order to follow the evolution of the population and remain relevant.

Integr ating evolution and induction

The scheme integrating evolution and induct.ion can be described as follows:

-Examples needed for induction are gleened from evolution. One therefore gathers a set of examples, the size of which is set by the user (by default the size P of the population). Special attention is paid to representing both categories of events in this set of examples. Typically, if only bad events are gathered, induction will learn a single rule (all is error), which leads to a poor estimate of the event categories. -Every L generations, these examples are considered. If both successes and errors are represented, rules are learnt. Otherwise the rule set is set to the empty set. -The specificity of the rules is tuned so as 50% of P randomly generated mutation events are admissible (i.e. not classified errors). DIVS, in contrast with most other learners, allows to meet this constraint a posteriori, at clas sification time (see [START_REF] Sebag | Delay ing the choice of bias: A disjunctive version space approach[END_REF] for details). -During the next L generations, mutations events are filtered depending on the rule set (if it is not empty): vectors Oi estimated error are rejected.

The cost of ML-control includes the building and the use of the above esti mate:

-The cost of induction, which is in N x P 2 , where N denotes the dimension of the search space and P the size of the evolutionary population; and this costs intervenes every L generations. -The cost of using the rules, which is equally in N x P 2 , and is the main factor of complexity of this approach, as every mutation requires to be classified admissible before being allowed to apply.

4

First experimental results

This section presents preliminary validation experiments of the above scheme on two well-studied benchmark functions.

4.1

The sphere problem

Tlw first and simplest possible test case is the sphere problem. On the one hand, it can be thought of as the real-valued equivalent of the "Count the bits" binary problem. On the other hand, it is used in Evolution Strategies as a fundamen tal test problem: Theoretical results prove that ESs using the self-adaptation mechanism do achieve a log-linear progress rate [START_REF] Rudolph | Convergence of non-elitist strategies[END_REF].

The problem is to find the minimum of the quadratic function f defined on (0, l)n by f (x) = °E�=O xr Experimental settings Three algorithms are compared on the sphere problem:

-Standard ES with self-adaptation mechanism based on the log-normal up date of the standard deviations, as described in section 2.3

) .. ,

The same algorithm (ES with self-adaptation), but with the addition of the ML-control described in section 3.3: only mutations classified admissible are actually performed.

),, --A degraded ES algorithm, where the standard deviations of the mutations do not use self-adaptation: they are kept constant all along evolution.

The dimension of the search space n is set to 10. The population size is set to 10, each parent generating 6 offspring by mutation only, and the replace ment step selects the best 10 individuals out of the 60 offspring (this is termed (10, 60)-ES in ES terminology). The algorithms stop when 50 generations show no improvement of the overall best fitness.

The values of the exogenous parameters for the log-normal update of standard deviations are those described in section 2.3. All results are averaged over 25 independent runs.

Results

The performances of the three algorithms are almost indistinguishable. However, positive conclusions can be drawn from such tight results:

-The addition of ML-control does not improve on the self-adaptation mecha nism: this was predictable, as the self-adaptation mechanism is known to be optimal on the sphere problem. -The addition of ML-control does not degrade the optimal self adaptation mechanism: it was argued in section 3 that the proposed control --avoid past errors -cannot be misleading in a fixed fitness landscape. Hence, at least. on t.he sphere problem, it is not.

-Substituting ML-control to self-adaptation did not make significant differ ence: This is the first sign that indeed ML-control can be beneficial to evo lution in the framework of parameter optimization, as it is able to provide similar performances than the optimal self-adaptation.

Generalized Griewank function

The second problem we consider here is to minimize the Griewank function (cur rently used for multi-modal optimization, both evolutionary and deterministic [START_REF] Torn | Global Optimization[END_REF]) defined by: Experimental settings The aim is here to try to demonstrate that our ap proach can improve the overall results of evolutionary algorithms. So only the first two algorithms described in the above section 4.1 are compared (i.e. stan darcl ES, and standard ES plus ML-control).

The dimension of the search space is set to 30, and both algorithms, use the (100, 600) -ES scheme with log-normal self-adaptation of the standard deviations described in section 2.3. All results are averages over 25 independent runs.

Results Figure 2 shows plots of the average best fitness vs the number of function evaluations for the standard ES and three trials of the ML-controlled step-size, for the different frequencies of learning: the number of generations L between two successive learning phases (see section 3.3) is set respectively to 3, 5 and 10.

••••••••• L=lO -----L =5
,... The first conclusion is t.hat, on function g, the addition of ML control to standard ES seems to improve the overall performance: as can be seen on figure 2, the average values of best fitness along evolution are more than 20% lower for the case L = 3 than for the standard ES (and the best result obtained in the c11se L = 3 is 0.052317, compared to 0.069351 for the standard ES).

Furthermore, the frequency of learning is important: if too many generations elapse between two successive learning phases, the rules tend to become less accnrate with respect to the current population, leading to degraded results. Not.ice however that this phenomenon did not occur on the sphere problem: dnc to the highly smooth and isotropic sphere surface, when mutation steps are good on that. surface, they stay good for quite a long period of time. Nevertheless, further experiments will involve learning at every generation, in spite of the extra cost this will require.

However, as discussed in section 3.3, the main cost does not come from the learning phase, but from the classification phase, which is totally independent of L. But it should be noted that this cost is the main limitation to the use of the ML-control: for both problems described above, it increases the total computation time by one order of magnitude. Hence, ML-control should be used only on very expensive fitness functions, for which the eta cost of learning and classification (independent of the fitness) would be relatively small.

5

Discussion and perspectives

These preliminary results show that ML-control can adjust the mutation step size as well or better than self-adaptation, which is regarded as the optimal method for t.I mt task in evolutionary computation.

The strengths and weaknesses of ML-based control and self adaptation are quite different: --Self-adaptation proceeds by "stochastic recommendations": it selects the best mutation step size. Furthermore, these recommendations apply on one single individual, and are based on the fitness of this individual.

-In opposition, ML-based control proceeds by "deterministic inhibitions": it detects regions of actual mutation to be forbidden. These inhibitions apply on the whole population (or regions of the individual space in case the de scription of mutation events includes the description of the parent), and are based on the recent history of the evolution.

The advantage of ML-based control is twofold: suitable recommendations are much less numerous than suitable inhibitions, and therefore an inhibition-based control strategy is less likely misleading. Second, it offers a deterministic alter native to evolutionary self-adaptation, and will hopefully demonstrate improve ment of the overall computational time of evolutionary algorithms -as soon as the role and potentialities of ML will be better understood and adjusted.

In particular, further research is concerned with learning the direction of mutation. A straightforward extension of the presented work consists in learning from both the parent and the direction of mutation. Rules can thereby determine which directions are to be preferred or avoided when starting from a given region. This strategy is to be compared to the general form of self-adaptive mutation in ES, based on the full covariance matrix (which in n dimension includes the n standard deviations as well as the n(n -1) covariance factors). Note that, in the case where the fitness is differentiable, this strategy is nothing but building and using it.s gradient! A comprehensive study will compare the performances of standard and gen eralized self-adaptation, the ML-based control of mutation amplitude and di rect.ion, and also the arithmetical crossover [START_REF] Eshelman | Real-coded genetic algorithms and interval schemata[END_REF], which can also be viewed as a population-driven mutation operator.

Another perspective is concerned with building an rule-based model of the fitness landscape from the current population; induction is used here to discrim inate better from less fit individuals in the population. This rule-based model could in turn be used to directly derive next population. The main difficulty remains to characterize the regions which are yet unexplored. From rules char acterizing both promising regions and "terra incognita", evolution could then sample the desired amount of followers and explorers in these regions to build next population.

Fig. 1 .

 1 Fig.1. Fitnes.s landscape for function g. (a) Zoom around the optimum, on sub-domain F-10, 10] x [-10, 10]. (b) On the larger sub-domain (-100, 100] x (-100, 100].

) = 4000 l:x7 -II cos(�) + 1, i=O i=O i where variables Xi belong to [-600, 600]. This function has a global minimum at point (0, ... , 0), and several local optima: see Figure 1-a for a closed view around the optimum, and Figure 1-b for a larger view. Notice that the z-scale has increased by a factor 10 between both figures, and that a view of the fitness landscape on the whole (-600, 600] domain would only show a smooth bowl-like surface.

 r-:r---,r----. .,.---.,. ..---,. .---�----.

Figure 2 :

 2 Figure 2: Resnlts for Gricwank function.

Table 1 .

 1)• Examples of mutation events together with the corresponding category, are represented in Ta hle 1 : Induction from examples of mutation. Rule R is a generalization of examples E3 and E4 not contradicting examples Ei and E2•

			Individual			Mutation	Class
	Et	3.21	4.48	-5.56	0.26	.22	0.18	-0.35	0.63 success
	E2 E3 E1	6.41 7.52 7.23	-1.33 -2.51 0.58	-0.3 1.4 0.55	0.61 0.33 0.39	.14 -.32 -.08	0.04 -0.27 0.33	1.02 1.15 2.01	0.18 .�uccess 0.56 erro1 0.69 erro1

R (xi > 6.41) * (x 3 > -.3) * (61 < .14) * (h 3 > 1.02) * erro1

The more general version of adaptive mutation actually uses the complete covariance matrix of normal distribution in n dimensions. But the simplified version using only the standard deviations is the most widely studied and used.

Another category of events was introduced in[START_REF] Ravise | An advanced evolution should not repeat its past errors[END_REF]: that of inactive events, giving rise to offspring equally as fit as parents. However, in contrast with binary search spaces, there are almost no inactive events in real-valued search spaces.

In case it satisfies several rules concluding to different categories, the actual category of the event is determined by a majority vote.