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Abs t rac t 

Learning in first-order logic (FOL) languages 

suffers from a specific difficulty: both induction 

and classification are potentially exponential in 

the size of hypotheses. This difficulty is usu-

ally dealt wi th by l imit ing the size of hypothe-

ses, via either syntactic restrictions or search 

strategies. 

This paper is concerned with polynomial in-

duction and use of FOL hypotheses with no 

size restrictions. This is done via stochastic 

matching: instead of exhaustively exploring the 

set of matchings between any example and any 

short candidate hypothesis, one stochastically 

explores the set of matchings between any ex-

ample and any candidate hypothesis. The user 

sets the number of matching samples to con-

sider and thereby controls the cost of induction 

and classification. 

One advantage of this heuristic is to allow for 

resource-bounded learning, without any a pri-

ori knowledge about the problem domain. 

Experiments on a real-world problem pertain-

ing to organic chemistry fully demonstrate the 

potentialities of the approach regarding both 

predictive accuracy and computational cost. 

1 In t roduc t i on 

This paper is concerned with learning from examples ex-

pressed in (a restriction of) First-Order Logic (FOL). 

This language is required to describe examples that in-

clude several objects of the same kind (e.g. a car involves 

several wheels, a molecule involves several atoms), either 

when these objects cannot be ranked in a canonical way 

(e.g. atoms in a molecule) or when it makes sense to 

compare objects of different ranks (e.g. front left and 

front right wheels). 

Learning in FOL, usually referred to as Inductive Logic 

Programming ( ILP) (Muggleton k De Raedt, 1994), is 

receiving growing attention as it appears the only way 

for machine learning to tackle complex domains such as 

organic chemistry (King, Srinivasan, & Sternberg, 1995) 
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or natural language (Mooney, 1996). And a number 

of FOL learners have been developed: FOIL (Quinlan, 

1990), ML-Smart (Bergadano k Giordana, 1990), FOCL 

(Pazzani k Kibler, 1992), KBG (Bisson, 1992), REGAL 

(Giordana k Neri, 1994), PROGOL (Muggleton, 1995), 

RIBL (Emde k Wettscherek, 1996) and REMO (Zucker 

k Ganascia, 1996) to name a few. 

The specific difficulty of ILP is related to the match-

ing step: If a clause involves three literals part and the 

description of a given device involves 40 parts, there are 

403 possible ways (termed matchings) to instantiate the 

literals in the clause by the literals describing the de-

vice. Discriminant induction requires all such match-

ings to be considered (to ensure the clause discrimi-

nates the device); and the same goes for deduction in 

the worst case (to check whether the clause covers the 

device). In other words, induction and deduction are 

exponential in the size of FOL hypotheses. This l imita-

tion is dealt wi th in the literature by inducing short hy-

potheses, by means of search strategies (Quinlan, 1990; 

Bergadano k Giordana, 1990; Pazzani & Kibler, 1992; 

Muggleton, 1995) and/or syntactic restrictions (Gior-

dana k Neri, 1994; Kietz k Lubbe, 1994; Muggleton, 

1995). 

This paper is interested in polynomial induction and 

use of FOL hypotheses, with no size restrictions. This is 

made possible by stochastic matching: one only consid-

ers some samples of matchings between examples and 

hypotheses —- instead of exhaustively considering all 

matchings between examples and (short) hypotheses. 

The considered matchings are constructed by a stochas-

tic sampling mechanism, and the number of samples al-

lowed is supplied by the user. By so-doing, s/he controls 

both the induction cost (linear in the number of samples) 

and the quality of the hypotheses (the more samples are 

considered, the more likely the hypotheses are consis-

tent). 

This heuristic is embedded in the Disjunctive Ver-

sion Space framework (DiVS) (Sebag, 1996), which con-

structs all consistent hypotheses covering at least one 

training example. This framework extends that of Ver-

sion Space (Mitchell, 1982) and likewise implies a single 

bias, that of the hypothesis language. In particular, as it 

does not restrict the size of hypotheses, DiVS shows in-
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tractable for hypothesis languages such as logic programs 

or constraint logic programs1 (Sebag & Rouveirol, 1996). 

The algorithm combining DiVS and stochastic match-

ing is termed STILL for Stochastic Inductive Learning. 

Stochastic matching allows STILL to learn hypotheses of 

any size (at most as long as the examples) in polynomial 

t ime, and to use them in polynomial time too. Stochas-

tic matching corresponds to a new kind of learning bias 

(Mitchel l , 1991). The stochastic bias contrasts with lan-

guage and- search biases, inasmuch it does not involve 

any expert knowledge about the problem or about how 

to find relevant solutions. Rather, it reflects the avail-

able computational resources; and the more resources, 

the better. 

This paper is organized as follows. Section 2 briefly 

presents DiVS; the reader is assumed to be familiar 

wi th the Version Space (VS) framework (Mitchell, 1982). 

Section 3 details the stochastic sampling mechanism 

and outlines the induction and classification algorithms 

of STILL. Experimental validation on the mutagenesis 

problem (King, Srinivasan, & Sternberg, 1995) is pre-

sented in section 4; the influence of the stochastic match-

ing mechanism is discussed, and STILL is compared to 

prominent learners. We conclude with some research 

perspectives. 

2 Dis junct ive Version Space 

This section recalls how Disjunctive Version Space ad-

dresses the limitations of Version Space (failures, expo-

nential complexity). Details on the algorithms are found 

in (Sebag, 1996; Sebag & Rouveirol, 1996). 

2 . 1 O v e r c o m i n g V S f a i l u r e s 

Basically, VS fails when the maximally specific complete 

hypotheses (set 5) are not more specific than the maxi-

mally general consistent hypotheses (set G). But noisy 

examples lead to over-generalize 5 and over-specialize 

G; and examples from a disjunctive concept result in 

an over-generalization of 5 if the hypothesis language is 

conjunctive. This explains why VS fails to handle real-

world problems, which include noisy examples and tackle 

disjunctive concepts most of the time. 

VS failures are soundly prevented in three cases: a) 

when there is no negative example; b) when there is 

no positive example; and c) when there is exactly one 

positive example E, provided that E does not belong also 

to the negative examples (which can easily be checked). 

The third case is preferred as it is more robust with 

regard to noise (Sebag, 1996). 

The general case, that is, learning from several posi-

tive and negative examples, is amenable to the favorable 

case of a unique positive example by hybridizing Version 

Space and the AQ algorithm (Michalski, 1983): For each 

(positive or negative) seed example E. one constructs the 

star H(E) as the set of all consistent hypotheses covering 

1 Constraint logic programming notably contains the ex-

tensions of logic programming concerned wi th number han-

dl ing. But, this point wil l not be discussed herein. 

E. If F1..Fm denote the examples not belonging to the 

same class as E, termed counter-examples2 to e, H(E) 

exactly is the version space learned from E as unique 

positive example, and Fx as negative examples. 

The disjunction of the stars H(E), for E ranging 

over the training set, constitutes the Disjunctive Version 

Space of all consistent partially complete hypotheses. 

2.2 Overcoming VS i n t r ac tab i l i t y 

Building H(E) is intractable even within a propositional 

language: H(E) is characterized by its lower bound 

(5 = E) and its upper bound G, which is the disjunc-

tion of an exponential number of conjunctive hypotheses 

(Haussler, 1988). 

DiVS overcomes this l imitat ion by characterizing 

H(E) as a conjunction of disjunctions. This is done as 

follows. Let D(E,F}) denote the set of hypotheses cov-

ering E and discriminating counter-example FI. H(E) 

includes all hypotheses discriminating all FI, hence it is 

equal to the conjunction of D(E, FT), for FI ranging over 

the counter-examples to E. 

In an attribute value language, D(E,FI) gets character-

ized as the disjunction of all maximally general selec-

tors (Michalski, 1983) discriminating E and FI. Table 

1 illustrates how D(E, F) can be built from E and F 

with linear complexity in the number of attributes; se-

lectors are here restricted to [att = V ] , where V denotes 

a value in the domain of a nominal attr ibute att, or an 

interval in the domain of a linear attr ibute att (selector 

[size = is writ ten [size > 12] for the sake of 

simplicity). 

Table 1: A pair of examples E and F and D(E,F) 

F 

color size shape weight 

grey 100 wings 3,5 ton 

white 12 saucer ? 

class 

plane 

UFO 

As in most bottom-up approaches, missing values are 

handled without problems and no preliminary discretiza-

tion of linear attr ibute domains is required. 

Finally, the complexity of building H(E) is in o{N x 

P) , where N denotes the number of examples and P 

the number of attributes. The whole disjunctive version 

space is characterized with complexity 0(N2 x P). 

2.3 F lex ib le classif icat ion w i t h DiVS 

Classification in DiVS much resembles a k-nearest-

neighbor (k-NN) classification process: An instance E' 

is said to be neighbor of a training example E iff there 

exists a hypothesis in H(E) that covers E' (one says 

for short that E' belongs to H{E) ) ; and E' is classified 

according to the majority vote of its neighbors. 

2The counter-examples to a positive example are the neg-

ative examples; and vice versa. 
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Table 2: FOL and Tabular Representations of E and F 

E: active{a) : — atom(a, a1,carbon, 22), atom(a,a2, hydrogen, 3), cc{a,a1,a3) 

F : inactive(b) : — atom(b, 61, hydrogen, 2), atom(b, b2, oxygen, 19) 

These neighborhoods, and hence the classification pro-

cess, can be tuned to cope wi th noise. Formally, E' be-

longs to H(E) iff it belongs to D(E, Fi) for all Fi counter-

examples to E. This condition is relaxed by allowing e 

exceptions (counter-examples Fi such that E'does not 

belong to D(E, F i ) ) . 

Independently, H{E) can also be made more specific 

to cope wi th sparse data. Formally, D(E,Fi) is a dis-

junction of selectors and E' belongs to D(E,Fi) iff it 

satisfies at least one of these selectors. This is modified 

by handling from now on D(E,Fi) as an M-of-P con-

cept: E' thereafter belongs to D(E,Fi) iff it satisfies at 

least M selectors in D ( F , F i ) . 

This way, the set of consistent and partially complete 

hypotheses is constructed once and for all. Sti l l , classi-

fication can employ hypotheses of any degree of consis-

tency and generality — at no extra cost: the complexity 

of classification is O(N2 x P ) . 

2.4 DiVS In F i r s t - O r d e r Logic 

Let us see how the construction of the set D(E,F) of 

hypotheses covering E and discriminating F extends to 

FOL. Let E and F be now described as definite clauses3, 

the head of which are built on opposite target predicates 

(Table 2). Let us express seed E as E = where C is 

the clause obtained from E by turning every term tt in 

E into a distinct variable Xj, and is the substitution 

on C defined by 

Let the hypothesis language be that of constrained 

clauses Gp, where G generalizes C and p is a conjunc-

tion of constraints generalizing (a formal presentation 

is found in (Sebag &: Rouveirol, 1996)). Such clauses 

generalize seed E by construction; they discriminate F 

iff they do not generalize the clause ~ F , built from F by 

replacing the predicate in its head (e.g. inactive) by the 

opposite target predicate (active). 

Clause C allows for a tabular representation of E and 

"F (Table 2). By construction, E is represented by sub-

stitution Let the clause built from C by dropping all 

predicates absent from F (here cc), be sti l l denoted C by 

abuse of notation. Then by construction ~F is subsumed 

by C, and F is described4 by the set of substitutions 

on C, such that . In our example, in-

3The reader interested in learning from constrained 

clauses is referred to (Sebag & Rouveirol, 1996). 

4Given the hypothesis language, predicates in F that are 

absent from E can be omi t ted w i th no loss of informat ion. 

cludes four substitutions which correspond to 

the four ways of mapping the two literals atom in C onto 

the two literals atom, in F. 

This attribute-value reformulation of FOL examples 

much resembles the LINUS and REMO approaches 

(Lavrac & Dzeroski, 1994; Zucker &: Ganascia, 1996). 

The difference is twofold. First, the tabular reformu-

lation in LINUS and REMO operates on the whole 

dataset; the format of the table is derived from a single 

clause, specialized if no satisfactory hypothesis is found 

during the current induction step. Second, the refor-

mulation is one-to-one in LINUS, thanks to syntactic 

restrictions, and it is one-to-many in REMO (but the 

exponential factor is l imited by the size of the clause). 

In contrast, the reformulation in DiVS is rather bottom-

up than top-down: the format of the table is derived 

from the current seed example, and one considers at 

once all information conveyed by the seed. Hence, the 

reformulation is one-to-one for the seed (E is completely 

described by given C) whereas it is one-to-many for 

the counter-examples. As the exponential factor is not 

l imited here, DiVS turns out to be intractable on real 

relational problems (see below). 

Given this reformulation of E and F, building D(E, F) 

is amenable to attribute-value discrimination: substitu-

tions on C can be handled as attribute-value examples 

and conjunctive constraints on C can be handled as con-

junctions of selectors in the same attribute-value lan-

guage. Finally, let PF denote the set of predicates in 

E absent from F; then Gp in the hypothesis language 

belongs to D ( F , F) iff either G includes a predicate in 

3 Stochastic Induction and 

Classification 

This section describes how to construct FOL hypotheses 

at a polynomial cost, wi th no size restrictions. Further, 

these hypotheses can be used at polynomial cost too. 

3.1 Stochast ic I n d u c t i o n 

As seen in section 2.4, DiVS can construct hypotheses 

including as many literals as the seed. The size of the 

matching set can thus be exponential in the size of 
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4 Exper imenta l Va l ida t ion 

STILL has been experimented and compared to promi-

nent learners on the mutagenesis dataset (King, Srini-

vasan, & Sternberg, 1995). We also compare the basic 

stochastic sampling mechanism wi th a specifically de-

signed sampling mechanism, which incorporates some 

expert knowledge. 

4.1 The D a t a and Reference Resul ts 

The learning goal is to determine among the nitroaro-

matic molecules occurring in car exhaust fumes, those 

which might have a carcinogenic effect. The carcino-

genicity of a molecule is known to be correlated to its 

mutagenic activity, but the literature does not yet pro-

vide any explicit model for mutagenic activity. 

Two descriptions of the mutagenicity problem are 

available. In a FOL framework, a molecule is represented 

by a definite clause, the head of which corresponds to 

its activity (boolean: active or inactive), The body of 

the clause describes: a) the atoms of the molecule and 

the bonds between these atoms; b) the global properties 

(five attributes) of the molecule, e.g. its hydrophobicity; 

and c) the chemical structures eventually present in the 

molecule, e.g. benzenic rings. As witnessed by the size 

of the matching set (section 3.1), this description is truly 

relational. It has been processed by FOIL, PROGOL, 

and another ILP learner wi th number handling facilities, 

FOBS (Karalic, 1995). 

An attribute-value description of the molecules is also 

available; this second dataset has been processed by lin-

ear regression (LR), neural nets (NN) and CART. 

Table 3 displays the reference results, obtained by 

10-fold crossvalidation and reported from (Srinivasan &. 

Muggleton, 1995) and (Karalic, 1995): 

Tabic 3: Reference Results 

I LR NN CART PROGOL FOIL FORS 

Ace. "89 89 88 88 86 89 

± 2 2 3 3 6 

The computational costs given for PROGOL, FOIL and 

FORS vary with the description used: PRO-

GOL takes from 117,000 to 40,000 seconds (on HP-

735). FOIL from 9,000 to .5 seconds (HP-735) and 

FORS about 900 seconds (on Sparc-10). 
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4.2 STILL r e s u l t s 

In our experimental setting, the dataset was randomly 

divided into a training set including 90% of the data and 

a test set, in such a way that the ratio of active/inactive 

molecules is the same as in the whole dataset (2 to 1). 

The result was averaged on 25 independent selections 

of the training/test sets. This procedure is in the same 

vein as 10-cross fold validation; but a higher number 

of independent runs is advisable to evaluate stochastic 

algorithms. 

STILL involves 4 parameters: and A\ which respec-

tively control stochastic induction and stochastic deduc-

t ion; and e and M, which respectively control the consis-

tency and the generality of the hypotheses (section 2.3), 

wi th and M = 1 respectively meant as perfect con-

sistency and maximal generality. Parameters and A' 

are set to 300 and 3; complementary experiments show 

that doubling or K increases the predictive accuracy 

by less than one point. Parameters and M respectively 

vary between 0 and 4 (the value used for PROGOL), and 

1 and 10. 

STILL was experimented wi th two sampling mecha-

nisms (SM). The first, basic one, was described in 3.1. 

The "advanced" one uses some naive (authors') knowl-

edge, by rather mapping an atom of a given kind in E, 

onto an atom of the same kind in F. More precisely, 

an atom is repeatedly selected wi th uniform probabil-

i ty in C; this atom, say the i - th, is mapped by a onto 

the j -a tom in F, such that atom j in F is as similar as 

possible5 to atom i in E. The substitution a so defined 

can be viewed as a "near-miss" wi th respect to substitu-

tion 

Table 4 displays the results obtained by STILL when 

combined with both sampling mechanisms. For each 

value of e and M, the average predictive accuracy on 

the test set is given wi th its standard deviation, as well 

as the run-time in seconds on a Pentium 166. The pre-

dictive accuracy degrades gracefully as increases. 

5With same electric charge if possible; otherwise, w i th 

same atomtype; otherwise, w i th same type. The complexity 

of the advanced SM gets quadratic in the number of l iterals, 

instead of linear for the. basic SM. 

6However, STILL is definitely not a black box: the clas-

sification process constructively exhibi ts hypotheses relevant 

to the classification of the current instance. One can thus 

just i fy the classification of any instance from an intel l igible 

sub-theory, extracted from the whole theory. 

5



junctive hypotheses, Version Spaces are indeed of expo-

nential size (Haussler, 1988). 

Another aspect of STILL is that it combines logi-

cal aspects and example neighborhoods, in the line of 

KBG (Bisson, 1992), RISE (Domingos, 1995) and RIBL 

(Emde & Wettscherek, 1996). The specificity of STILL 

is that it involves neighborhoods which are constructed 

by induction, whereas the above learners rely on a built-

in similarity or distance. 

But the main originality of STILL, due to the stochas-

tic matching heuristic, is to allow a number of expensive 

hypotheses to be approximately characterized and used. 

This contrasts wi th the main trend in ILP, oriented to-

ward the exact characterization of a few affordable hy-

potheses. Further, stochastic matching allows a fine con-

trol of the computational cost, wi th no expert knowledge 

on the problem domain. 

Note that the use of stochasticity in STILL radically 

differs from what is done in GA-based learners such 

as REGAL (Giordana & Neri, 1994): in STILL the 

stochastic mechanism samples the matching space and it-

operates as a pre-processor of induction; in contrast, the 

stochastic mechanism in REGAL samples the hypoth-

esis space and so to say replaces
7
 induction. Note also 

that STILL does not directly pertain to the Bayesian 

Inductive Logic Programming framework (Muggleton, 

1994), nor to probabilistic induction, in the sense that 

it does neither assume nor take as input any a priori 

probability distribution on the hypothesis space. 

A main perspective of research is to give STILL a PAC 

model in the sense of Valiant (1984): stochastic induc-

tion and deduction approximate standard induction and 

deduction, and one would like to know how the num-

ber of samples n and K relate to the probability for this 

approximation to be correct. 
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