
HAL Id: hal-00116476
https://hal.science/hal-00116476

Submitted on 3 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Tractable induction and classification in first order logic
via stochastic matching
Michèle Sebag, Céline Rouveirol

To cite this version:
Michèle Sebag, Céline Rouveirol. Tractable induction and classification in first order logic via stochas-
tic matching. Fifteenth international joint conference on Artifical intelligence (IJCAI’97), Aug 1997,
Nagoya, Japan. pp.888-893. �hal-00116476�

https://hal.science/hal-00116476
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Tractab le I nduc t i on and Classif icat ion in F i rs t Order Logic

V i a Stochastic M a t c h i n g

Michele Sebag

LMS, Ecole Poly technique

91128 Palaiseau, France

Michele.Sebag@polytechnique.fr

Abs t rac t

Learning in first-order logic (FOL) languages

suffers from a specific difficulty: both induction

and classification are potentially exponential in

the size of hypotheses. This difficulty is usu-

ally dealt wi th by l imit ing the size of hypothe-

ses, via either syntactic restrictions or search

strategies.

This paper is concerned with polynomial in-

duction and use of FOL hypotheses with no

size restrictions. This is done via stochastic

matching: instead of exhaustively exploring the

set of matchings between any example and any

short candidate hypothesis, one stochastically

explores the set of matchings between any ex-

ample and any candidate hypothesis. The user

sets the number of matching samples to con-

sider and thereby controls the cost of induction

and classification.

One advantage of this heuristic is to allow for

resource-bounded learning, without any a pri-

ori knowledge about the problem domain.

Experiments on a real-world problem pertain-

ing to organic chemistry fully demonstrate the

potentialities of the approach regarding both

predictive accuracy and computational cost.

1 In t roduc t i on

This paper is concerned with learning from examples ex-

pressed in (a restriction of) First-Order Logic (FOL).

This language is required to describe examples that in-

clude several objects of the same kind (e.g. a car involves

several wheels, a molecule involves several atoms), either

when these objects cannot be ranked in a canonical way

(e.g. atoms in a molecule) or when it makes sense to

compare objects of different ranks (e.g. front left and

front right wheels).

Learning in FOL, usually referred to as Inductive Logic

Programming (ILP) (Muggleton k De Raedt, 1994), is

receiving growing attention as it appears the only way

for machine learning to tackle complex domains such as

organic chemistry (King, Srinivasan, & Sternberg, 1995)

Celine Rouve i ro l

LRI, Universite d'Orsay

91405 Orsay, France

Celine.Rouveirol@lri.fr

or natural language (Mooney, 1996). And a number

of FOL learners have been developed: FOIL (Quinlan,

1990), ML-Smart (Bergadano k Giordana, 1990), FOCL

(Pazzani k Kibler, 1992), KBG (Bisson, 1992), REGAL

(Giordana k Neri, 1994), PROGOL (Muggleton, 1995),

RIBL (Emde k Wettscherek, 1996) and REMO (Zucker

k Ganascia, 1996) to name a few.

The specific difficulty of ILP is related to the match-

ing step: If a clause involves three literals part and the

description of a given device involves 40 parts, there are

403 possible ways (termed matchings) to instantiate the

literals in the clause by the literals describing the de-

vice. Discriminant induction requires all such match-

ings to be considered (to ensure the clause discrimi-

nates the device); and the same goes for deduction in

the worst case (to check whether the clause covers the

device). In other words, induction and deduction are

exponential in the size of FOL hypotheses. This l imita-

tion is dealt wi th in the literature by inducing short hy-

potheses, by means of search strategies (Quinlan, 1990;

Bergadano k Giordana, 1990; Pazzani & Kibler, 1992;

Muggleton, 1995) and/or syntactic restrictions (Gior-

dana k Neri, 1994; Kietz k Lubbe, 1994; Muggleton,

1995).

This paper is interested in polynomial induction and

use of FOL hypotheses, with no size restrictions. This is

made possible by stochastic matching: one only consid-

ers some samples of matchings between examples and

hypotheses —- instead of exhaustively considering all

matchings between examples and (short) hypotheses.

The considered matchings are constructed by a stochas-

tic sampling mechanism, and the number of samples al-

lowed is supplied by the user. By so-doing, s/he controls

both the induction cost (linear in the number of samples)

and the quality of the hypotheses (the more samples are

considered, the more likely the hypotheses are consis-

tent).

This heuristic is embedded in the Disjunctive Ver-

sion Space framework (DiVS) (Sebag, 1996), which con-

structs all consistent hypotheses covering at least one

training example. This framework extends that of Ver-

sion Space (Mitchell, 1982) and likewise implies a single

bias, that of the hypothesis language. In particular, as it

does not restrict the size of hypotheses, DiVS shows in-

1

tractable for hypothesis languages such as logic programs

or constraint logic programs1 (Sebag & Rouveirol, 1996).

The algorithm combining DiVS and stochastic match-

ing is termed STILL for Stochastic Inductive Learning.

Stochastic matching allows STILL to learn hypotheses of

any size (at most as long as the examples) in polynomial

t ime, and to use them in polynomial time too. Stochas-

tic matching corresponds to a new kind of learning bias

(Mitchel l , 1991). The stochastic bias contrasts with lan-

guage and- search biases, inasmuch it does not involve

any expert knowledge about the problem or about how

to find relevant solutions. Rather, it reflects the avail-

able computational resources; and the more resources,

the better.

This paper is organized as follows. Section 2 briefly

presents DiVS; the reader is assumed to be familiar

wi th the Version Space (VS) framework (Mitchell, 1982).

Section 3 details the stochastic sampling mechanism

and outlines the induction and classification algorithms

of STILL. Experimental validation on the mutagenesis

problem (King, Srinivasan, & Sternberg, 1995) is pre-

sented in section 4; the influence of the stochastic match-

ing mechanism is discussed, and STILL is compared to

prominent learners. We conclude with some research

perspectives.

2 Dis junct ive Version Space

This section recalls how Disjunctive Version Space ad-

dresses the limitations of Version Space (failures, expo-

nential complexity). Details on the algorithms are found

in (Sebag, 1996; Sebag & Rouveirol, 1996).

2 . 1 O v e r c o m i n g V S f a i l u r e s

Basically, VS fails when the maximally specific complete

hypotheses (set 5) are not more specific than the maxi-

mally general consistent hypotheses (set G). But noisy

examples lead to over-generalize 5 and over-specialize

G; and examples from a disjunctive concept result in

an over-generalization of 5 if the hypothesis language is

conjunctive. This explains why VS fails to handle real-

world problems, which include noisy examples and tackle

disjunctive concepts most of the time.

VS failures are soundly prevented in three cases: a)

when there is no negative example; b) when there is

no positive example; and c) when there is exactly one

positive example E, provided that E does not belong also

to the negative examples (which can easily be checked).

The third case is preferred as it is more robust with

regard to noise (Sebag, 1996).

The general case, that is, learning from several posi-

tive and negative examples, is amenable to the favorable

case of a unique positive example by hybridizing Version

Space and the AQ algorithm (Michalski, 1983): For each

(positive or negative) seed example E. one constructs the

star H(E) as the set of all consistent hypotheses covering

1 Constraint logic programming notably contains the ex-

tensions of logic programming concerned wi th number han-

dl ing. But, this point wil l not be discussed herein.

E. If F1..Fm denote the examples not belonging to the

same class as E, termed counter-examples2 to e, H(E)

exactly is the version space learned from E as unique

positive example, and Fx as negative examples.

The disjunction of the stars H(E), for E ranging

over the training set, constitutes the Disjunctive Version

Space of all consistent partially complete hypotheses.

2.2 Overcoming VS i n t r ac tab i l i t y

Building H(E) is intractable even within a propositional

language: H(E) is characterized by its lower bound

(5 = E) and its upper bound G, which is the disjunc-

tion of an exponential number of conjunctive hypotheses

(Haussler, 1988).

DiVS overcomes this l imitat ion by characterizing

H(E) as a conjunction of disjunctions. This is done as

follows. Let D(E,F}) denote the set of hypotheses cov-

ering E and discriminating counter-example FI. H(E)

includes all hypotheses discriminating all FI, hence it is

equal to the conjunction of D(E, FT), for FI ranging over

the counter-examples to E.

In an attribute value language, D(E,FI) gets character-

ized as the disjunction of all maximally general selec-

tors (Michalski, 1983) discriminating E and FI. Table

1 illustrates how D(E, F) can be built from E and F

with linear complexity in the number of attributes; se-

lectors are here restricted to [att = V] , where V denotes

a value in the domain of a nominal attr ibute att, or an

interval in the domain of a linear attr ibute att (selector

[size = is writ ten [size > 12] for the sake of

simplicity).

Table 1: A pair of examples E and F and D(E,F)

F

color size shape weight

grey 100 wings 3,5 ton

white 12 saucer ?

class

plane

UFO

As in most bottom-up approaches, missing values are

handled without problems and no preliminary discretiza-

tion of linear attr ibute domains is required.

Finally, the complexity of building H(E) is in o{N x

P) , where N denotes the number of examples and P

the number of attributes. The whole disjunctive version

space is characterized with complexity 0(N2 x P).

2.3 F lex ib le classif icat ion w i t h DiVS

Classification in DiVS much resembles a k-nearest-

neighbor (k-NN) classification process: An instance E'

is said to be neighbor of a training example E iff there

exists a hypothesis in H(E) that covers E' (one says

for short that E' belongs to H{E)) ; and E' is classified

according to the majority vote of its neighbors.

2The counter-examples to a positive example are the neg-

ative examples; and vice versa.

2

Table 2: FOL and Tabular Representations of E and F

E: active{a) : — atom(a, a1,carbon, 22), atom(a,a2, hydrogen, 3), cc{a,a1,a3)

F : inactive(b) : — atom(b, 61, hydrogen, 2), atom(b, b2, oxygen, 19)

These neighborhoods, and hence the classification pro-

cess, can be tuned to cope wi th noise. Formally, E' be-

longs to H(E) iff it belongs to D(E, Fi) for all Fi counter-

examples to E. This condition is relaxed by allowing e

exceptions (counter-examples Fi such that E'does not

belong to D(E, F i)) .

Independently, H{E) can also be made more specific

to cope wi th sparse data. Formally, D(E,Fi) is a dis-

junction of selectors and E' belongs to D(E,Fi) iff it

satisfies at least one of these selectors. This is modified

by handling from now on D(E,Fi) as an M-of-P con-

cept: E' thereafter belongs to D(E,Fi) iff it satisfies at

least M selectors in D (F , F i) .

This way, the set of consistent and partially complete

hypotheses is constructed once and for all. Sti l l , classi-

fication can employ hypotheses of any degree of consis-

tency and generality — at no extra cost: the complexity

of classification is O(N2 x P) .

2.4 DiVS In F i r s t - O r d e r Logic

Let us see how the construction of the set D(E,F) of

hypotheses covering E and discriminating F extends to

FOL. Let E and F be now described as definite clauses3,

the head of which are built on opposite target predicates

(Table 2). Let us express seed E as E = where C is

the clause obtained from E by turning every term tt in

E into a distinct variable Xj, and is the substitution

on C defined by

Let the hypothesis language be that of constrained

clauses Gp, where G generalizes C and p is a conjunc-

tion of constraints generalizing (a formal presentation

is found in (Sebag &: Rouveirol, 1996)). Such clauses

generalize seed E by construction; they discriminate F

iff they do not generalize the clause ~ F , built from F by

replacing the predicate in its head (e.g. inactive) by the

opposite target predicate (active).

Clause C allows for a tabular representation of E and

"F (Table 2). By construction, E is represented by sub-

stitution Let the clause built from C by dropping all

predicates absent from F (here cc), be sti l l denoted C by

abuse of notation. Then by construction ~F is subsumed

by C, and F is described4 by the set of substitutions

on C, such that . In our example, in-

3The reader interested in learning from constrained

clauses is referred to (Sebag & Rouveirol, 1996).

4Given the hypothesis language, predicates in F that are

absent from E can be omi t ted w i th no loss of informat ion.

cludes four substitutions which correspond to

the four ways of mapping the two literals atom in C onto

the two literals atom, in F.

This attribute-value reformulation of FOL examples

much resembles the LINUS and REMO approaches

(Lavrac & Dzeroski, 1994; Zucker &: Ganascia, 1996).

The difference is twofold. First, the tabular reformu-

lation in LINUS and REMO operates on the whole

dataset; the format of the table is derived from a single

clause, specialized if no satisfactory hypothesis is found

during the current induction step. Second, the refor-

mulation is one-to-one in LINUS, thanks to syntactic

restrictions, and it is one-to-many in REMO (but the

exponential factor is l imited by the size of the clause).

In contrast, the reformulation in DiVS is rather bottom-

up than top-down: the format of the table is derived

from the current seed example, and one considers at

once all information conveyed by the seed. Hence, the

reformulation is one-to-one for the seed (E is completely

described by given C) whereas it is one-to-many for

the counter-examples. As the exponential factor is not

l imited here, DiVS turns out to be intractable on real

relational problems (see below).

Given this reformulation of E and F, building D(E, F)

is amenable to attribute-value discrimination: substitu-

tions on C can be handled as attribute-value examples

and conjunctive constraints on C can be handled as con-

junctions of selectors in the same attribute-value lan-

guage. Finally, let PF denote the set of predicates in

E absent from F; then Gp in the hypothesis language

belongs to D (F , F) iff either G includes a predicate in

3 Stochastic Induction and

Classification

This section describes how to construct FOL hypotheses

at a polynomial cost, wi th no size restrictions. Further,

these hypotheses can be used at polynomial cost too.

3.1 Stochast ic I n d u c t i o n

As seen in section 2.4, DiVS can construct hypotheses

including as many literals as the seed. The size of the

matching set can thus be exponential in the size of

3

4 Exper imenta l Va l ida t ion

STILL has been experimented and compared to promi-

nent learners on the mutagenesis dataset (King, Srini-

vasan, & Sternberg, 1995). We also compare the basic

stochastic sampling mechanism wi th a specifically de-

signed sampling mechanism, which incorporates some

expert knowledge.

4.1 The D a t a and Reference Resul ts

The learning goal is to determine among the nitroaro-

matic molecules occurring in car exhaust fumes, those

which might have a carcinogenic effect. The carcino-

genicity of a molecule is known to be correlated to its

mutagenic activity, but the literature does not yet pro-

vide any explicit model for mutagenic activity.

Two descriptions of the mutagenicity problem are

available. In a FOL framework, a molecule is represented

by a definite clause, the head of which corresponds to

its activity (boolean: active or inactive), The body of

the clause describes: a) the atoms of the molecule and

the bonds between these atoms; b) the global properties

(five attributes) of the molecule, e.g. its hydrophobicity;

and c) the chemical structures eventually present in the

molecule, e.g. benzenic rings. As witnessed by the size

of the matching set (section 3.1), this description is truly

relational. It has been processed by FOIL, PROGOL,

and another ILP learner wi th number handling facilities,

FOBS (Karalic, 1995).

An attribute-value description of the molecules is also

available; this second dataset has been processed by lin-

ear regression (LR), neural nets (NN) and CART.

Table 3 displays the reference results, obtained by

10-fold crossvalidation and reported from (Srinivasan &.

Muggleton, 1995) and (Karalic, 1995):

Tabic 3: Reference Results

I LR NN CART PROGOL FOIL FORS

Ace. "89 89 88 88 86 89

± 2 2 3 3 6

The computational costs given for PROGOL, FOIL and

FORS vary with the description used: PRO-

GOL takes from 117,000 to 40,000 seconds (on HP-

735). FOIL from 9,000 to .5 seconds (HP-735) and

FORS about 900 seconds (on Sparc-10).

4

4.2 STILL r e s u l t s

In our experimental setting, the dataset was randomly

divided into a training set including 90% of the data and

a test set, in such a way that the ratio of active/inactive

molecules is the same as in the whole dataset (2 to 1).

The result was averaged on 25 independent selections

of the training/test sets. This procedure is in the same

vein as 10-cross fold validation; but a higher number

of independent runs is advisable to evaluate stochastic

algorithms.

STILL involves 4 parameters: and A\ which respec-

tively control stochastic induction and stochastic deduc-

t ion; and e and M, which respectively control the consis-

tency and the generality of the hypotheses (section 2.3),

wi th and M = 1 respectively meant as perfect con-

sistency and maximal generality. Parameters and A'

are set to 300 and 3; complementary experiments show

that doubling or K increases the predictive accuracy

by less than one point. Parameters and M respectively

vary between 0 and 4 (the value used for PROGOL), and

1 and 10.

STILL was experimented wi th two sampling mecha-

nisms (SM). The first, basic one, was described in 3.1.

The "advanced" one uses some naive (authors') knowl-

edge, by rather mapping an atom of a given kind in E,

onto an atom of the same kind in F. More precisely,

an atom is repeatedly selected wi th uniform probabil-

i ty in C; this atom, say the i - th, is mapped by a onto

the j -a tom in F, such that atom j in F is as similar as

possible5 to atom i in E. The substitution a so defined

can be viewed as a "near-miss" wi th respect to substitu-

tion

Table 4 displays the results obtained by STILL when

combined with both sampling mechanisms. For each

value of e and M, the average predictive accuracy on

the test set is given wi th its standard deviation, as well

as the run-time in seconds on a Pentium 166. The pre-

dictive accuracy degrades gracefully as increases.

5With same electric charge if possible; otherwise, w i th

same atomtype; otherwise, w i th same type. The complexity

of the advanced SM gets quadratic in the number of l iterals,

instead of linear for the. basic SM.

6However, STILL is definitely not a black box: the clas-

sification process constructively exhibi ts hypotheses relevant

to the classification of the current instance. One can thus

just i fy the classification of any instance from an intel l igible

sub-theory, extracted from the whole theory.

5

junctive hypotheses, Version Spaces are indeed of expo-

nential size (Haussler, 1988).

Another aspect of STILL is that it combines logi-

cal aspects and example neighborhoods, in the line of

KBG (Bisson, 1992), RISE (Domingos, 1995) and RIBL

(Emde & Wettscherek, 1996). The specificity of STILL

is that it involves neighborhoods which are constructed

by induction, whereas the above learners rely on a built-

in similarity or distance.

But the main originality of STILL, due to the stochas-

tic matching heuristic, is to allow a number of expensive

hypotheses to be approximately characterized and used.

This contrasts wi th the main trend in ILP, oriented to-

ward the exact characterization of a few affordable hy-

potheses. Further, stochastic matching allows a fine con-

trol of the computational cost, wi th no expert knowledge

on the problem domain.

Note that the use of stochasticity in STILL radically

differs from what is done in GA-based learners such

as REGAL (Giordana & Neri, 1994): in STILL the

stochastic mechanism samples the matching space and it-

operates as a pre-processor of induction; in contrast, the

stochastic mechanism in REGAL samples the hypoth-

esis space and so to say replaces
7
 induction. Note also

that STILL does not directly pertain to the Bayesian

Inductive Logic Programming framework (Muggleton,

1994), nor to probabilistic induction, in the sense that

it does neither assume nor take as input any a priori

probability distribution on the hypothesis space.

A main perspective of research is to give STILL a PAC

model in the sense of Valiant (1984): stochastic induc-

tion and deduction approximate standard induction and

deduction, and one would like to know how the num-

ber of samples n and K relate to the probability for this

approximation to be correct.

R e f e r e n c e s

Bergadano, F., and Giordana, A. 1990. Guiding induct ion

w i th domain theories. In Kodratoff , Y. , and Michalski, R.,

eds., Machine Learning : an artificial intelligence approach,

volume 3. Morgan Kaufmann. 474-492.

Bisson, G. 1992. Learning in FOL wi th a similari ty measure.

In Proceedings of 10
th
 AAAI

Domingos, P. 1995. Rule induct ion and instance-based learn-

ing: A unified approach. In Proceedings of IJCAI-95, 1226-

1232. Morgan Kaufmann.

Emde, W. , and Wettscherek, D. 1990. Relational instance

based learning. In Sait ta, L., ed., Proceedings of the 13
th

International Conference on Machine Learning, 122-130.

Giordana, A. , and Ner i , F. 1994. Search intemsive concept

induct ion. Evolutionary Computation 3(4):375-416.

Haussler, D. 1988. Quant i fy ing inductive bias : Al learn-

ing algori thms and Val iant 's learning framework. Artificial

Intelligence 36:177-221.

7
B u t it is t rue to say that the selection and recombination

of hypotheses are based on inductive considerations.

Karal ic, A. 1995. First Order Regression. Ph .D . Dissertat ion,

Inst i tu t Josef Stefan, L jubl jana, Slovenia.

Kietz, J.-U., and Li ibbe, M. 1994. An efficient subsumption

algori thm for ILP . In Cohen, W. , and Hirsh, H., eds., Pro-

ceedings of ICML-94, International Conference on Machine

Learning, 130-137. Morgan Kaufmann.

K ing , R.; Srinivasan, A.; and Sternberg, M. 1995. Relat-

ing chemical act iv i ty to structure: an examinat ion of I LP

successes. New Gen. Comput. 13.

Lavrac, N., and Dzeroski, S. 1994. Inductive Logic Program-

ming: Techniques and Applications. Ell is Horwood.

Michalski, R. 1983. A theory and methodology of induct ive

learning. In Michalski, R.; Carbonel l , J.; and Mi tchel l , T. ,

eds., Machine Learning : an artificial intelligence approach,

volume 1. Morgan Kaufmann. 83-134.

Mitchel l , T. 1982. Generalization as search. Artificial Intel-

ligence 18:203-226.

Mitchel l , T. 1991. The need for bias in learning generaliza-

tions. In Readings in Machine Learning. Morgan Kaufmann.

184-191.

Mooney, R. 1996. I L P for natural language processing. In

Muggleton, S., ed., Proceedings of ILP'96. Springer-Verlag.

forthcoming.

Muggleton, S., and De Raedt, L. 1994. Induct ive logic pro-

gramming: Theory and methods. Journal of Logic Program-

ming 19:629 679.

Muggleton.. S. 1994. Bayesian induct ive logic programming.

In Warmuth , M., ed., Proceedings of COLT-94, ACM Con-

ference on Computational Learning, 3 -11 . A C M Press.

Muggleton, S. 1995. Inverse entai lment and P R O G O L . New

Gen. Comput. 13:245-286.

Pazzani, M., and Kibler , D. 1992. The role of pr ior knowledge

in inductive learning. Machine Learning 9:54-97.

Quinlan, J. 1990. Learning logical def ini t ion f rom relations.

Machine Learning 5:239-266.

Sebag, M , and Rouveirol, C. 1996. Constraint inductive

logic programming. In de Raedt, L., ed., Advances in ILP,

277 294. 10S Press.

Sebag, M. 1996. Delaying the choice of bias: A disjunctive

version space approach. In Saitta, L., ed., Proceedings of

the 13
th
 International Conference on Machine Learning, 444-

452. Morgan Kaufmann.

Srinivasan, A., and Muggleton, S. 1995. Compar ing the use of

background knowledge by two I LP systems. In de Raedt, L,,

ed., Proceedings of ILP-95. Katholieke Universitei t Leuven.

Valiant, L. 1984. A theory of the learnable. Communication

of the ACM 27:1134 1142.

Webb, G. 1996. Further experimental evidence against the

ut i l i ty of Occam's razor. Journal of Artificial Intelligence

Research 4:397 417.

Zucker, J.-D., and Ganascia, J.-G. 1996. Representation

changes for efficient learning in structural domains. In Saitta,

L., ed., Proceedings of the 13
th
 International Conference on

Machine Learning, 543 551.

6

