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Tractable Induction and Classification in First Order Logic

Via Stochastic Matching

Michele Sebag
LMS, Ecole Poly technique
91128 Palaiseau, France
Michele.Sebag@polytechnique.fr

Abstract

Learning in first-order logic (FOL) languages
suffers from a specific difficulty: both induction
and classification are potentially exponential in
the size of hypotheses. This difficulty is usu-
ally dealt with by limiting the size of hypothe-
ses, via either syntactic restrictions or search
strategies.

This paper is concerned with polynomial in-
duction and use of FOL hypotheses with no
size restrictions. This is done via stochastic
matching: instead of exhaustively exploring the
set of matchings between any example and any
short candidate hypothesis, one stochastically
explores the set of matchings between any ex-
ample and any candidate hypothesis. The user
sets the number of matching samples to con-
sider and thereby controls the cost of induction
and classification.

One advantage of this heuristic is to allow for
resource-bounded learning, without any a pri-
ori knowledge about the problem domain.
Experiments on a real-world problem pertain-
ing to organic chemistry fully demonstrate the
potentialities of the approach regarding both
predictive accuracy and computational cost.

1 Introduction

This paper is concerned with learning from examples ex-
pressed in (a restriction of) First-Order Logic (FOL).
This language is required to describe examples that in-
clude several objects of the same kind (e.g. a car involves
several wheels, a molecule involves several atoms), either
when these objects cannot be ranked in a canonical way
(e.g. atoms in a molecule) or when it makes sense to
compare objects of different ranks (e.g. front left and
front right wheels).

Learning in FOL, usually referred to as Inductive Logic
Programming (ILP) (Muggleton k De Raedt, 1994), is
receiving growing attention as it appears the only way
for machine learning to tackle complex domains such as
organic chemistry (King, Srinivasan, & Sternberg, 1995)
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or natural language (Mooney, 1996). And a number
of FOL learners have been developed: FOIL (Quinlan,
1990), ML-Smart (Bergadano k Giordana, 1990), FOCL
(Pazzani k Kibler, 1992), KBG (Bisson, 1992), REGAL
(Giordana k Neri, 1994), PROGOL (Muggleton, 1995),
RIBL (Emde k Wettscherek, 1996) and REMO (Zucker
k Ganascia, 1996) to name a few.

The specific difficulty of ILP is related to the match-
ing step: If a clause involves three literals part and the
description of a given device involves 40 parts, there are
403 possible ways (termed matchings) to instantiate the
literals in the clause by the literals describing the de-
vice. Discriminant induction requires all such match-
ings to be considered (to ensure the clause discrimi-
nates the device); and the same goes for deduction in
the worst case (to check whether the clause covers the
device). In other words, induction and deduction are
exponential in the size of FOL hypotheses. This limita-
tion is dealt with in the literature by inducing short hy-
potheses, by means of search strategies (Quinlan, 1990;
Bergadano k Giordana, 1990; Pazzani & Kibler, 1992;
Muggleton, 1995) and/or syntactic restrictions (Gior-
dana k Neri, 1994; Kietz k Lubbe, 1994; Muggleton,
1995).

This paper is interested in polynomial induction and
use of FOL hypotheses, with no size restrictions. This is
made possible by stochastic matching: one only consid-
ers some samples of matchings between examples and
hypotheses —- instead of exhaustively considering all
matchings between examples and (short) hypotheses.
The considered matchings are constructed by a stochas-
tic sampling mechanism, and the number of samples al-
lowed is supplied by the user. By so-doing, s/he controls
both the induction cost (linear in the number of samples)
and the quality of the hypotheses (the more samples are
considered, the more likely the hypotheses are consis-
tent).

This heuristic is embedded in the Disjunctive Ver-
sion Space framework (DiVS) (Sebag, 1996), which con-
structs all consistent hypotheses covering at least one
training example. This framework extends that of Ver-
sion Space (Mitchell, 1982) and likewise implies a single
bias, that of the hypothesis language. In particular, as it
does not restrict the size of hypotheses, DiVS shows in-



tractable for hypothesis languages such as logic programs
or constraint logic programs1 (Sebag & Rouveirol, 1996).

The algorithm combining DiVS and stochastic match-
ing is termed STILL for Stochastic Inductive Learning.
Stochastic matching allows STILL to learn hypotheses of
any size (at most as long as the examples) in polynomial
time, and to use them in polynomial time too. Stochas-
tic matching corresponds to a new kind of learning bias
(Mitchell, 1991). The stochastic bias contrasts with lan-
guage and- search biases, inasmuch it does not involve
any expert knowledge about the problem or about how
to find relevant solutions. Rather, it reflects the avail-
able computational resources; and the more resources,
the better.

This paper is organized as follows. Section 2 briefly
presents DiVS; the reader is assumed to be familiar
with the Version Space (VS) framework (Mitchell, 1982).
Section 3 details the stochastic sampling mechanism
and outlines the induction and classification algorithms
of STILL. Experimental validation on the mutagenesis
problem (King, Srinivasan, & Sternberg, 1995) is pre-
sented in section 4; the influence of the stochastic match-
ing mechanism is discussed, and STILL is compared to
prominent learners. We conclude with some research
perspectives.

2 Disjunctive Version Space

This section recalls how Disjunctive Version Space ad-
dresses the limitations of Version Space (failures, expo-
nential complexity). Details on the algorithms are found
in (Sebag, 1996; Sebag & Rouveirol, 1996).

2.1 Overcoming VS failures

Basically, VS fails when the maximally specific complete
hypotheses (set 5) are not more specific than the maxi-
mally general consistent hypotheses (set G). But noisy
examples lead to over-generalize 5 and over-specialize
G; and examples from a disjunctive concept result in
an over-generalization of 5 if the hypothesis language is
conjunctive. This explains why VS fails to handle real-
world problems, which include noisy examples and tackle
disjunctive concepts most of the time.

VS failures are soundly prevented in three cases: a)
when there is no negative example; b) when there is
no positive example; and c) when there is exactly one
positive example E, provided that E does not belong also
to the negative examples (which can easily be checked).
The third case is preferred as it is more robust with
regard to noise (Sebag, 1996).

The general case, that is, learning from several posi-
tive and negative examples, is amenable to the favorable
case of a unique positive example by hybridizing Version
Space and the AQ algorithm (Michalski, 1983): For each
(positive or negative) seed example E. one constructs the
star H(E) as the set of all consistent hypotheses covering

1 Constraint logic programming notably contains the ex-
tensions of logic programming concerned with number han-
dling. But, this point will not be discussed herein.

E. If F1.Fm denote the examples not belonging to the
same class as E, termed counter-examples2 to e, H(E)
exactly is the version space learned from E as unique
positive example, and Fx as negative examples.

The disjunction of the stars H(E), for E ranging
over the training set, constitutes the Disjunctive Version
Space of all consistent partially complete hypotheses.

2.2 Overcoming VS intractability

Building H(E) is intractable even within a propositional
language: H(E) is characterized by its lower bound
(5 = E) and its upper bound G, which is the disjunc-
tion of an exponential number of conjunctive hypotheses
(Haussler, 1988).

DiVS overcomes this limitation by characterizing
H(E) as a conjunction of disjunctions. This is done as
follows. Let D(E,F}) denote the set of hypotheses cov-
ering E and discriminating counter-example FIl. H(E)
includes all hypotheses discriminating all Fl, hence it is
equal to the conjunction of D(E, FT), for Fl ranging over
the counter-examples to E.

H{E)=ID(E,FR}A...AD(E.Fp)

In an attribute value language, D(E,FI) gets character-
ized as the disjunction of all maximally general selec-
tors (Michalski, 1983) discriminating E and F/. Table
1 illustrates how D(E, F) can be built from E and F
with linear complexity in the number of attributes; se-
lectors are here restricted to [att = V], where V denotes
a value in the domain of a nominal attribute att, or an
interval in the domain of a linear attribute att (selector
[size = {12,460} is written [size > 12] for the sake of
simplicity).

Table 1: A pair of examples E and F and D(E,F)

color size shape weight | class
grey 100 wings 3,5 ton | plane
F | white 12  saucer ? UFO

DIEF} = [color = grey/ v [size > 18] v [shape = mings|

As in most bottom-up approaches, missing values are
handled without problems and no preliminary discretiza-
tion of linear attribute domains is required.

Finally, the complexity of building H(E) is in ofN x
P), where N denotes the number of examples and P
the number of attributes. The whole disjunctive version
space is characterized with complexity O(N2 x P).

2.3 Flexible classification with DiVS

Classification in DiVS much resembles a k-nearest-
neighbor (k-NN) classification process: An instance E’
is said to be neighbor of a training example E iff there
exists a hypothesis in H(E) that covers E' (one says
for short that E' belongs to H{E)); and E' is classified
according to the majority vote of its neighbors.

2The counter-examples to a positive example are the neg-
ative examples; and vice versa.



Table 2: FOL and Tabular Representations of E and F

E: active{a) . — atom(a, aft,carbon, 22), atom(a,a2, hydrogen, 3), cc{a,al,a3)

F : inactive(b) : — atom(b, 61, hydrogen, 2), atom(b, b2, oxygen, 19)
Clartive( X J:i—atom( Y Z T '), atom( Y' Z' i U Yeel V W R
g a a a; carbon 22 & ap hydrogen 3 a 43 a3
oy b b b hydrogen 2 b b hydrogen 2
o b b by orygem 19 b b orygem 19
o3 b & b hydrogen 2 b b oxygen 19
A b b by orygemn 19 b b hydrogen 2

These neighborhoods, and hence the classification pro-
cess, can be tuned to cope with noise. Formally, E' be-
longs to H(E) iff it belongs to D(E, Fi) for all Fi counter-
examples to E. This condition is relaxed by allowing e
exceptions (counter-examples Fi such that E'does not
belong to D(E, Fi)).

Independently, H{E) can also be made more specific
to cope with sparse data. Formally, D(E,Fi) is a dis-
junction of selectors and E' belongs to D(E,Fi) iff it
satisfies at least one of these selectors. This is modified
by handling from now on D(E,Fi) as an M-of-P con-
cept: E' thereafter belongs to D(E,Fi) iff it satisfies at
least M selectors in D(F,Fi).

This way, the set of consistent and partially complete
hypotheses is constructed once and for all. Still, classi-
fication can employ hypotheses of any degree of consis-
tency and generality — at no extra cost: the complexity
of classification is O(N2 x P).

2.4 DiVS In First-Order Logic

Let us see how the construction of the set D(E,F) of
hypotheses covering E and discriminating F extends to
FOL. Let E and F be now described as definite clauses3,
the head of which are built on opposite target predicates
(Table 2). Let us express seed E as E = P, where C is
the clause obtained from E by turning every term ftt in
E into a distinct variable Xj, and # is the substitution
on C defined by {X; / & }.

Let the hypothesis language be that of constrained
clauses Gp, where G generalizes C and p is a conjunc-
tion of constraints generalizing # (a formal presentation
is found in (Sebag &: Rouveirol, 1996)). Such clauses
generalize seed E by construction; they discriminate F
iff they do not generalize the clause ~F, built from F by
replacing the predicate in its head (e.g. inactive) by the
opposite target predicate (active).

Clause C allows for a tabular representation of E and
"F (Table 2). By construction, E is represented by sub-
stitution &. Let the clause built from C by dropping all
predicates absent from F (here cc), be still denoted C by
abuse of notation. Then by construction ~F is subsumed
by C, and F is described4 by the set L# of substitutions
o on C, such that Co € ~F. In our example, £¢ in-

3The reader interested in learning from constrained
clauses is referred to (Sebag & Rouveirol, 1996).

4Given the hypothesis language, predicates in F that are
absent from E can be omitted with no loss of information.

cludes four substitutions &;...o¢. which correspond to
the four ways of mapping the two literals atom in C onto
the two literals atom, in F.

This attribute-value reformulation of FOL examples
much resembles the LINUS and REMO approaches
(Lavrac & Dzeroski, 1994; Zucker &: Ganascia, 1996).
The difference is twofold. First, the tabular reformu-
lation in  LINUS and REMO operates on the whole
dataset; the format of the table is derived from a single
clause, specialized if no satisfactory hypothesis is found
during the current induction step. Second, the refor-
mulation is one-to-one in LINUS, thanks to syntactic
restrictions, and it is one-to-many in REMO (but the
exponential factor is limited by the size of the clause).
In contrast, the reformulation in DiVS is rather bottom-
up than top-down: the format of the table is derived
from the current seed example, and one considers at
once all information conveyed by the seed. Hence, the
reformulation is one-to-one for the seed (E is completely
described by # given C) whereas it is one-to-many for
the counter-examples. As the exponential factor is not
limited here, DiVS turns out to be intractable on real
relational problems (see below).

Given this reformulation of E and F, building D(E, F)
is amenable to attribute-value discrimination: substitu-
tions on C can be handled as attribute-value examples
and conjunctive constraints on C can be handled as con-
junctions of selectors in the same attribute-value lan-
guage. Finally, let PF denote the set of predicates in
E absent from F; then Gp in the hypothesis language
belongs to D(F, F) iff either G includes a predicate in
Pr. or p belongs to D{f, o) for all ¢ in Bf.

Further, an instance E' belongs to D(E, F) iff E is
subsumed by Gt, where ¢ generalizes the body of C
and either G includes a predicate in Pp, or 7 belongs to
Di{f.a). for all v in Tp.

3 Stochastic Induction and
Classification

This section describes how to construct FOL hypotheses
at a polynomial cost, with no size restrictions. Further,
these hypotheses can be used at polynomial cost too.

3.1 Stochastic Induction

As seen in section 2.4, DiVS can construct hypotheses
including as many literals as the seed. The size of the
matching set ©p can thus be exponential in the size of

).



the examples; e.g. in the mutagenesis dataset, examples
are described by up to 40 literals atoms. the size of Sp
hence goes up to 4040,

To overcome this limitation, only a fraction of the sub-
stitutions in Er is considered. The number of substitu-
tions to consider, noted 7, is supplied by the user, and
these substitutions are provided by a stochastic sampling
mechanism, as follows. For each literal p{X,, X3,..) in
C, a literal p(t;,t2...} built on the same predicate is se-
lected with uniform probability in F: substitution o is
iteratively defined by o = o U {X,/t;}. More sophis-
ticated sampling mechanisms can also be designed (see
section 4.2).

By combining DiVS with such a sampling mechanism,
STILL construets an approximation of D(E, F), noted
D(E,F)

Definition 1. Let &, be a set of p substitutions sam-
pled in Tp, and let Gp be in the hypothesis language. Gp
belongs to Dy(E F) iff cither G includes a predicate in
Pr.orpisin D@, c) foralla in T,

By construction, D, (E,F) includes D{E F} and
D(E,F) poes to D{E.F) as 5 gees to infinity. The
important point is that D, {E F) is constructed with
polynomial complexity: the construction of a sample ¢
is linear in the number of literals in C, and the construc-
tion of D(#, 7} is linear in the nnmber V' of variables in C.
As the number of literals is less than V', the complexity
of D{E F}is Oy x V).

STILL finally approximates the star H{E} of a seed
example £ as H,(E), given as the conjunction of
D, (E.F;) for F; ranging over the counter-examples to
E. The Disjunctive Version Space is approxitated as the
collection of stars H,(E) for E ranging over the train-
ing examples. If ¥ still denotes the number of training
examples, the complexity of STILL induetien finaliy is
On x ¥ x N3,

3.2 Stochastic Classification

The fact that the hypotheses in D, (E, F) can be con-
structed at a polynomial cest particularly does not imply
that they can be used at a polynomial cost: as mentioned
earlier on, deduction is potentially exponential in the size
of FOL hypotheses.

Let E' be the current instance to classify, let the clause
obtained from C by dropping all predicates absem from
E' be still denoted € by abuse of notation, and let Ep
denote the set of substitutions o on  such that Co C E”.
Then, checking whether F’ is covered by a hypothesis
in {for short, belongs to) D,{E. F) normally requires to
examine all substitutions in Tp; and the size of g is
no less than that of Spo

Again, this limitation is overcome by means of stochas-
tic matching: STILL only considers K substitutions ran-
domly sampied in Y.

Definition 2. Let Sy be a set of N substitulions se-
lected in Ty . The instance E' is sodd to I -belong to
D.(E.F) if either E' inciudes a predicnte absent from

F or there exists ot least one substitution r in L such
that v belongs to D(B, o) for all o in T,

Note that, if E' K-belongs to Dy(E, F), it does belong to
D, (E, F}; but the converse is not necessarily true. The
above definition thus corresponds to a more specific ac-
ception of D,(E, F) than the standard logical one. But
again, this definition goes to the standard logical defini-
tion as A goes to infinity.

The complexity of checking whether E' K-belongs to
DW(E.F)isin O(K x5 x V): and finally the complexity
of classification in STILL is O{K x 5 x V x N?).

4 Experimental Validation

STILL has been experimented and compared to promi-
nent learners on the mutagenesis dataset (King, Srini-
vasan, & Sternberg, 1995). We also compare the basic
stochastic sampling mechanism with a specifically de-
signed sampling mechanism, which incorporates some
expert knowledge.

4.1 The Data and Reference Results

The learning goal is to determine among the nitroaro-
matic molecules occurring in car exhaust fumes, those
which might have a carcinogenic effect. The carcino-
genicity of a molecule is known to be correlated to its
mutagenic activity, but the literature does not yet pro-
vide any explicit model for mutagenic activity.

Two descriptions of the mutagenicity problem are
available. In a FOL framework, a molecule is represented
by a definite clause, the head of which corresponds to
its activity (boolean: active or inactive)) The body of
the clause describes: a) the atoms of the molecule and
the bonds between these atoms; b) the global properties
(five attributes) of the molecule, e.g. its hydrophobicity;
and c) the chemical structures eventually present in the
molecule, e.g. benzenic rings. As witnessed by the size
of the matching set (section 3.1), this description is truly
relational. It has been processed by FOIL, PROGOL,
and another ILP learner with number handling facilities,
FOBS (Karalic, 1995).

An attribute-value description of the molecules is also
available; this second dataset has been processed by lin-
ear regression (LR), neural nets (NN) and CART.

Table 3 displays the reference results, obtained by
10-fold crossvalidation and reported from (Srinivasan &.
Muggleton, 1995) and (Karalic, 1995):

Tabic 3: Reference Results

I LR_NN CART PROGOL FOIL FORS
Ace. "89 89 88 88 86 89
* 2 2 3 3 6

The computational costs given for PROGOL, FOIL and
FORS vary with the description used: PRO-
GOL takes from 117,000 to 40,000 seconds (on HP-
735). FOIL from 9,000 to .5 seconds (HP-735) and
FORS about 900 seconds (on Sparc-10).



4.2 STILL results

In our experimental setting, the dataset was randomly
divided into a training set including 90% of the data and
a test set, in such a way that the ratio of active/inactive
molecules is the same as in the whole dataset (2 to 1).
The result was averaged on 25 independent selections
of the training/test sets. This procedure is in the same
vein as 10-cross fold validation; but a higher number
of independent runs is advisable to evaluate stochastic
algorithms.

STILL involves 4 parameters: # and A\ which respec-
tively control stochastic induction and stochastic deduc-
tion; and e and M, which respectively control the consis-
tency and the generality of the hypotheses (section 2.3),
with & = 0 and M = 1 respectively meant as perfect con-
sistency and maximal generality. Parameters §§ and A’
are set to 300 and 3; complementary experiments show
that doubling % or K increases the predictive accuracy
by less than one point. Parameters € and M respectively
vary between 0 and 4 (the value used for PROGOL), and
1 and 10.

STILL was experimented with two sampling mecha-
nisms (SM). The first, basic one, was described in 3.1.
The "advanced" one uses some naive (authors') knowl-
edge, by rather mapping an atom of a given kind in E,
onto an atom of the same kind in F. More precisely,
an atom is repeatedly selected with uniform probabil-
ity in C; this atom, say the i-th, is mapped by a onto
the j-atom in F, such that atom j in F is as similar as
possible5 to atom i in E. The substitution a so defined
can be viewed as a "near-miss" with respect to substitu-
tion #.

Table 4 displays the results obtained by STILL when
combined with both sampling mechanisms. For each
value of e and M, the average predictive accuracy on
the test set is given with its standard deviation, as well
as the run-time in seconds on a Pentium 166. The pre-
dictive accuracy degrades gracefully as ¢ increases.

Table 4. STILL resulls.
{a) Advanced SM (b) Basic SM

2B Accur. time || M Accur. time
[i] 6 | B3.1 + 246 27 1 914 4+ 58 7
O 7 |906=x61 27 2 |93.3+4a7 8
0 8 93.6 % 4 28 3 ]1931+33 8
0 9 ] 936 %45 29 4 | 9.3 £ 64 9
2 6 | 839 +84 a7 1 91158 T
2| 7 1 B8 +64 27 2| 92.8 + 4.4 8
2 B 1922 %48 28 3| 91753 8
2 9 | 894 + 5.1 29 4 91.7+ 44 9
4 6 | 83.9 + 8.4 27 1 7.2+ 51 7
4 T | B&1 66 28 2 91.7 + 53 7
4 8 ] 91.1 £4.1 28 3 903 +6 &
4 9 |881x69 29 4 1 919+53 9

5With same electric charge if possible; otherwise, with
same atomtype; otherwise, with same type. The complexity
of the advanced SM gets quadratic in the number of literals,
instead of linear for the. basic SM.

Unexpectedly, STILL does not petform better when
combined with the “advanced™ SM. This fact, rather en-
couraging with regards to the generality of stochastic
induction, can be explained as follows. A substitution o
built by the advanced SM tends to associate atoms in the
seed E to the most similar atoms in the counter-example
F. As aresult, D(8, o) lists a few acute disctiminant dif-
ferences, ¢.g. the electric-charge of atom 17 must be less
than .33. In contrast, the basic SM compares any atom
in E to any atom in F, and D{f, #) therefore lists a snm-
ber of rough discriminant differences: atom 1 must be a
carbon, atom 2 must be an hydrogen, atom 3 must he a
carbon,...

During classification, one checks whether an instance E’
belongs to Dy(E, F), i.e. whether there exists a sub-
stitution which satisfies at least M conditions listed in
D(8,0) for all sampied o {section 2.3). A substitution
built by the advanced 8M easily satisfies a few acute
conditions: it is sufficient that the concerned atoms in
E are considered first, and hence mapped on the sim-
ilar atoms in E'. Incidentally, this is why high values
of M are required in this case {and the computational
cost increases with M), In contrast, the ways atoms are
“distributed” in F and E' must be close in order for a
substitution built by the basic SM to satisfy some out of
the discriminant conditions in D(8, o) for all sampled o.

With tespect to other ILP learners and on the mutage-
nesis problemn, STILL shows quite competitive in terms
of predictive accuracy. Further, it is faster by two or
three orders of magnitude: eg. PROGOL and FOIL
process the purely structural description of molecules
{atoms and boxds only} in respectively 60,000 and 9,000
seconds {Srinivasan & Muggleton, 1995), whereas STILL
takes less than two minutes for the same dataset (these
times on HP-735 workstation).

5 Discussion and Perspectives

STILL inherits most characteristics of Version Spaces
and DiVS, notably the absence of restrictions on candi-
date hypotheses, except consistency and (partial) com-
pleteness.  This contrasts with most other learners
searching for “optimal” candidate hypotheses, no matter
whether this optimality refers to the quantity of informa-
tion, the Gint criterion or the MDL principle (Quinlan,
1990; Bergadano & Giordana, 1990; Muggleton, 1995).
It has been suggested that redundancy {and DiVS and
STILL are redundant to an extreme extent) could im-
prove the reliability of the learning vutput (Webb, 1996).
In any case, it avoids the disadvantages of myopic search,
such as incurred by decision tree learners.

The price to pay is the rcadability of the learning
output®: when expressed as a list (disjunction) of con-

6However, STILL is definitely not a black box: the clas-
sification process constructively exhibits hypotheses relevant
to the classification of the current instance. One can thus
justify the classification of any instance from an intelligible
sub-theory, extracted from the whole theory.



junctive hypotheses, Version Spaces are indeed of expo-
nential size (Haussler, 1988).

Another aspect of STILL is that it combines logi-
cal aspects and example neighborhoods, in the line of
KBG (Bisson, 1992), RISE (Domingos, 1995) and RIBL
(Emde & Wettscherek, 1996). The specificity of STILL
is that it involves neighborhoods which are constructed
by induction, whereas the above learners rely on a built-
in similarity or distance.

But the main originality of STILL, due to the stochas-
tic matching heuristic, is to allow a number of expensive
hypotheses to be approximately characterized and used.
This contrasts with the main trend in ILP, oriented to-
ward the exact characterization of a few affordable hy-
potheses. Further, stochastic matching allows a fine con-
trol of the computational cost, with no expert knowledge
on the problem domain.

Note that the use of stochasticity in STILL radically
differs from what is done in GA-based learners such
as REGAL (Giordana & Neri, 1994): in STILL the
stochastic mechanism samples the matching space and it-
operates as a pre-processor of induction; in contrast, the
stochastic mechanism in REGAL samples the hypoth-
esis space and so to say replaces7 induction. Note also
that STILL does not directly pertain to the Bayesian
Inductive Logic Programming framework (Muggleton,
1994), nor to probabilistic induction, in the sense that
it does neither assume nor take as input any a priori
probability distribution on the hypothesis space.

A main perspective of research is to give STILL a PAC
model in the sense of Valiant (1984): stochastic induc-
tion and deduction approximate standard induction and
deduction, and one would like to know how the num-
ber of samples n and K relate to the probability for this
approximation to be correct.
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