Michele Sebag
email: michele.sebag@polytechnique.fr

Tractable Induction and Classification in First Order Logic Via Stochastic Matching

Learning in first-order logic (FOL) languages suffers from a specific difficulty: both induction and classification are potentially exponential in the size of hypotheses. This difficulty is usually dealt with by limiting the size of hypotheses, via either syntactic restrictions or search strategies.

This paper is concerned with polynomial induction and use of FOL hypotheses with no size restrictions. This is done via stochastic matching: instead of exhaustively exploring the set of matchings between any example and any short candidate hypothesis, one stochastically explores the set of matchings between any example and any candidate hypothesis. The user sets the number of matching samples to consider and thereby controls the cost of induction and classification. One advantage of this heuristic is to allow for resource-bounded learning, without any a priori knowledge about the problem domain. Experiments on a real-world problem pertaining to organic chemistry fully demonstrate the potentialities of the approach regarding both predictive accuracy and computational cost.

Introduction

This paper is concerned with learning from examples expressed in (a restriction of) First-Order Logic (FOL). This language is required to describe examples that include several objects of the same kind (e.g. a car involves several wheels, a molecule involves several atoms), either when these objects cannot be ranked in a canonical way (e.g. atoms in a molecule) or when it makes sense to compare objects of different ranks (e.g. front left and front right wheels).

Learning in FOL, usually referred to as Inductive Logic Programming (ILP) (Muggleton k De Raedt, 1994), is receiving growing attention as it appears the only way for machine learning to tackle complex domains such as organic chemistry [START_REF] King | Relating chemical activity to structure: an examination of ILP successes[END_REF] Celine Rouveirol LRI, Universite d'Orsay 91405 Orsay, France Celine.Rouveirol@lri.fr or natural language [START_REF] Mooney | ILP for natural language processing[END_REF]. And a number of FOL learners have been developed: FOIL [START_REF] Quinlan | Learning logical definition from relations[END_REF], ML-Smart (Bergadano k Giordana, 1990), FOCL (Pazzani k Kibler, 1992), KBG [START_REF] Bisson | Learning in FOL with a similarity measure[END_REF], REGAL (Giordana k Neri, 1994), PROGOL [START_REF] Muggleton | Inverse entailment and PROGOL[END_REF], RIBL (Emde k Wettscherek, 1996) and REMO (Zucker k Ganascia, 1996) to name a few.

The specific difficulty of ILP is related to the matching step: If a clause involves three literals part and the description of a given device involves 40 parts, there are 403 possible ways (termed matchings) to instantiate the literals in the clause by the literals describing the device. Discriminant induction requires all such matchings to be considered (to ensure the clause discriminates the device); and the same goes for deduction in the worst case (to check whether the clause covers the device). In other words, induction and deduction are exponential in the size of FOL hypotheses. This limitation is dealt with in the literature by inducing short hypotheses, by means of search strategies [START_REF] Quinlan | Learning logical definition from relations[END_REF]Bergadano k Giordana, 1990;[START_REF] Pazzani | The role of prior knowledge in inductive learning[END_REF][START_REF] Muggleton | Inverse entailment and PROGOL[END_REF] and/or syntactic restrictions (Giordana k Neri, 1994;Kietz k Lubbe, 1994;[START_REF] Muggleton | Inverse entailment and PROGOL[END_REF]. This paper is interested in polynomial induction and use of FOL hypotheses, with no size restrictions. This is made possible by stochastic matching: one only considers some samples of matchings between examples and hypotheses --instead of exhaustively considering all matchings between examples and (short) hypotheses. The considered matchings are constructed by a stochastic sampling mechanism, and the number of samples allowed is supplied by the user. By so-doing, s/he controls both the induction cost (linear in the number of samples) and the quality of the hypotheses (the more samples are considered, the more likely the hypotheses are consistent).

This heuristic is embedded in the Disjunctive Version Space framework (DiVS) [START_REF] Sebag | Delaying the choice of bias: A disjunctive version space approach[END_REF], which constructs all consistent hypotheses covering at least one training example. This framework extends that of Version Space [START_REF] Mitchell | Generalization as search[END_REF] and likewise implies a single bias, that of the hypothesis language. In particular, as it does not restrict the size of hypotheses, DiVS shows in-tractable for hypothesis languages such as logic programs or constraint logic programs1 [START_REF] Sebag | Constraint inductive logic programming[END_REF].

The algorithm combining DiVS and stochastic matching is termed STILL for Stochastic Inductive Learning. Stochastic matching allows STILL to learn hypotheses of any size (at most as long as the examples) in polynomial time, and to use them in polynomial time too. Stochastic matching corresponds to a new kind of learning bias [START_REF] Mitchell | The need for bias in learning generalizations[END_REF]. The stochastic bias contrasts with language and-search biases, inasmuch it does not involve any expert knowledge about the problem or about how to find relevant solutions. Rather, it reflects the available computational resources; and the more resources, the better.

This paper is organized as follows. Section 2 briefly presents DiVS; the reader is assumed to be familiar with the Version Space (VS) framework [START_REF] Mitchell | Generalization as search[END_REF]. Section 3 details the stochastic sampling mechanism and outlines the induction and classification algorithms of STILL. Experimental validation on the mutagenesis problem [START_REF] King | Relating chemical activity to structure: an examination of ILP successes[END_REF] is presented in section 4; the influence of the stochastic matching mechanism is discussed, and STILL is compared to prominent learners. We conclude with some research perspectives.

Disjunctive Version Space

This section recalls how Disjunctive Version Space addresses the limitations of Version Space (failures, exponential complexity). Details on the algorithms are found in [START_REF] Sebag | Delaying the choice of bias: A disjunctive version space approach[END_REF][START_REF] Sebag | Constraint inductive logic programming[END_REF].

Overcoming VS failures

Basically, VS fails when the maximally specific complete hypotheses (set 5) are not more specific than the maximally general consistent hypotheses (set G). But noisy examples lead to over-generalize 5 and over-specialize G; and examples from a disjunctive concept result in an over-generalization of 5 if the hypothesis language is conjunctive. This explains why VS fails to handle realworld problems, which include noisy examples and tackle disjunctive concepts most of the time.

VS failures are soundly prevented in three cases: a) when there is no negative example; b) when there is no positive example; and c) when there is exactly one positive example E, provided that E does not belong also to the negative examples (which can easily be checked). The third case is preferred as it is more robust with regard to noise [START_REF] Sebag | Delaying the choice of bias: A disjunctive version space approach[END_REF].

The general case, that is, learning from several positive and negative examples, is amenable to the favorable case of a unique positive example by hybridizing Version Space and the AQ algorithm [START_REF] Michalski | A theory and methodology of inductive learning[END_REF]: For each (positive or negative) seed example E. one constructs the star H(E) as the set of all consistent hypotheses covering E. If F1..Fm denote the examples not belonging to the same class as E, termed counter-examples2 to e, H(E) exactly is the version space learned from E as unique positive example, and Fx as negative examples.

The disjunction of the stars H(E), for E ranging over the training set, constitutes the Disjunctive Version Space of all consistent partially complete hypotheses.

2.2

Overcoming VS intractability Building H(E) is intractable even within a propositional language: H(E) is characterized by its lower bound (5 = E) and its upper bound G, which is the disjunction of an exponential number of conjunctive hypotheses [START_REF] Haussler | Quantifying inductive bias : Al learning algorithms and Valiant's learning framework[END_REF].

DiVS overcomes this limitation by characterizing H(E) as a conjunction of disjunctions. This is done as follows. Let D(E,F}) denote the set of hypotheses covering E and discriminating counter-example FI. H(E) includes all hypotheses discriminating all FI, hence it is equal to the conjunction of D(E, FT), for FI ranging over the counter-examples to E.

In an attribute value language, D(E,FI) gets characterized as the disjunction of all maximally general selectors [START_REF] Michalski | A theory and methodology of inductive learning[END_REF]) discriminating E and FI. Table 1 illustrates how D(E, F) can be built from E and F with linear complexity in the number of attributes; selectors are here restricted to [att = V], where V denotes a value in the domain of a nominal attribute att, or an interval in the domain of a linear attribute att (selector

[size = is written [size > 12]
for the sake of simplicity). As in most bottom-up approaches, missing values are handled without problems and no preliminary discretization of linear attribute domains is required.

Finally, the complexity of building H(E) is in o{N x P), where N denotes the number of examples and P the number of attributes. The whole disjunctive version space is characterized with complexity 0(N2 x P).

Flexible classification with DiVS

Classification in DiVS much resembles a k-nearestneighbor (k-NN) classification process: An instance E' is said to be neighbor of a training example E iff there exists a hypothesis in H(E) that covers E' (one says for short that E' belongs to H{E)); and E' is classified according to the majority vote of its neighbors. Independently, H{E) can also be made more specific to cope with sparse data. Formally, D(E,Fi) is a disjunction of selectors and E' belongs to D(E,Fi) iff it satisfies at least one of these selectors. This is modified by handling from now on D(E,Fi) as an M-of-P concept: E' thereafter belongs to D(E,Fi) iff it satisfies at least M selectors in D(F,Fi). This way, the set of consistent and partially complete hypotheses is constructed once and for all. Still, classification can employ hypotheses of any degree of consistency and generality -at no extra cost: the complexity of classification is O(N2 x P).

2.4

DiVS In First-Order Logic

Let us see how the construction of the set D(E,F) of hypotheses covering E and discriminating F extends to FOL. Let E and F be now described as definite clauses3, the head of which are built on opposite target predicates (Table 2). Let us express seed E as E = where C is the clause obtained from E by turning every term tt in E into a distinct variable Xj, and is the substitution on C defined by Let the hypothesis language be that of constrained clauses Gp, where G generalizes C and p is a conjunction of constraints generalizing (a formal presentation is found in [START_REF] Sebag | Constraint inductive logic programming[END_REF]). Such clauses generalize seed E by construction; they discriminate F iff they do not generalize the clause ~F, built from F by replacing the predicate in its head (e.g. inactive) by the opposite target predicate (active).

Clause C allows for a tabular representation of E and "F (Table 2). By construction, E is represented by substitution Let the clause built from C by dropping all predicates absent from F (here cc), be still denoted C by abuse of notation. Then by construction ~F is subsumed by C, and F is described4 by the set of substitutions on C, such that . In our example, in-3The reader interested in learning from constrained clauses is referred to [START_REF] Sebag | Constraint inductive logic programming[END_REF].

4Given the hypothesis language, predicates in F that are absent from E can be omitted with no loss of information.

cludes four substitutions which correspond to the four ways of mapping the two literals atom in C onto the two literals atom, in F.

This attribute-value reformulation of FOL examples much resembles the LINUS and REMO approaches [START_REF] Lavrac | Inductive Logic Programming: Techniques and Applications[END_REF][START_REF] Zucker | Representation changes for efficient learning in structural domains[END_REF]. The difference is twofold. First, the tabular reformulation in LINUS and REMO operates on the whole dataset; the format of the table is derived from a single clause, specialized if no satisfactory hypothesis is found during the current induction step. Second, the reformulation is one-to-one in LINUS, thanks to syntactic restrictions, and it is one-to-many in REMO (but the exponential factor is limited by the size of the clause). In contrast, the reformulation in DiVS is rather bottomup than top-down: the format of the table is derived from the current seed example, and one considers at once all information conveyed by the seed. Hence, the reformulation is one-to-one for the seed (E is completely described by

given C) whereas it is one-to-many for the counter-examples. As the exponential factor is not limited here, DiVS turns out to be intractable on real relational problems (see below).

Given this reformulation of E and F, building D(E, F) is amenable to attribute-value discrimination: substitutions on C can be handled as attribute-value examples and conjunctive constraints on C can be handled as conjunctions of selectors in the same attribute-value language. Finally, let PF denote the set of predicates in E absent from F; then Gp in the hypothesis language belongs to D(F, F) iff either G includes a predicate in

Stochastic Induction and Classification

This section describes how to construct FOL hypotheses at a polynomial cost, with no size restrictions. Further, these hypotheses can be used at polynomial cost too.

Stochastic Induction

As seen in section 2.4, DiVS can construct hypotheses including as many literals as the seed. The size of the matching set can thus be exponential in the size of 4 Experimental Validation STILL has been experimented and compared to prominent learners on the mutagenesis dataset [START_REF] King | Relating chemical activity to structure: an examination of ILP successes[END_REF]. We also compare the basic stochastic sampling mechanism with a specifically designed sampling mechanism, which incorporates some expert knowledge.

The Data and Reference Results

The learning goal is to determine among the nitroaromatic molecules occurring in car exhaust fumes, those which might have a carcinogenic effect. The carcinogenicity of a molecule is known to be correlated to its mutagenic activity, but the literature does not yet provide any explicit model for mutagenic activity. Two descriptions of the mutagenicity problem are available. In a FOL framework, a molecule is represented by a definite clause, the head of which corresponds to its activity (boolean: active or inactive), The body of the clause describes: a) the atoms of the molecule and the bonds between these atoms; b) the global properties (five attributes) of the molecule, e.g. its hydrophobicity; and c) the chemical structures eventually present in the molecule, e.g. benzenic rings. As witnessed by the size of the matching set (section 3.1), this description is truly relational. It has been processed by FOIL, PROGOL, and another ILP learner with number handling facilities, FOBS (Karalic, 1995). An attribute-value description of the molecules is also available; this second dataset has been processed by linear regression (LR), neural nets (NN) and CART.

Table 3 displays the reference results, obtained by 10-fold crossvalidation and reported from [START_REF] Srinivasan | Comparing the use of background knowledge by two ILP systems[END_REF] The computational costs given for PROGOL, FOIL and FORS vary with the description used: PRO-GOL takes from 117,000 to 40,000 seconds (on HP-735).

FOIL from 9,000 to .5 seconds (HP-735) and FORS about 900 seconds (on Sparc-10).

STILL results

In our experimental setting, the dataset was randomly divided into a training set including 90% of the data and a test set, in such a way that the ratio of active/inactive molecules is the same as in the whole dataset (2 to 1). The result was averaged on 25 independent selections of the training/test sets. This procedure is in the same vein as 10-cross fold validation; but a higher number of independent runs is advisable to evaluate stochastic algorithms.

STILL involves 4 parameters: and A\ which respectively control stochastic induction and stochastic deduction; and e and M, which respectively control the consistency and the generality of the hypotheses (section 2.3), with and M = 1 respectively meant as perfect consistency and maximal generality. Parameters and A' are set to 300 and 3; complementary experiments show that doubling or K increases the predictive accuracy by less than one point. Parameters and M respectively vary between 0 and 4 (the value used for PROGOL), and 1 and 10.

STILL was experimented with two sampling mechanisms (SM). The first, basic one, was described in 3.1.

The "advanced" one uses some naive (authors') knowledge, by rather mapping an atom of a given kind in E, onto an atom of the same kind in F. More precisely, an atom is repeatedly selected with uniform probability in C; this atom, say the i-th, is mapped by a onto the j-atom in F, such that atom j in F is as similar as possible5 to atom i in E. The substitution a so defined can be viewed as a "near-miss" with respect to substitution Table 4 displays the results obtained by STILL when combined with both sampling mechanisms. For each value of e and M, the average predictive accuracy on the test set is given with its standard deviation, as well as the run-time in seconds on a Pentium 166. The predictive accuracy degrades gracefully as increases. 5With same electric charge if possible; otherwise, with same atomtype; otherwise, with same type. The complexity of the advanced SM gets quadratic in the number of literals, instead of linear for the. basic SM. 6However, STILL is definitely not a black box: the classification process constructively exhibits hypotheses relevant to the classification of the current instance. One can thus justify the classification of any instance from an intelligible sub-theory, extracted from the whole theory.

junctive hypotheses, Version Spaces are indeed of exponential size [START_REF] Haussler | Quantifying inductive bias : Al learning algorithms and Valiant's learning framework[END_REF].

Another aspect of STILL is that it combines logical aspects and example neighborhoods, in the line of KBG [START_REF] Bisson | Learning in FOL with a similarity measure[END_REF], RISE [START_REF] Domingos | Rule induction and instance-based learning: A unified approach[END_REF] and RIBL (Emde & Wettscherek, 1996). The specificity of STILL is that it involves neighborhoods which are constructed by induction, whereas the above learners rely on a builtin similarity or distance.

But the main originality of STILL, due to the stochastic matching heuristic, is to allow a number of expensive hypotheses to be approximately characterized and used. This contrasts with the main trend in ILP, oriented toward the exact characterization of a few affordable hypotheses. Further, stochastic matching allows a fine control of the computational cost, with no expert knowledge on the problem domain.

Note that the use of stochasticity in STILL radically differs from what is done in GA-based learners such as REGAL [START_REF] Giordana | Search intemsive concept induction[END_REF]: in STILL the stochastic mechanism samples the matching space and itoperates as a pre-processor of induction; in contrast, the stochastic mechanism in REGAL samples the hypothesis space and so to say replaces 7 induction. Note also that STILL does not directly pertain to the Bayesian Inductive Logic Programming framework [START_REF] Muggleton | Bayesian inductive logic programming[END_REF], nor to probabilistic induction, in the sense that it does neither assume nor take as input any a priori probability distribution on the hypothesis space.

A main perspective of research is to give STILL a PAC model in the sense of [START_REF] Valiant | A theory of the learnable[END_REF]: stochastic induction and deduction approximate standard induction and deduction, and one would like to know how the number of samples n and K relate to the probability for this approximation to be correct.

 2The counter-examples to a positive example are the negative examples; and vice versa.

Table 2 :

 2 FOL and Tabular Representations of E and F E: active{a) : -atom(a, a1,carbon, 22), atom(a,a2, hydrogen, 3), cc{a,a1,a3) F : inactive(b) :atom(b, 61, hydrogen, 2), atom(b, b2, oxygen, 19) These neighborhoods, and hence the classification process, can be tuned to cope with noise. Formally, E' belongs to H(E) iff it belongs to D(E, Fi) for all Fi counterexamples to E. This condition is relaxed by allowing e exceptions (counter-examples Fi such that E'does not belong to D(E, Fi)).

Table 1 :

 1

		color	size	shape	weight	class
		grey	100	wings	3,5 ton	plane
	F	white	12	saucer	?	UFO

A pair of examples E and F and D(E,F)

 and (Karalic, 1995):

		Tabic 3: Reference Results		
	I LR	NN	CART	PROGOL FOIL	FORS
	Ace. "89	89	88	88	86	89
	±	2	2	3	3	6

Constraint logic programming notably contains the extensions of logic programming concerned with number handling. But, this point will not be discussed herein.