Distance induction in first order logic - Archive ouverte HAL
Communication Dans Un Congrès Année : 1997

Distance induction in first order logic

Michèle Sebag
  • Fonction : Auteur
  • PersonId : 836537

Résumé

A distance on the problem domain allows one to tackle some typical goals of machine learning, e.g. classification or conceptual clustering, via robust data analysis algorithms (e.g. k-nearest neighbors or k-means). A method for building a distance on first-order logic domains is presented in this paper. The distance is constructed from examples expressed as definite or constrained clauses, via a two-step process: a set of d hypotheses is :first learnt from the training examples. These hypotheses serve as new descriptors of the problem domain Lh: they induce a mapping π from Lh onto the space of integers Nd. The distance between any two examples E and F is finally defined as the Euclidean distance between π(E) and π(F). The granularity of this hypothesis-driven distance (HDD) is controlled via the user-supplied parameter d. The relevance of a HDD is evaluated from the predictive accuracy of the k-NN classifier based on this distance. Preliminary experiments demonstrate the potentialities of distance induction, in terms of predictive accuracy, computational cost, and tolerance to noise.
Fichier principal
Vignette du fichier
Sebag1997.pdf (297.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00116475 , version 1 (20-08-2021)

Licence

Identifiants

Citer

Michèle Sebag. Distance induction in first order logic. International Conference on Inductive Logic Programming (ILP97), 1997, Prague, Czech Republic. pp.264-272, ⟨10.1007/3540635149_55⟩. ⟨hal-00116475⟩
78 Consultations
70 Téléchargements

Altmetric

Partager

More