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SAINT-VENANT'S PRINCIPLE, MACROHOMOGENEITY AND VARIA­
TIONAL FORMULATIONS FOR ELASTIC RANDOM MEDIA 

PRINCIPE DE SAINT-VENANT, MACROHOMOGENEITE ET FORMULA­
TIONS VARIATIONNELLES POUR LES MILIEUX ELASTIQUES 
ALEATOIRES 

M. BORNERT 
Laboratoire de mecanique des solides, Ecole polytechnique, France 
University of Pennsylvania, Philadelphia, USA 

ABSTRACT: The problem of the determination of the effective behaviour of a linear elastic ran­
dom heterogeneous material is considered anew in the more general situation of the analysis of a 
structure made of such a material. Macrohomogeneous conditions make the scale transition pos­
sible. The connection between both scales operates through a representative volume element with 
finite extension and with well-known shape. A global Hashin and Shtrikman variational formulation 
leads to rigorous formal bounds on the effective moduli, which can be made explicit for a composite 
exhibiting an ellipsoidal distribution of the phases. 

REsUME : Le probleme de la determination du comportement homogene equivalent d'un materiau 
elastique lineaire a microstructure aleatoire est replace dans le cadre plus general du calcul d'une 
structure constituee d'un tel materiau. Des conditions de macrohomogeneite rendent possibles la 
transition d'echelle, qui s'effectue au travers d'un volume elementaire representatif d'extension finie 
et de forme bien definie. Une formulation variationnelle globale de type Hashin et Shtrikman permet 
de construire des encadrements formels rigoureux pour le comportement homogene equivalent, que 
l'on peut expliciter pour un composite presentant une distribution ellipso·idale des phases. 

I. INTRODUCTION

When analyzing the mechanical response of 
a structure S it is usually not appropriate to de­
scribe all the details of the heterogeneous mi­
crostructure of the constitutive material, first be­
cause the required computational power would 
be too large and second, because of Jack of in­
formation about the microstructure, which gen­
erally cannot be described in a completely de­
terministic way. When the length scale L of the 
applied loads is much larger than the character­
istic length l of a typical inhomogeneity, it is 
more efficient to consider an identically shaped 
and loaded structure, but made of a homoge­
neous material. If the behaviour of the latter 
is chosen in an appropriate way, the stress and 

strain fields that can be computed in this sec­
ond problem are exactly equal to some aver­
ages of the fields in the initial structural prob­
lem, taken over some representative volume el­
ement (AVE). The determination of this equiv­
alent homogeneous behaviour as a function of 
the behaviour of the constitutive phases and the 
geometrical parameters of the microstructure, 
which is independent of the loads applied to the 
structure, has been the goal of numerous works 
in the past fourty years. But many open ques­
tions remain. 

Here we address this problem once again, 
but in a way that differs slightly from many other 
more usual approaches. The difference relies 
mainly on the presentation of the homogeniza­
tion procedure. Usually one separates clearly 
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the local scale transition problem from the struc­
tural analysis and considers a particular isolated 
AVE, often subjected to homogeneous bound­
ary conditions or periodic ones. Furthermore, 
the size of such a volume element is supposed 
to be very large, or even infinite, and its partic­
ular shape is not specified. Here we deal with 
AVEs with well defined shape and large, with 
respect to l, but finite extension. We will also 
keep in mind that the load to which each repre­
sentative volume element in the structure is sub­
jected is the result of some macroscopic bound­
ary conditions on the structure and that it is usu­
ally not homogeneous but varies on both macro­
scopic and microscopic length scales: we will 
assume that it can be split into its average and 
the deviation from this average, the character­
istic length of the latter being l or smaller. We 
will also focus on some more technical aspects 
which could be considered as minor but which 
have their importance especially for anisotropic 
composite materials. Some slight mishandling 
of the governing equations may lead to incon­
sistent results and another purpose of this paper 
is to emphasize some of them and to describe on 
a physical basis the significance of these not-lo­
be-mishandled details. 

This discussion is limited to materials with 
' linear elastic but anisotropic behaviour and to

small strains. Let C(:!) = s-1(:!) be the ten­
sor of elastic moduli at point :! in the hetero­
geneous structure s and cell be the tensor of 
effective moduli to be determined. The fields 
Q:(:!) and f(:!) are the stress and strain fields 
which solve the initial problem; �fa) and Efa) 
are the fields that are computedwhen C(°i) is 
replaced by cell. with identical boundary con­
ditions. The latter might be of several types, 
either traction or displacement conditions; we 
will not specify them more precisely, but they 
are required to vary on a length scale L. Even if 
macroscopically distributed body forces could 
also be considered provided that their magni­
tude is small so as to generate only small stress 
and strain gradients, we will assume that there 
are none. 

2. MICROSTRUCTURE AND RVE

As already mentioned, the spatial distribu­
tion of moduli and the applied load that are un­
der consideration are such that the characteristic 
length L of the variations of � and E. is much 
larger that the typical length l Of the fluctuations 
of the moduli of the heterogeneous material. 

It is then possible to define some "moving 
domains" n,,, characterized by y E n,, {::} y -

:! E no. such that the fields� and E._ c� be con­
sidered to be uniform overeach of them, and 
that each domain n;_ contains the whole "mi­
crostructural information" that characterizes the 
heterogeneous material at point :!· The domain 
n0 is supposed to contain the origin, the lat­
ter being far away from the boundary 000. For
the sake of simplicity, it is assumed convex and 
with regular boundary, so that an outer normal 
!! can be defined. Let p characterize its finite 
extension; it is required that L » p » l. 

Let (/)0 denote the average of any quantity 
f on any subdomain n of S. The averaging pro­
cess (.) 0I. serves to characterize the statistical
information available on the microstructure at 
point :!· This is the so-called "ergodic" condi­
tien. The simplest type of such possible avail­
able information is the number of times a par­
ticular event can be observed at a point y in 
n;_. This is the first-order information on-the 
microstructure. The volume fraction c,. of the 
constitutive phases r is the most standard first­
order information. It can be written as c,.(:!) = 
(11:r)nI.• where Kr is the characteristic function 
of phaser in S. Second-order information gives, 
as a function off!, the number of occurrences of 
a particular event at a point y in n:i: and, simul­
taneously, of another particular e;ent at point 
y + f!. In classical approaches, one uses correla­
tion functions <l>ra(:!,l!) = (11:r(.)11:.(. + l!))0I.,
which give the probability that C(y) =Gr and 
C(y + !!) = C., Gr being the mOduli of con­
stitutive phaser. Information of higher orders 
can also be defined but will not be referred to in 
the present paper. 

The domain n;_ is the AVE at point :!· All 
microstructures that will be considered here are 
statistically homogeneous. This means that the 
quantities described above, and more generally 
the average over n;_ of any quantity depending 
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on the phase distribution, do not depend on ;i;.. 
Another consequence is the property </>,. (!!) = 
rf>,.(-f!), the dependence on ;i;. of these func­
tions being now omitted. The microstructures 
under consideration are also without any order 
at long distances : two events observed at points 
separated by a large distance are independent. 
That means in particular that the second order 
correlation functions have well known limits for 
large 111!11 : </>,. (!!) --+ c,.c.. These limits are 
reached when 111!11 is of order p or less. Thus 
periodic microstructures are out of the scope of 
this work. Since there can only be one phase at 
a particular point, one also has r/>,.(O) = 5,.c,.. 

3. SCALE TRANSITION 

The classical theorem of potential energy en­
sures that: 

W = 4?(C,�) = Min 4?(C,f.*), (I)
f 

-

where 4?(C,f*) is the potential energy of any 
trial strain field f.* compatible with the displace­
ment boundary conditions, associated with the 
structural analysis on the heterogeneous struc­
ture, given by the sum of the integral 4 fs �· : 
c : f.*dw and integrals over as related to the 
boundary conditions. 

When the loads and the microstructure are 
such that the strain field f. has two scales of vari­
ation, L » l, it is possible to limit the search for 
optimal strain fields within the set of trial fields 
that have such separate scales of variations. The 
optimization problem then reads: 

W = Min 4?(C,E_* + !.'*), (2) 
�-,�'· 

- -

where the fields E.* vary on a length scale L and 
are thus homogeneous on all the domains Ox 
and the fields f.'* fluctuate with a length seal� 
l and have a null average on all the domains 
Ox. The trial fields E.* have also to be com­
pilible with the (macroscopic) boundary condi­
tions whereas the fields f.'* have to be compati­
ble with null displacements on the sub-boundary 
of S where displacements are prescribed. The

optimization can then be performed in two steps: 

W = Min Min 4?(C,g* + !.'*). (3)
§:* �'· 

- -

This new formulation is equivalent to the first 
one and does not simplify the problem : the first 
optimization step has to be done for all macro­
scopic compatible trial strain fields E.*. 

The field f.10 associated to a particUiar macro­
scopic trial field E.* within the AVE n., at any 
point ;!;. can be considered as the solution-of a lo­
cal structural problem - a microstructural prob­
lem - with some non-uniform boundary condi­
tions applied on an;.. compatible with the re­
quirement that the average of f.10 over fl;. van­
ishes and with variations with length scale l. 
These local problems may be solved for all the 
RVEs in S, but in order to use their solution for

the minimization problem on S, some complex
conditions relating the boundary conditions on 
these local problem should be imposed, in or­
der that the juxtaposed local fields generate a 
compatible field on the whole structure. A min­
imization with respect to this set of boundary 
conditions should also be performed in order to 
reach the required minimum over all possible 
fields in S. 

The fundamental assumption which simpli­
fies this problem and which indeed makes the 
scale transition possible is the fact that the re­
sult of these microstructural problems do not 
actually depend on their particular local bound­
ary conditions, but depend only on the average 
strain E.*, except in some thin layer close to the 
boundary. This hypothesis, which will be re­
ferred to as the "macrohomogeneity condition", 

might be considered as a particular application 
of Saint-Venant's principle: the boundary con­
ditions that fluctuate around 0 on a length scale 
l generate fields that are non negligible only at 
a distance from the boundary less than a few 
times l. The values of the fields "inside" the 
AVE do not depend on these fluctuations. Note 
that this concept of macrohomogeneity refers 
not only to the spatial phase distribution in the 
heterogeneous material, but also to the applied 
loads : a given material subjected to different 
loads might or might not be macrohomogeneous. 
This concept has been first proposed by Hill (I). 

The global fields over the whole structure can 
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be constructed by juxtaposing the optimal "in­
ternal" fields f10, which lead to compatible fields 
since the abOve assumption ensures that they 
are equal to the fields that would have been ob­
tained if the optimization had been performed 
directly on the whole structure. Furthermore, 
no optimization on the set of local boundary 
conditions on the RVEs needs to be performed, 
since all of them lead to the same value. 

The volume of the domain of nil where the 
local fields depend on the particular boundary 
conditions is of order p2 x l, whereas the volume 
of nit is of order p3• The average 2efJ(±, ill) over 
nil of the strain energy density {Jg* + f) : c :
(E.*+ f'0) computed in the microstructural prob­

lem with some particular boundary conditions 
is thus equal, in the limit p » l, to the same 
average that would have been computed when 
the optimization had been performed on S. It is
also equal to the average that would have been 
obtained if homogeneous strain conditions had 
been applied, i.e. displacements equal to E_*.y 
on '!!_ E anil. In this latter case, Hill's lemma 
(I) can be applied so that 2efJ(±, Ill) = E.* : 
( C : {§,* + �0)) n:r, which becau-; of th;iin­

earity of the local problem with homogeneous 
boundary conditions, can be written Ill : cett : 
Jll, where c•ff can be shown to be �mmetric
and positive de finite. 

The second step of problem (3) can then be 
performed and is shown to be equivalent to the 
structural analysis on a homogeneous structure 
with moduli cett with boundary conditions equal 
to those applied on the heterogeneous structure. 
Furthermore, the macroscopic fields b and E. 
that solve it are the averages of the local fields" 
g and �over the RVEs:

g(±) = (g)n._ and §,(±) = (�)n._. (4)

The resolution of the microstructural problem 
on nit for this effective value of E.*(±) and for a 
particular set of local boundary conditions, for 
instance homogeneous conditions, leads to the 
effective local field f and Q. at point±· This can 
be done for any point ± such that nil belongs to 
S. Points close to O!lit would need some special
treatment which is out of the scope of this paper. 

4. EFFECTIVE MODULI 

Classically the tensor c•tt is computed by 
solving this microstructural problem for any§,*: 

E.* : c•tt : E.* = Min (f* : C : f*) . (5)- - (!') =!£'-
- n._ - 0.1,. -

The variations of the fields f* are required to 
have a length scale l much smaller than the size 
of nit. From a structural point of view, this is 
an non-standardd problem, since the boundary 
conditions are not precisely given. In a macro­
homogeneous situation, the obtained minimum 
is well de fined and the corresponding local fields 
are unique, except in some small layer close to 
anil. Generally one solves this problem for ho­
mogeneous strain or stress boundary conditions 
or periodic conditions. Such arbitrary choices 
add some non-physical constraints which may 
lead to dif ficulties which need to be addressed 
with some additional assumptions and someti­
mes non-rigourous approximations. 

Another way to deal with the determination 
of cett is to come back to the global structural 
problem. If an effective behaviour can be de­
fined as descri bed above, then the first step of 
global optimization can be rewritten as : 

<'P(c•n,E.*)= Min<'P(C,lll+i*). (6) -
!'• - -

This minimization has to be done for all admis­
sible macroscopic strain fields Jjl. The fields 
f'*, which need to be compatibiC with the null 
boundary conditions on S, are assumed to fluc­
tuate with length scale l or less and to have null 
averages on all RVEs. This problem seems more 
complicated but has well-de fined boundary con­
ditions. It is the formulation we are going to 
deal with in this paper. It is shown in what fol­
lows that the procedures which have been ap­
plied to the classical "local" formulation (5) can 
also be applied to this "global" formulation and 
lead to the same kind of results. The advan­
tage of the characterization (6) is that some as­
pects of these procedures can be treated on a 
easier and probably more physical way since 
it allows to get rid of the non-natural homoge­
neous stress or strain boundary conditions ap­
plied on all RVEs in the classical approach and 
to avoid the difficulties they induce. 

4



The simples t choice for f* in the problem (6) 
is �'* = 0. I t  leads to (�*� (cell -CJ : �*) 5 
� 0, since the terms rela ted to the boundary 

condi tions single ou t. The field E.* being ho­
mogeneous over all AVEs, one gets: 

This rela tion has to be sa tisfied for all compa t­
ible fields E.* and can be in terpre ted as a weak
form of thelocal inequali ty C811 � (C)11�_. One
could deduce this local resul t from the global 
one, for ins t ance by cons truc ting two macrosco­
pic trial fields tha t are homogeneous over some 
AVE and differ only by their value in a neigh­
bourhood of this AVE. We do no t go in to such 
de tails here and shall consider such weak in­
equali ties as a sufficien t charac teriza tion of C811• 

The average (C)11L is the well-known Voig t
bound for cell. which makes only use of the
firs t order s ta tis tical informa tion and thus is valid 
for any micros truc ture wi th prescribed phase vol­
ume frac tions. More res tric tive bounds can be 
ob tained when using fluc tua ting trial fields, gen­
era ted by a procedure firs t proposed by Hashin 
and Sh trikman (2) for the local formula tion. 

5. HIGHER-ORDER FORMAL BOUNDS

The idea is to make use of the solu tion of 
an auxiliary problem wi th same geome try and 
boundary condi tions as the problem on S, bu t 
wi th homogeneous cons ti tu tive ma terial C° -
the reference ma terial - and subjec ted to an ad­
di tional polariza tion field 'f!.* = ( C -C°] : 1.J.*,
where 1.J.* belongs to the space T� ( S) of sym­
me tric Second-order tensor fields over S. The
solu tion of this problem is a field f. which is 
kinema tically admissible wi th the overall con­
di tions on S and such tha t C° : � + ( C -C°] : 
1.J.* is s ta tically admissible wi th the overall loads.
We will limi t the se t of " trial field genera tors " 
1.J.* in such a way tha t these genera ted fields c an
be spli t in to macroscopic and microscopic parts 
my means of the averaging procedure (.) 11L. So
(�)nL and C° : (0nL + ( [C - C°] : !() n,. are 

macroscopic admissible s train and s tress fields, 
compa tible wi th the overall loads. In the mean� 

while, the fields �'* = � -W n._ and C° : �'* + 
(C-C°] : rt - ([c-C°]: rt)11L are mi-

croscopic admissible fields, compa tible wi th null 
boundary condi tions. The field tha t will be used 
in formula tion (6) is no t f. bu t f* = E.*+ f'*,
which has the required macroscopic value. -

Some s traigh tforward calcula tions, using the 
above proper ties of these fields, allow us to wri te 
the po ten tial energy in the following manner : 

il>(C,� + �'*) = HS0(t) + A�(t), (8)

where HS is the Hashin and Sh trikman func­
tional, given by: 

2HS0(rt) = 2il>(C°,�)+ 
fs rt: (C-C0]: [�+f-!()dw, (9)

and A�(rt) is the quadra tic in tegral:

2A�(!() = 
fs �* -�·J : (C -C°] : [rt -�·J dw. ( 1 0)

This resul t differs from the more classical 
one in three aspec ts. Firs t, the a bove quan ti ties 

are given as func tions of E.* which is not the 
field compu ted in the auxiliary problem wi th a 
null polariza tion. Second, the in tegrals are com­
pu ted over the whole s truc ture S, consis ten tly
wi th the "global" formula tion. Third, the use of 
1.J.* in place of the polariza tion tensor 'f!.* as a trial 
field genera tor avoids the use of quan ti ties like 
( C -C°] -1 which migh t be singular for some 

particular - and of ten op ted for - choices of c0• 
No te tha t all the effec ts of the boundary condi­
tiO)lS in HS( C° • 1.J.*) are included in ii>( C°, �). 
The corresponding terms single ou t wi th their 
homologous terms in the effec tive po ten tial en­
ergy ii>( cell' E.*). so tha t one no longer has to be
concerned with par ticular macroscopic bound­
ary condi tions. 

If the reference medium is s tiffer th an all the 
cons ti tu tive phases, the difference .::l�(1.J.*) is neg­
a tive and can be removed from rela tion (6), the 
func tional HS providing an upper bound for the
effec tive po ten tial energy of the s truc ture S. The
second s tep in the Hashin and Sh trikm an pro­
cedure consis ts in selec ting polariza tion tensor 
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fields that make HS0(!I*) stationary, so as to 
get the best upper bound, with respect to r/*. 
This optimization has to be performed in so�e
subset of T2 (S). If this subset is the whole
space, one gets the effective potential energy as­
sociated to �*. but this result can usually not 
be reached for the reasons mentioned in the in­
troduction. That is why the optimization has 
to be limited to some subspace, suited to the 
available information and computational power. 
Let 'P (T2(S)) be such a subspace, image of
T2 (S) by some orthogonal projection operator
'P, which is assumed to be local: the value of
'P([)(!f.) depends only on the values f takes in
n;_:- = 

Let TJ 0 be the field that makes HS(C0, ri*) � -
stationary in 'P (T2 (S)). It can be shown (3)
that it is characterized by the relation 

and that the optimal value of the functional reads: 

2HS0(�0) = 2�(c0,�*)+

f5�* : ( [C - C°] : �0) n._ dw. (12)

In the next section, it will be shown that f*' is 
a local function of !I*: its value on !f. de�nds 
only on the values of the polarization field in 
fl;_. Thus the global optimality condition ( 11)
splits into local and independent conditions : 
it can be shown in fine that the optimal polar­
ization field and thus the optimal trial field in 
fl;_ depend only on the value of E* at x. So
one is led to local problems, as i�expected in
the framework of homogenization, but without 
having to restrict a priori the analysis to a local 
problem with particular boundary conditions. 

Since condition ( 11) is linear, the optimal field 
in n;_ is a linear function of E._* (!f.) and the macro­
scopic value of the optimatP<>tarization p 0 re­
quired to compute the optimal value of HS can
be written as [cHsi - C°] : �(!f.), so that: 

2HS0(�0) = 2�(cHs�.�), (1 3) 

for all macroscopic strain fields E*. The ten­
sor CHsi is the Hashin and Shtrik�an estimate
associated to the reference medium C° and th� 

projector 'P. It is uniform since the microstruc­
ture is assumed statistically homogeneous. Wi­
thin this general framework, it can be shown to 
be symmetric and non singular. If C° is chosen 
according to the rules given previously, it is an 
upper bound for C811 since the characterization 
(6) provides a weak form of the inequality: 

( 14) 

In that case cHS� is also shown to be positive. 
Due to space restrictions, the discussion has 

been limited to the potential energy but it can 
also be extended to the complementary energy. 
One then gets lower bounds if the reference me­
dium is chosen appropriately and a Hashin and 
Shtrikman compliance tensor sHS� can be de­
fined. It is the exact inverse of cH �· 

Note finally that if 'P is the identity cHSo'PHS 
' 

and s � are equal to the effective tensors C811
and 8811• Thus the above analysis allows us to 
establish their existence without having to split 
a priori the global problem into independent lo­
cal microstructural problems, and without any 
explicit use of the macrohomogeneity condition 
as defined in section 3. The latter is anyway a re­
quired assumption, since it will be assumed in 
the next section that f*' has two scales of vari­
ations when the polarization fields itself admits 
such a decomposition. This hypothesis can as 
well be seen as a variant of Saint-Venant's prin­
ciple: fluctuations with length scale A of the 
polarization field generate fields that can be ne­
glected at a distance larger than a few times A. 

6. STRAIN DUE TO POLARIZATION

Let us consider the solution a .. Q.) of the aux­
iliary problem, generated by the-p0larization p* 

and the macroscopic boundary conditions, a�d
define a set of homothetic domains v; centered
on point !f., such that� E Vi <* !f.+ .X {1!_ - f.) E 
'D�. The strain �(f.) can be written, without any 
approximation, in terms of the polarization field 
within 'D� and of the values on the boundary
w; of the displacement and traction field so­
lution of the auxiliary problem, by means of the 
Green's function fi,° associated with the infinite 

medium with moduli C° and its symmetrized 
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first and second-order derivatives !i0 and r0:

�(f.)= mn,_ + Iav£ [ l dsy-

Iv£ ro(f. - y) : [g*(![) - (f) nJ dwy (15)

where the terms in the integral over OD� in­
volve the fluctuating part of the stress vector 

['(![) = [l!.(![) - (g)nJ ·!!as well as the fluc­
tuating part of the displacement. By means of 
an appropriate change of variables, the integral 
involving j'(y) can be written as I8V' !i0(f. -- - a.= 
y_).j'(f. + .X (Y. - f.)}dsu, where the homogene-
ity -;:;f degree -2 of �o has been used.

Assuming now that g fluctuates on a length 
scale l around its average, the force ]' fluctu­
ates with respects to Y. on a length scale I/ .X,
whereas �o fluctuates on a fixed length scale.
For large values of .X, ]' can then be replaced 
by its local average. If this situation is reached 
for .X such that .X llY. - f.11 « L, then this local
average vanishes and so does the integral. This 
limit is reached more quickly if Vi_ is centered
on f., since the variation of � with respect to
Y. is then smoother. The integral term involving
the fluctuating part of the displacement can be 
shown to vanish in the same limit. 

An alternative way of defining a macroho­
mogeneous situation is then to say that this limit 
is reached when Vi is replaced by the AVE n�,
so that one has the relation: 

�(f.) = (�) n£ + E°n., : (f) n£ - In£ ro(f. - ll) : g*(l£}d.wv, (16)

with E�. = In. r0(1{)dwv. The trial tensor
field�· used in the variational formulation is ob­
tained using the same relation : one simply has 
to replace (�) n£ by �·.

From a more physical point of view, this re­
lation means that local fluctuations of the strain 
are only due to local sources and macroscopic 
loads do only affect the macroscopic value of 
the field. This result differs slightly from those 
used by other authors (4, 5, 6, 7) by the facts that 
the integral is limited to a finite domain which 
prevents convergence problems, that the value 
of the macroscopic part is explicitely given and 

that the integral is computed on a moving do­
main centered on f., so that no approximation is
made for points close to the boundary of a AVE, 
as would be the case in a local formulation with 
imposed boundary conditions. This relation can 
be used for any point f. such that n� belongs to
S. Points close to 8S would need special treat­
ment, but since n0 is much smaller than S, their
contribution to the global response of the struc­
ture can be neglected. 

7. ELLIPSOIDAL DISTRIBUTIONS

The formal bounds can be made explicit for 
several types of projections P. Classically, one 
uses polarization fields that are uniform over 
each constitutive phase: T/* = Er TJ r;,r· In a= ::,.. 
local formulation, the tensors T/ would be con-= 
stant. For the present global approach, they are 
supposed to be macroscopic functions of f.. The
corresponding projection transforms any field f 
into the field Er (t_r;,r) r;,r· When the opt �- n£ 
mality condition (I I) is made explicit for this 
projection and the generated trial strain field is 
computed according to ( 16), one gets a local 
problem at any point f., which, when solved,
gives the optimal values of the tensors T/ at this= 
point as a linear function of 1:2* (f.). This prob-
lem is governed by the tensors 

·O 1 o r., = <1> .. (.l!)r (.l!)d.w,.no (17) 

which have a closed form expression when the 
phase distribution satisfies ellipsoidal symmetry 
conditions: 

where the � .. are scalar functions and A are =-· 
symmetric second-order tensors. Note that these 
tensors and functions are not independent but 
linked by some relations induced by the condi­
tion Er r;,. (f.) = 1, which expresses that there
is one and only one phase at each point �. The 
integration (17) can then be performed by dis­
cretizing the domain n0 into concentric ellip­
soidal layers, with orientation and aspect ratio 
given by A.. The contribution of these layers
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all vanish since the integral of r0 on a domain
delimited by two homothetic ellipsoids centered ·O at the origin vanishes. The integrals r rl then re-
duce to the local part of r0 and to the integration
on the domain delimited by no and the largest
of the above ellipsoids n0 contains. In this do­
main, /! is larger than the decorrelation distance 
so that q,,. reaches its limit. Thus: 

f'�, = 8.,erEL +ere, [E�0 - �..] , (19)

where � •• = fc •• r0(J!)dw11• £., being an el­
lipsoid centered at the origin and with shape 
given by A . The optimal tensors 1J then sat-=l"'• =r 
isfy the equations : 

�r + E� •• : [C'" - C°) : i = �. (20)

with � = Ii:_* + E. c,EL : g,. They are 
thus formally equal to the strains in ellipsoidal 
inclusions Err embedded in an in finite medium
C° and subjected to the load � at in finity.

If the A are all identical, so are the tensors =· 
E°. The bounds thus obtained are the aniso-
tt;;pic Hashin and Shtrikman bounds first given
by Willis (5). They can also be considered as es­
timates, in the sense of Mori and Tanaka (8), for 
the effective moduli of a composite with aligned 
ellipsoidal inclusions in a matrix C°, even if, 
according to the present analysis, the matrix/in­
clusion morphology is not explicitely taken into 
account. The resulting tensors are symmetric 
and positive definite, as they should be. If the 
A are not identical, but consistent with the =· 

h h condition Lr Kr(;£) = 1, one can show t at t e
resulting tensors are still symmetric. Some ex­
tensions of the Mori and Tanaka model to el­
lipsoidal but non aligned inclusions suggest to 
consider this set of inclusion problems but with 
an identical applied strain at infinity and the ob­
tained tensors are not symmetric. Such a situ­
ation would have been obtained in the present 
analysis if one had neglected the contribution 
of large b:. in integrals ( 17). This suggests that 
these extensions of the Mori and Tanaka model 
do not accurately model all the local interac­
tions that govern the behaviour of such mate­
rials. 

Alternative approaches, such as the hetero­
geneous pattern-based one (6, 9) and its simpli­
fied version for homogeneous patterns (7) are 

able to deal correctly with situations where in­
clusions are not aligned. The present analysis 
can be applied to these situations; in particular 
specific projection operators 'P adapted to the 
considered microstructure can be defined. The 
resulting bounds take into account the whole set 
of interactions that govern such materials and, 
as a consequence, they exhibit all the required 
properties for tensors of elastic moduli (3). 
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