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Introduction

Blasting is one of the basic operations in mining and quarrying industry. An efficient blasting for given ge ology conditions, rock volume to break and security conditions, results from a correct choice of explosive types, explosive quantity and the blasting planning.

One can think of diameter, and length of boreholes, drilling pattern, initiation modes, firing sequence, de lay time ... Efficiency is then determined by the qual ity of rock fragmentation and a minimum cost. In this sense it is an optimization problem. At present, al most all of the blast design is based on experiences, at fkrst because the behavior of the explosive and the sur rounding fractured rocks are still not well known, sec ondly because of the complex coupling effects. How ever, the computer aided design techniques, numeri cal blasting models and expert systems can consider ably reduce both the cost and duration of blast design while increasing the quality of prediction. This is the motivation of our research.

The key to a good blast design is a precise predic tion. The first part of our work focus on the predic tion by numerical simulations, in which the modelling is the discussion center.

The second part is on to the optimization of blast design. After introducing . the general methodology of our approach we show an application example for blast design.

Simulation of blasting

Many computational models of rock blasting a. re based on data obtained from experiments or/and em pirical relations derived from experimental data and analytical results for very simple cavities problems [START_REF] Sharpe | The production of elastic wave by explosive pressure, part itheory and empiri cal field observations[END_REF], [7], [START_REF] Digby | Computer simulation of blasking-induced vibration, frature and fragmen tation processes in brittle rock[END_REF].... They are either too much simplified or very speciflc. Recently, more fundamental models based on the material constitutive laws, usually im plemented in a finite element or finite difference code, have been attempted [START_REF] Grady | Continuum mod elling of explosive fracture in oil shale[END_REF],[10], [12] .... From a mechanical point of view, the blasting prob lem couples two difficult fields : the detonation of ex plosives and the rock mechanics. At present, the two fields are still in course of development. This section begins by a brief introduction of an existing 30 com puter code we used for our simulations. An explicit scheme algorithm enable us to handle the non-linear aspects and the fluid-structure coupling. Then a re view of the models for the explosive a. nd the rock is given. After,we introduce a new damaged rock consti tutive relation. Finally some numerical results based on this new model are presented to show its tractabil ity.

Computer code description

The program used can simulate most of the nonlin ear dynamic transient phenomena [START_REF] Mecalog | [END_REF]. This code can handle solid and fruid mechanics problem and the cou pling between them. The main features used for our specifmc problems are :

• explicit central-difference time-integration algo rithm

• Arbitrary Lagrangian-Eulerian (ALE) formula tion [START_REF] Hirt | An arbi trary Jagrangian-eulerian computing method for all fqow speeds[END_REF] for fluid/structure interaction

• artificial viscosity in order to smear shock fronts [START_REF] Richtmayer | A method fsr the numerical calculation of hydrodynamical shock[END_REF] • Incremental form of constitutive relations

Detonation model

Computation of the detonation propagation in explo sives is a complex problem. It results from strong chemico-physics interaction during the detonation process[l4),[6) .... When a coupling with a structure is considered, the numerical modeling of the detona tion is often simplified. This is because the response of the structure is the main interest. Such models are often of continuum type and admit the following hypotheses :

1. reduction of the reactive fluid in a fluid with two components, an initial substance and a final sub stance (explosive reaction products);

2. each of the two substances is separately in thermo-chemical equilibrium;

3. quasi Chapman-Jouguet detonation a. quasisonic detonation velocity).

These hypotheses reduce the complex computation to a simple fluid flow one with discontinuities which a.re then often smeared as follows :

• an artificial viscosity is used for the thermophys ical variables of discontinuity (shock wave);

• a. decomposition law is used for the thermochem ical variables of discontinuity.

Therefore, the behavior of the explosive is repre• sented by an equation of state and a. decomposition law.

Often, in case of the detonation/structure simu lation, the equation of state has a pseudo-potential form p( v, E) (pressure-volume-energy) to avoid the thermo-chemical iterative calculation. The decompo sition law is of �bulk burn» type due to the homo geneity consideration. A variety of explosive behavior ranging from the simple to complex models are avail able, we use the following models[30):

• The Jones-Wilkins-Lee (JWL) equation of state for the explosive products pressure :

p = A(l -�)e-R ,V + B(l -�)e-R2V + � R , v R21 v V where V= ..!!. ""
relative volume explosive products pressure detonation energy per unit volume constant parameters

• if A = B = 0 , we refind the simple �gamma law» with w =, -i (1 = r = �)

• the �C.-J volume burn» chemical decomposi tion law :

m-1-V -1-Vc;
where the burn fraction m is the indicator of de composition progress.

• the current pressure is calculated by :

P=m•p
The detonation velocity, the pressure at Chapman-Jouguet point PcJ and the initial en ergy Eo should also be known.

After having done several simulations (explosion in water, explosion in an elastic medium ), we noticed some interesting results [START_REF] Zeng | Optimisation et /'utilisation des ex p/osifs en Genie civil[END_REF] :

• computation with the equation of state �gamma law» has a similar result compared to the com putation with the equation of state JWL.

• the explosive energy partition (shock en ergy /bubble energy) can be characterized by the coefficient / of the �gamma law», the greater 'Y is, the greater is the shock energy.

• the modeling of blast loading by using defined pressure-time history is only a crude approxima tion specially for the case of the point initiation.

Rock mechanical model

Another essential point for the blasting simulation is a proper representation of the rock behavior. The ap proach which involves the formulation of appropriate material models (constitutive relation) is preferred.

The main phenomena that must be accounted for is crack initiation and propagation. Two alternatives are then possible. One is the discrete model which takes into account the physical presence of the cracks in a direct approach(ll), [START_REF] Munjiza | On a rational approche to rock blasting[END_REF] .... For the computation, this one is often very costly and suitable for the post period of the blasting processus. Another way is to take a continuum damage model. We have chosen the last method which is more consistent with a fi nite element approach. A continuum model [START_REF] Zeng | Optimisation et /'utilisation des ex p/osifs en Genie civil[END_REF] is therefore developed and implemented into the explicit code. This is an elastic anisotropically damaging be havior based on the damage mechanics theory intro duced by Kachanov [START_REF] Mark | Time of the rupture pro cess under creep condition[END_REF]. The constitutive relation is :

u=C(D):£
where C is the elastic effective stiffness tensor and D is the damage tensor.

In an incremental form : this concept is deduced from the impact experi ment results [9)-

2.3.l Damage description

The nature of the rock flaws and the possible complex loadings require an anisotropic damage description.

Generally, an eight order tensor should be introduced to describe the anisotropic damage, but the difficulty to identify all the parameters is obvious. It is thus desirable to reduce the order of that tensor. Based on the third hypothesis above, a symmetric second-order damage tensor D is introduced, reducing the model to an orthotropic one.

We can consider each of the eigenvalues D; as a group of paraUel cracks perpendicular to the associ ated eigenvector. As if :

4 D; = -7r • f 3 ( 2 )
where f = Na•c� is the cracks (Na cracks ofradius Ca) group density . This definition is the same as the one for a homog enization method [START_REF] Nemat-Nasser | Micromechanics overall properties of heterogeneous materials[END_REF], [START_REF] Hoenig | Elastic mduli of non-randomly cracked body[END_REF] so that the results of ho mogenization can be used to determine the effective elastic matrix which is going to be shown lately.

D; can be also defined with the main parameters as introduced by Grady and Kipp [START_REF] Grady | Continuum mod elling of explosive fracture in oil shale[END_REF] :

D; = N v ; with v = �7r • c3 ( c and N are mean values ) 2.3.2 Damage evolution law
Generally, the second thermodynamic principle is used to determine the damage evolution Jaw as in an elastoplastic problem. However the dissipative energy is not easily established. Grady and Kipp have devel oped an evolution law based on the activation and growth of an initial Weibull distribution of fracture producing foaws, ftr an isotropic behavior [START_REF] Grady | Continuum mod elling of explosive fracture in oil shale[END_REF]. It can be extended to an orthotropic material : { I s,,cm+3l, j 1 / 3 ( u�-u. The damage criterion is usually derived from the Grif fith theory [START_REF] Griffith | The phenomenon of rupture dans fnow in solids[END_REF], [START_REF] Bui | Mecanique de la Rupture Fragile[END_REF], with the damage evolution law (3) shown above, we just take the following simple form :

G f >Gu

2.3-4 Effective elastic matrix

Based on the results of the homogenization methods [START_REF] Nemat-Nasser | Micromechanics overall properties of heterogeneous materials[END_REF], [START_REF] Hoenig | Elastic mduli of non-randomly cracked body[END_REF], the symmetric effective elastic matrix takes the form:

_ -[ [ C(l )l 0 ] [c] -o [c< 2 >] C -(1 ) -fi( 2 d d )d C -(1) -E 2 11 -a 1 -I/ 2 3 I 22 -c;(l -I/ d3di )d2 C-(1) -E ( 2d d )d C -(IJ E 33 -o; 1 -v 1 2 3 12 = o;v(l + vd 3 )d1d2 C "(l) E ( -(I) E 1 3 = o; v 1 + vd2)d1rl3 C23 = ;;v(l + vdi)d3d2 C( 2 ) _ 2µ (1-PD2)(!-/iD3) 11 - 2-/JD,-/iD3 C (2) _ 2µ (1-11Di)( l -/iD3) 22 - 2-{JD, -1iD3 C (2) _ 2µ (1-liD2)(l-1iD1)
33 - (i=l,3)

a= 1 -v 2 (d1d 2 + d 2d3 + d1d3 + 2vd 2 d3d 1 ) (J = (1 -v)(2 -v)
v: poisson's ratio The result is in 0(/ 2 ) order to the constant strain or constant stress method and the formulae are easy to calculate.

2.3.5

Incremental algorithm

During each time step the following algorithm is used for the determination of the stress and the damage tensor values : given u(t), e:(t), D(t), i(t + dt) : Grady and Kipp which is strain-rate dependant. For sake of simplicity the formula is now fracture stress dependant :

D(t + dt) = D(t) + D(u(t)) dC = C(D(t + dt))::: C(D(t)) _ u(t + dt) = u(t) + C(t) : i(t + dt)dt + dC : e:(t)
( (!c )-T LM = 1J(k, m) E(m + 3)
where 1) is a constant and qc the tensile fyacture stress.

Simulation results

The damage evolution law based on the Weibull dis• tribution leads to predictions which are in good agree ment with the strain-rate effects discussed by differ ent authors[l6], [START_REF] Margolin | Numerical simula tion of fracture[END_REF][10] .... ). In order to show the ca pability of the model proposed to take into account anisotropic effects, the following numerical experi ment is done : we consider several cases of constant strain rate loading on a single element. The first load ing is carried out up to a value of D1 = 0.4 (largest eigenvalue of the damage tensor). After changing the loading direction, a second loading is applied to the same specimen, the curves in dot lines correspond the results for various directions of the second loading re spectively 0°, 30°, 45°, 90° Fig(!). shown at time t = 0.25ms et t = 0.5ms. This result underlines that :

• the damage begins around the cavity and pro gresses with decreasing value.

• a second damage area appears when the stress wave reaches the free surface and is refpected.

• the eigenvector directions of D tells us that the The results in Fig 7) and (8 are given for the largest eigenvalues of the damage tensor at t = l.5ms where the damage results are convergent.

We observe that the detonation with delay modi• lies the damage distribution and increases the damage volume (10% for this example). The space between the explosive and the surround ing rock is occupied by air. the decoupling ratio (bore hole diameter to explosive diameter) is 1.2, the con finement is perfect (the stemming is also occupied by rock). A point detonator is put at the bottom of the borehole. The rock is the same as in the first example [START_REF] Bui | Mecanique de la Rupture Fragile[END_REF].

In Fig ( 10), the damage result ( largest eigenvalue of the damage tensor) is shown at t = 0.375 ms, I . . . . The blasting simulation based on the advanced mod eling allows us to predict more generally and more precisely the blasting results. It can be used also to better understand fragmentation mechanisms, the roles played by the different design parameters [START_REF] Zeng | Optimisation et /'utilisation des ex p/osifs en Genie civil[END_REF]. However, It can not be yet a perfect tool for the blast design mainly because:

• it is difficult to simulate the entire blasting pro cess with a single model often much simplified.

• the strong non linearity and the local/global problems in blasting make the computation too expensive. Even if it is technically possible to simulate the entire blasting process by more so phisticated modeling (e.g.: a combined finite ele ment/ discrete element model [START_REF] Munjiza | On a rational approche to rock blasting[END_REF]), it is practically impossible to simulate the real sequence blasting problem.

In this context, the use of the automatic learning technics for searching rules (or models) seems to be a rational solution, and opens a realistic way to the blasting optimization.

In this section we will first give a brief introduction to the automatic learning technics. The methodology of blasting optimization is then discussed. Finally an example of automatic learning and optimization are given.

Automatic learning

In many technical domains, experts are aware that, very often, there is no a complete solution for a real world problem. But there is a possibility to build a data base of examples. Each sample of this base is obtained experimentally or numerically with some times some fuzzy or missing informations. The au tomatic learning £xpert Systems generator (l£S), developed at LMS during 1986-1990, can build a set of rules based on the description of such a examples base. Several applications have been shown [START_REF] Schoenauer | Incremental learn ing of rules and meta-rules[END_REF], [START_REF] Navidi | Clever optimal design of materials and structures[END_REF], [START_REF] Michel Te Rrien | Systemes experts par apprentis sage en contrfle non-destructif[END_REF], [START_REF] Hablot | Construction de solutions exactes en elastro-plasticite[END_REF], [START_REF] Bulik | Sur /'Optimisation de la Protec tion Parasismique[END_REF].... The main difficulty is to provide a good description of the examples base. The initial descriptors (let us call descriptor each single field of the data base) appear then as variables for the final model. Suppose that the expert defjnes a set of these ini tial descriptors describing the observed and/ or mea surable phenomena, (x; ) generally in a limited num ber (e.g. the radius of the borehole, explosive energy etc ... ). Indeed only a subset of this initial set is suf ficient to make the describtion of one example but it is not known a priori. These descriptors are then integrated within our actual limited knowledge to de termine a set of more complex ones which are the intef¦gent descriptors, (Xi) (e.g. results of a numeri cal simulation or the ftime-history of the radius of the bubble in the water blast test,etc ... ). These descrip tors are function of the initial descriptors and some of them may be considered among the conclusions (Ck) and then also be learned ( e.g. the damaged rock volume).

In order to build the f{ll knowledge of the problem or the model, the expert must prepare a fi le containing for ea. eh example :

The input descriptors: X1 I ....

I X6 I X1 I •••• • I X40 I • ••••• I
The output descriptors:

C1 I C2 I ...... . The symbolical option of C£S will give a set of rules while its numerical option will generates a polynomial based model which is often easier to handle.

Generating rules

For a simple problem, the data base, with the initial descriptors (x;) and the conclusions C1, can be pre• sented to the system. The system generates then a mathematical expression based on a polynomial ex pression :

C1 =POL (xi,x2,• • •, Xn )
For more complex problems, it is better to use the data base with the intelligent descriptors (Xi) in order to help the system to find a more reliable model fwr the conclusion C 1 :

C1 =POL (X1,X2,•••, X k)•
Once the model is created, new unknown examples may be introduced for evaluating the conclusions.

The building of the set of (X;) requires making them intrinsic in order to be able to reproduce them for various types of problems independently of the nature or type of problem considered.

Optimization

Many optimization technics are available. But we have the following points in mind :

• Design variables can be discrete and also take their value in a finite set.

• From a technological point of view many solu tions can lead to the same type of results. This means that if C1 is the cost function then in the design variable space POL can have flat domains ( with no gradient). Many optima can exist si multaneously that is POL does not define a con vex .

• Constraints generally varies depending on the do main in which the design set is looked for.

Blasting optimization by the traditional methods based on the mathematical programming theory such as quasi-Newton, conjugate gradient ... seems to be impossible. On the other hand, the evolution methods such as the genetic algorithms are more suitable for a general optimization problem.

Contrary to the traditional methods based on the continuum concept, the genetic algorithms make evolve a population of solutions with a manner sug gested by the genetic. Their advantages compared with the traditional methods are as following:

• the probabilistic characteristics can handle local optima.

• there is no other restriction for the functions (cost functions, constraint function), excepted to be calculable.

• the algorithm is extremely general.

• design variables can be of any type.

The main disadvantage is costly computation time.

Optimization by coupling the genetic algorithms with automatic learning is then a good strategy be cause the generation of the specific rules (for the cost function, the constraint functions) by automatic learning allows to compensate the handicap of the ge netic algorithms method.

It is interesting to observe that the fact of express ing all the relations in a simple polynomial way enable us to carry out genetic optimization very effectively.

The other intereseting points of this approach can be summarized as follows:

• It gives us a way of dealing with inverse problems, that cannot be handled by classical schemes.

• It lets us understand the essential descriptors which drives the desired conclusion. This can be a starting point for experts to build new PHYS ICAL or MATHEMATICAL MODELS.

• By a clever choice of the intelligent descriptors, it is possible to extrapolate models resulting from a reduced set of simple samples to more complex situations.

Generation a damaged volume rule by as

In this section we use the above methodolgy in a sim ple blasting design problem. Suppose that the explo sive type and the rock site are given. We search a damaged volume Vd (broken rock) expression in func tion of the drilling pattern parameters in order to carry out next the optimization calculation. This means that their are at least two local so lution. In fact the solution found depends highly on the starting point.

• Genetic Algorithm

With several different starting populations, the following solution is found : {d = 0.04, B = 0.5, Rd= 1.094118} => J = 1187.1654 Now, suppose that borehole diameter d and the ex plosive cartridge diameter can only take some fixed discrete values : One can notice that these points where not in the ini tial database. These values can then be used fvr a new numerical simulation (or experiment). The dam aged volume obtained is then compared with the one predicted by the model. If they agree, the model gen erated by the lt:S is consistent. Otherwise we can add a new example to our data base and build a new model. This work can be done iteratively until the model is consistent.

Conclusion

In this paper, it has been shown that the modelling of micro-craks by a continuum damage model may im prove the quality of the prediction. For the continum rock model considered, the mixed phenomenological -microphysical approach seems to be tractable; the microphysical approach allows to build a consistent model thus limiting the number of parameters, it also allows quantitative results for the fragmentation.The phenomenological approach simplify the model and decrease the computing time.

However, even if the blast prediction by simula tion appears to be a powerfzll prediction tool, it can only be an element of the industrial blasting design. Indeed, many other relevant parameters and techni cal aspects cannot directly enter the mathematical model. The use of the automatic learning lets us overcome this step efficiently, as we showed it on a simple example. The coupling between genetic algo rithms and automatic learning seems to be a powerful potential approach to blasting optimization.

  du= C(D): d£+dC(D): £ (1) The ma.in hypotheses are the following: 1. the dominant mode of failure is mode I as proven by numerous experiments [21],[22),(15) ....

2 .

 2 the material non linearity is totally governed by damage and thus plastic deformations are disre garded 3. The expanding plan directions of the penny shaped cracks are perpendicular to the tensile principal stress directions.

  i. � D; = l ( m+l){m+2) �gn --'--r"" ) 3 D; with i = 1,3 where n(x)=kx m G f >Gu else (3) Cg cr f, uu E constant fracture growth velocity principal stress and a constant depending on the material cohesion Young's modulus k,m constant Weibull parameters 2.3.3 Damage criterion

  2-/JD2-liD1 cU> = o c i ;e j) with d;=l-D;

2. 3 . 6

 36 Dominant fragment size 20.0 .. ..-----�----�----� 15.0 --first loading a-90 The calculation of the dominant fragment size (frag-� ment size corresponding to the largest volume fxaction of material) is also derived from the result given by 5.o

2. 4 . 1

 41 Calculations in plane strain with an imposed pressure function We use the model presented above to carry out the analysis on various geometries. One of them is a cir cular cylindrical cavity problem. Due to symmetry a quarter of the geometry is considered. The configura tion and the loading, a sine function pressure imposed inside the cavity, are given in Fig 2 and 3 : The surrounding rock is an oil shale which has the properties : Fig 4 and 5, the distributions of the largest principal value of the damage tensor are respectively I 0.0020 0.0040 strain in the loading direction
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 56 Figure 5: First principal value of D at t = 0.5ms
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 8 Figure 8: with a delay time r = 0.6ms 2.4.2 3-D calculation coupled with detona tion The configuration is shown in Fig (9) :

Figure 9 :

 9 Figure 9: Configuration in 3-D The explosive is idealized. Its brisance is near the ANFO. The equation of state used is the �gamma law� where the parameters a.re as follows : I Po(�) 2.8 0.9

  Figure 10: damage result in 3-D

  The database is built by numerically simulating blasting in plane strain. The choosen descriptors are borehole diameter d ; burden B;decoupf¥ng ratio Rd and two ratios d/ Rd , d/ B. The result in Ta b(l) is given by eleven simulations d(m) B(m) 0.5066 1.677 0.79336 0.0298 0.0987 0.050 0.600 1.172 1.467875 0.0427 0.0833 0.050 0.600 1.667 0.675639 0.0298 0.0833 0.040 0.500 1.3333 0.94768 0.03 0.08 0.040 0.600 1.333 0.871909 0.03 0.0667 0.100 0.750 1.257 1.520870 0.0796 0.133 0.100 0.750 1.474 1.265204 0.0678 0.133 0.200 1.000 1.2067 1.570654 0.1657 0.2 0.200 0.750 1.2067 2.957848 0.1657 0.267

  •d-2.44B Rd +(24.134-45.6Rd+23.l 7 R�)B (5 ) (and em= 0.00477.)

  The problem can be set as fullowing :For a given explosive type and rock in-site, we search the design parameters values (d,Rd,B) which maxim ize the specific chargeE� = Ve (explos�vevolwnc) •Taking back the result (equation (5) ) divided by (f.) 2 which is in proportion to the explosive volume, the problem becomes : maxi= 4.256B ll;f -88.95B + (90.39 -92.644Rd + 2 R' 25.54Rd):ii'j with the constraints : 1.0 �Rd� 2.0 0.4 � B � 1.0 0.5 < d < 0.2 d/ R � 2'. -0.03 (the explosive cartridge diameter is supposed superior to 0.03m) This "simple" problem is firstly resolved by one of the traditional methods, then by the genetic al gorithm. • Conjugate Gradient With a starting point : {d = 0.04, B = 0.8, Rd= 1.0}, a solution has be found such that : {d = 0.04, B = 0.5, Rd= 1.09358} => J = 1187.1658 With another starting point :{ d = 0.1, B = 0.8, Rd= 2.0} ,a different solution has be found such that : { d = 0.06, B = 0.5, Rd= 1.09358} => I= 995.79

  048, 0.05, 0.066, 0.084, 0.1, 0.15, 0.2} E {0.03, 0.036, 0.04, 0.05, 0.64} The solution found by genetic algorithm and chang ing Rd by d/ Rd is: { d = 0.048, B = 0.5, d/ Rd = 0.045 -Rd = 1.0667} => J = 980.96

Table 1 :

 1 damaged volume database First we ask the [,[S to build a polynomial model. Limiting the system to terms of order 2 with cross terms. the ££S output is :