Caroline Ravisé
email: caroline.ravise@polytechnique.fr

Michèle Sebag
email: michele.sebag@polytechnique.fr

Caroline Ravis

Mich Ele Sebag

An Advanced Evolution Should Not Repeat its Past Errors

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

Control of evolution aims at keeping some balance between the exploitation and exploration tasks devoted to evolutionary search [START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF]). This control involves both the selective pressure1 and the disruptiveness of evolution operators2 , which must be sucient to respectively ensure convergence, and discourage premature convergence [START_REF] De | A formal analysis of the role of multi-point crossover in genetic algorithms[END_REF]. Only boolean search spaces and crossover and mutation operators are considered throughout this paper.

Controlling the disruptiveness of crossover and mutation can be done at three levels:

The search space can be designed so as to decrease the disruptiveness of operators regarding relevant schemas; e.g. allowing don't care zones, termed introns, decreases the disruptiveness of both mutation and crossover [START_REF] Levenick | Inserting introns improves genetic algorithm success rate : Taking a cue from biology[END_REF][START_REF] Koza | Genetic Programming: On the Programming of Computers by means of Natural Evolution[END_REF]. Disruptiveness is directly a ected by the crossover and mutation rates. These may be adjusted by means of brute force [START_REF] Scha Er | A study of control parameters a ecting on-line performance of genetic algorithms for function optimization[END_REF]) (still the most usual method), through statistical estimates [START_REF] Grefenstette | Virtual genetic algorithms: First results[END_REF], adaptation [START_REF] Grefenstette | Optimization of control parameters for genetic algorithms[END_REF][START_REF] Davis | Adapting operator probabilities in genetic algorithms[END_REF], or evolution itself [START_REF] Lee | Dynamic control of genetic algorithms using fuzzy logic techniques[END_REF]. Finally, the e ects of crossover and mutation can be adjusted by evolution itself (Scha er & Morishima 1987[START_REF] Spears | Adapting crossover in a genetic algorithm[END_REF][START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF][START_REF] Fogel | Hierarchic methods of evolutionary programming[END_REF]): this only requires to include control choices in the search space. Evolution can thereby optimize for free the type of crossover [START_REF] Spears | Adapting crossover in a genetic algorithm[END_REF], or the mask of crossover (Scha er & Morishima 1987), or the variance of mutation [START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF][START_REF] Fogel | Hierarchic methods of evolutionary programming[END_REF]) most suited to an individual.

The control of evolution presented in this paper aims at adjusting the e ects of crossover and mutation, and is derived from a common sense remark: what has been done with bad results in the past (e.g., give birth to an individual that was not to be retained in the population), should not be repeated. Preventing evolution from repeating its past errors constitutes a safe control, i.e. a control that cannot mislead evolution. However, maintaining and exploiting the list of past errors of evolution is intractable. Therefore, the history of evolution must be summarized and saved into a tractable form. This paper investigates the use of machine learning (ML) to this end; more precisely, induction from examples [START_REF] Michalski | A theory and methodology of inductive learning[END_REF][START_REF] Mitchell | Generalization as search[END_REF]) is used to extract rules from the past errors and trials of evolution. Such rules allow to a priori estimate the desirability of future trials; by means of this estimate, several control strategies, termed ML-based controls, are allowed to direct the next steps of evolution. The paper is organized as follows. Section 2 describes the automatic extraction of rules about evolution, from examples obtained through experimenting on a population or spying evolution. The use of such knowledge in order to guide the next evolution steps is discussed, and a hybrid algorithm interleaving evolution and induction is proposed. Section 3 presents an experimental study of several ML-based controls of evolution. Besides two well-studied GA problems, the Royal Road (Mitchell et al. 1993, Mitchell & Holland 1993) and a GA-deceptive problem [START_REF] Whitley | Fundamental principles of deception in genetic search[END_REF], a combinatorial optimization problem is considered: the multiple knapsack problem [START_REF] Khuri | The 0/1 multiple knapsack problem and genetic algorithms[END_REF][START_REF] Petersen | Computational experience with variants of the balas algorithm applied to the selection of R & D projects[END_REF]). The scope and limitations of ML-based control are discussed in section 4, with respect to related work devoted to the control of evolution [START_REF] Grefenstette | Optimization of control parameters for genetic algorithms[END_REF], Scha er & Morishima 1987[START_REF] Spears | Adapting crossover in a genetic algorithm[END_REF]) and cultural algorithms [START_REF] Reynolds | An introduction to cultural algorithms[END_REF][START_REF] Cavaretta | Using a cultural algorithm to control genetic operators[END_REF]).

2

KNOWLEDGE-CONTROLLED EVOLUTION ML-based control of evolution is grounded on the following remark: evolution is made of constructive and destructive events (crossovers and mutations). This section rst shows how ML, more precisely inductive learning, can be used to characterize the classes (sets) of constructive and destructive events, using rules induced from examples. These rules provide an a priori estimate of the class, good (for constructive) or bad (for destructive), of new incoming events. How such rules can be used dynamically by evolution, is then discussed.

INDUCTIVE LEARNING

Let us rst brie y introduce inductive learning (see [START_REF] Michalski | A theory and methodology of inductive learning[END_REF][START_REF] Quinlan | Induction of decision trees[END_REF]) for a thorough presentation).

Examples are points of the search space which have been classi ed (e.g. by an expert). The goal of induction is to extract rules from training examples; a rule can be viewed as a schema of the search space associated to a given class. A rule R covers an example i the example belongs to the schema of R. A rule generalizes an example, i it covers this example and they both belong to the same class. [START_REF] Michalski | A theory and methodology of inductive learning[END_REF], one starts from a given example and nds out the rules that generalize this example and maximize some user-supplied quality function. The examples generalized by these rules are then removed from the training set, and another example is considered. The learning algorithm used in this paper is a bottom-up algorithm that determines all rules maximally general with a given prescribed (user-supplied) accuracy; a disjunctive formalism allows to characterize such rules with polynomial complexity [START_REF] Sebag | Delaying the choice of bias: a Disjunctive Version Space approach[END_REF]. Induction ultimately allows for classifying any point E in the search space: E is associated with the class of the rules covering E, (with majority vote in case of con icts). In case where E is not covered by any rule, it is classi ed unknown.

EXAMPLES ABOUT EVOLUTION

In order to apply inductive learning, we need examples relevant to evolution, and easy to gather. The possibility investigated in this paper is to take as examples the elementary events of evolution, namely the birth of new individuals through crossover or mutation.

Description of examples.

A crossover event is dened by a pair of parents and the crossover mask applied to these parents. Following [START_REF] Syswerda | Uniform crossover in genetic algorithms[END_REF], a crossover c can be represented by a binary mask (c 1 ; : : : c N), c i 2 f0; 1g:

i = yi if ci = 1 x 0 i = yi; y 0 i = xi otherwise
Likewise, a mutation event is de ned by a parent and the mutation applied to this parent. A mutation can also be represented through a binary mask m = (m 1 ; ::m N), such that x 1 : : : x N ! x 0 1 : : : x 0 N with :

x 0 i = 1 x i if m i = 1 x i otherwise Both kinds of events can then be represented by the operator mask and the parent(s). In this paper, the description of an example consists of the operator mask, and optionally the parent the operator applies to (only the ttest parent in the crossover case).

Examples must then be classi ed in order to permit induction. It seems natural, as far as learning intends to serve control, to classify events according to whether they contribute to the current optimization task. The choice made in this paper is the following: the class of an event depends on the way the tness of o spring compares to the tness of parent(s).

Acquisition of examples. At the moment, examples

are gathered through experiments on a given population, termed reference population:

1. An operator mask is randomly generated according to the parameters of the evolutionary algorithm (e.g. mutation rate, n-point crossover or uniform crossover,...); inactive operators are rejected (e.g. mask 00:::0); 2. One or two chromosomes (depending on whether the operator is mutation or crossover) are randomly selected in the reference population; 3. The operator is applied according to the mask and parent(s) selected. The tness of the o spring is computed and compared to that of the parent(s). This comparison determines the class of the event, good, bad or inactive; 4. The example composed of the operator mask, optionally the (ttest) parent, and the associated class, is stored3 .

RULES ABOUT EVOLUTION

Rules are induced from the gathered examples. Only signi cant rules (covering more than one example) are retained.

Scope of the rules. 1 0 1 0 1 0 1 0 1 1 1 1 good E2 1 1 1 1 0 0 0 0 0 1 1 1 good E3 1 1 1 0 1 1 1 0 1 1 1 1 bad E4 1 1 1 1 0 0 0 0 1 1 1 1 bad R 1 1 1 ? ? ? ? 0 1 ? ? ? bad

Rule R states that : The crossover of an individual in schema H = 111??? according to a crossover mask in schema ?01 ? ??, gives a bad result, i.e. the o springs are less t than the parents. This can be interpreted as: don't set a crossing point between bits 2 and 3 if the parent belongs to schema H . Rules re ect the reference population: R cannot be learnt before schema H is discovered, and will hardly be learnt if many individuals in the population belong to H .

ML-based control. Such rules enable to a priori estimate whether a future event (crossover or mutation) is bad, good, or inactive. This estimate can accommodate several control strategies: Favoring desirable events, by actuating only good events. However, this strategy would likely break the balance between exploration and exploitation in favor of the latter.

Limiting the disruptiveness of operators, by rejecting bad events. This control strategy is termed classical.

Increasing the diversity of the population, by rejecting inactive events. This control strategy is termed modern. Neither classical nor modern control actually breaks the balance between exploration and exploitation: rather, the rules delineate regions where exploration or exploitation have led to bad or null results. This allows to biase both exploration and exploitation toward other regions. ML-based control involves two kinds of cost:

The Limitations. The presented approach can fail in two ways: control may be disabled, or, even worse, misleading.

Control is disabled when induction fails to deliver signi cant or usable rules. This may be the case if the reference population (2.2) does not contain relevant schemas; then no trends about disruptive or inactive operators can be learnt. It may also happen that all acquired examples fall in the same class; discriminant induction then does not apply.

A much worse case is that of misleading control, discouraging the discovery of optimal regions: control would then be properly deceptive. The deceptivity of control is to blame on the rules. Rules may become globally erroneous, for instance if the reference population is too di erent from the populations undergoing control. (Similarly, the estimations made from random individuals may be unreliable as evolution goes toward regions of better and better tness (Grefenstette 1995)). Rules may also be locally erroneous, since they generalize rather than compact the available examples. However, should the rules only compact examples, they would also allow for very few classi cations, thereby leading to a disabled control. Some of these limitations are addressed by the following coupling of evolution and induction.

INTERLEAVING EVOLUTION AND INDUCTION

We propose to distinguish three phases in the \game" of evolution.

The beginning of the game is characterized by a (relatively) high probability of getting o spring more t than parents. During this phase, evolution obviously needs not be controlled. Practically, the rst generations do not undergo any control. ML-control then waits until relevant schemas appear, so that signi cant rules can be learnt. This prevents the rst risk of disabled control.

The middle of the game is characterized by a high probability of getting o spring less t than parents. During this phase, relevant schemas likely have emerged, but not yet crowded the population. The main concern here is to limit the disruptiveness of operators, which can be done through classical MLcontrol (discarding disruptive operations).

The end of the game is characterized by a (relatively) high probability of getting o spring as t as their parents. During this phase, the population is getting homogeneous. A main concern would then be to preserve the diversity of the population, which can be done through modern ML-control (discarding inactive operations).

The deceptivity of control is partially prevented through periodically updating the rules. Every M generations, the reference population is set to the current population and new examples are gathered. If these new examples do not enable induction (characterized by: the fraction of examples in the majority class exceeds some user-supplied threshold D, with D < 100%) then control is disabled. The next M generations undergo darwinian evolution. Otherwise, if the age of evolution is quali ed as \middle of the game" (characterized by: the fraction of inactive examples is less than some user-supplied threshold I, with I D), then classical ML-control is performed in order to limit disruptiveness during the next M generations, termed classical period.

Otherwise, the age of evolution is quali ed as \end of the game" and modern control is performed in order to preserve diversity during the next M generations, termed modern period.

The number M of successive generations controlled through the same rules (in case of classical or modern periods) is experimentally set to 3: a large value of M may lead to a deceptive control in the last generations of the period while small values of M increase the overall cost of controlled evolution, without denite bene ts. ML-controlled evolution can then be viewed as a mixture of darwinian, classical and modern periods. The occurrences of darwinian periods are governed by parameter D: as D decreases, the majority class tends to be represented by more than D% of the examples.

Similarly, the occurrences of modern periods are governed by parameter I.

EXPERIMENTAL VALIDATION

The aim of the presented experiments is twofold. The behavior of ML-controlled evolution is studied through varying values of D and I, which allows to compare di erent mixtures of darwinian, classical and modern periods. In addition, this approach gives a unique opportunity to study the roles respectively devoted to mutation and crossover, by comparing what happens when mutations only, then crossovers only, are controlled. Three problems are considered: the Royal Road problem (Mitchell et al. 1993), a GA-deceptive problem [START_REF] Whitley | Fundamental principles of deception in genetic search[END_REF], and a combinatorial optimization problem [START_REF] Khuri | The 0/1 multiple knapsack problem and genetic algorithms[END_REF]).

EXPERIMENTAL SETTINGS

The evolutionary algorithm is a standard GA (Goldberg 1989) with bit-string encoding, roulette wheel selection with tness scaling, two-points crossover at a rate of 0.6 with both o springs replacing the parents.

Mutation is performed at a rate of 0.005. The evolution stops after 15; 000 tness evaluations. Fitness scaling is used with a selective pressure of 1.2 or 2. The size of the population is 25.

The ML algorithm used, called DiVS for Disjunctive Version Space, is described in detail in [START_REF] Sebag | Delaying the choice of bias: a Disjunctive Version Space approach[END_REF].

Acquisition of examples and induction are performed every 3 generations, the rst three generations being darwinian. The results are given in terms of percentage of success over 15 independent runs (success is de ned as hitting the maximum, known for all considered problems). The dynamics of evolution is visualized by plotting the average best tness (over 15 runs) obtained for a given number of tness calculations. These include of course the extra calculations required by ML-control. Several evolution schemes are compared: A classical GA rst (legend GA) that serves as reference. Then two GAs with a GA-based control of crossover are experimented: the crossover control described by Spears The fact that a given kind of operation can be controlled through rules learnt from operations of another kind, can be justi ed as follows. Mutating an individual x through a mutation mask m can be viewed as crossing-over x with its complementary :x through crossover mask c = m (see also [START_REF] Jones | Crossover, macromutation and population-based search[END_REF]. This implies that rules learnt from mutations enable an excessively severe control of crossovers (x is usually crossed with an individual nearer to x than :x; and crossover gives two o springs), and conversely, rules learnt from crossovers enable a loose control of mutations. In both cases, the control is still worth trying.

THE ROYAL ROAD

The Royal Road problem was designed by Holland and Mitchell (Mitchell et al. 1993) to study in detail the combination of features most adapted to GA search (laying a Royal Road). An analysis of unexpected difculties of this problem can be found in (Mitchell & Holland 1993, Forrest & Mitchell 1993). Table 3 shows the results obtained on the Royal Road problem, modi ed as in (Mitchell & Holland 1993), for selective pressure (s:p:) 1.2 and 2. Results indicated for ML-controlled evolutions correspond to the average of the results obtained for D = 95% and I in f50%; 67%; 95%g (see Table 4 for detailed results). 93 100 100 100 100 95 84 Obviously, there is little room for control when the classical GA is e cient, i.e. for selective pressure 2. But globally, the ML-control built from examples of crossovers (X X and X XM) is harmful, and in any case much less e cient than other GA-based controls of crossover. In contrast, the ML-control built from examples of mutations (M M and M MX) achieves the same results as GA-based control for selective pressure 2., and signi cantly outperforms other evolution schemes for selective pressure 1.2.

The in uence of parameters D (controlling the occurrences of darwinian periods) and I (controlling the occurrences of modern periods), is shown in Table 4, and discussed in 3.5.

A GA-DECEPTIVE PROBLEM

An elementary deceptive tness is de ned on = f0; 1g 3 , by F(x) = 3 if x = 111; F(x) = 2 for x in 0 ? ?, and F(x) = 0 otherwise. The deceptive problem we considered is composed of 10 concatenated elementary deceptive problems [START_REF] Whitley | Fundamental principles of deception in genetic search[END_REF].

The percentages of success are indicated in Table 5. Results of ML-controlled schemes are averaged over 45 runs, corresponding to D = 95% and I in f50%; 67%; 95%g (detailed results for selective pressure 1.2 are given in Table 6).

THE MULTIPLE KNAPSACK PROBLEM

The multiple knapsack problem [START_REF] Khuri | The 0/1 multiple knapsack problem and genetic algorithms[END_REF]) is a combinatorial optimization problem de ned as follows: Let P knapsacks have respective capacities c 1 ::c P , Let O denote a set of N objects, the cost of which is respectively p 1 ::; p N , Let w i;j be the overall dimension of object i regarding knapsack j ; Determine a subset of O, noted X = x 1 ; ::x N , with x i boolean, that is feasible, i.e. satis es the constraints relative to the maximal capacities of all knapsacks, and maximizes the overall pro t: Max f N X i=1 p i :x i ; 8j = 1::P; N X i=1 w i;j x i < c j :g Much attention has been paid to evolutionary constrained optimization [START_REF] Schoenauer | Constrained ga optimization[END_REF].

A usual heuristic consists in reducing the tness of non feasible individuals by a penalty term. We considered a multiplicative penalization:

F (X) = 8 < : P N i=1 p i x i if X is feasible r 2 P N i=1 p i x i
otherwise where r is the percentage of satis ed constraints Table 7 reports the results obtained on the fourth problem de ned by [START_REF] Petersen | Computational experience with variants of the balas algorithm applied to the selection of R & D projects[END_REF], with N = 20 and P = 10. Similar results are obtained on the other data sets. Again, results indicated for ML-based controls are averaged on several values of D and I , which are detailed in Table 8. X XM 13 33 -13 27 13

The dynamics of evolution shows that ML-based control of mutations reaches sooner better solutions (Fig- In the Royal Road and the GA-deceptive problems, the best option is that of permanent classical control (D = I = 95%), preventing disruptive mutations only. In the combinatorial optimization problem, the best control is also classical, but prevents disruptive crossovers as well as disruptive mutations.

DISCUSSION

From the above results, it appears that controlling the disruptiveness of mutations can be more e ective than that of crossovers. After an attempt to explain this fact, we focus on the ML aspects of the presented control, with respect to some related works.

CONTROLLING MUTATION

The disruptiveness of crossovers seems at rst to deserve more attention than that of mutations, since the crossover rate is one or several orders of magnitude higher than the mutation rate [START_REF] Levenick | Inserting introns improves genetic algorithm success rate : Taking a cue from biology[END_REF][START_REF] Spears | Adapting crossover in a genetic algorithm[END_REF], Scha er & Morishima 1987[START_REF] De | A formal analysis of the role of multi-point crossover in genetic algorithms[END_REF][START_REF] Sebag | Controlling crossover through inductive learning[END_REF]. However, population homogenization can e ciently counteract the disruptiveness of crossovers, and more so in the end of evolution. On the other hand, nothing can ever counteract the disruptiveness of mutations, but control. Controlled mutation thus appears as a powerful means to prevent the loss of near-optimal schemas in the end of evolution. This way, it improves the \memory" of evolution. Such e ect was so far expected from selection only: the loss of good individuals can also be prevented through elitist replacement or strong selection.

If the memory of evolution is too e cient, due to controlled mutation, elitism, or strong selection, this favors premature convergence. But controlled mutation leaves less room than selection to premature convergence: First, mutation tends to increase the diversity of a homogeneous population; in contrast, selection and elitism always decrease this diversity. Second, controlled mutation tends to increase the number of active bits in a mutation mask4 , thereby increasing the mutation rate.

A ML APPROACH

The presented approach involves three key points. First, we formalize the goal of control in terms of what should be avoided (disruptiveness or loss of diversity); previous approaches of control typically attempt to determine what should be done [START_REF] Spears | Adapting crossover in a genetic algorithm[END_REF], Scha er & Morishima 1987[START_REF] Schwefel | Numerical Optimization of Computer Models[END_REF]. We claim that a negative control (made of inhibitions), is safer than a positive one (made of recommendations). On the one hand, suitable recommendations are outnumbered by suitable inhibitions, especially in the end of evolution.

On the other hand, we know part of the suitable inhibitions (e.g., the past errors of evolution) while we know nothing like a priori pertaining to the representation space, and does so in an optimal way. Experimentations will tell whether control rules are better adjusted by evolution, or faster extracted by an ad hoc external algorithm.

CONCLUSION AND PERSPECTIVES

This work is oriented toward building and using an explicit memory of evolution, expressed as rules. The rule formalism allows for handling knowledge that is both general (relevant to the whole population) and speci c (relative to particular genes or sets of genes). Rules are used to express signi cant trends regarding disruptive and inactive operations; these are periodically built by induction from experiments conducted 5 This could be viewed in the line of cultural algorithms, that similarly build and use \beliefs" to guide evolution [START_REF] Reynolds | An introduction to cultural algorithms[END_REF][START_REF] Cavaretta | Using a cultural algorithm to control genetic operators[END_REF]). However, a signi cant di erence lies in the update mechanism: in cultural algorithms, new beliefs are built on the basis of experiments biased according to old beliefs. The risk is then to gradually validate some erroneous generalizations; simply put, this mechanism is apt to build prejudices as well as beliefs. In contrast, in our approach, the \memory" of control is erased, in the sense that control rules are learnt anew every M generations. This gives opportunities to get rid of old prejudices (erroneous rules). Other prejudices may be introduced, but long lasting prejudices are less likely to distort the control and the course of evolution. on the current population. These rules enable to a priori estimate the e ects of further operations. Two modes of control are then possible: Classical control aims at preventing disruptiveness, by rejecting disruptive operations. Modern control aims at increasing population diversity by rejecting inactive operations. A hybrid evolution scenario, interleaving darwinian periods and periods undergoing a classical or modern control, is described. The control strategy is inspired from the analogy between games and evolution. Evolution is darwinian during the beginning phase, then it undergoes classical control during the middle of the game, and modern control during the end of the game. Indicators of transition are suggested. This approach addresses the control of both crossovers and mutations. Quite unexpectedly, experiments demonstrate the control of mutations to be much more e cient than that of crossovers, in spite of the fact that the crossover rate is much higher than the mutation rate. A tentative explanation is given (4.1). These results suggest several avenues for further research. First, the control strategy could be de ned in a more exible way. For instance, the description of an individual could include the mode of control, classical, modern or darwinian, to be applied to this individual. Evolution would thereby optimize the control strategy for free, a la [START_REF] Spears | Adapting crossover in a genetic algorithm[END_REF].

Further experimentations will also be conducted to understand the potentials of controlled mutation, and see to what extent it constitutes an alternative to crossover [START_REF] Fogel | On the e ectiveness of crossover in simulated evolutionary optimization[END_REF][START_REF] Jones | Crossover, macromutation and population-based search[END_REF]). Third, this approach will be extended to handle realvalued search spaces. The feasibility of this extension is straightforward: mutation and crossover can be given a mask representation with masks in 1; 1] N . Many learners are able to extract rules (hyper rectangles) from examples in IR N . But unexpected problems will likely emerge from experimentations...

(

 Spears 1991) (legend Sp) where an additional bit commands the kind of crossover, uniform or 2-point, to be applied on the individual ; and the crossover control described by Scha er and Morishima (Scha er & Morishima 1987) (legend S-M) where individuals are augmented by the crossover mask to be applied to them. Last, four schemes of ML-based control are experimented: Control applies to crossovers only, and the underlying rules are induced from examples of crossovers only (legend X-X). Control applies to crossovers and mutations, and the underlying rules are induced from examples of crossovers only (legend X-XM). Control applies on mutations only, and the underlying rules are induced from examples of mutations only (legend M-M). Control applies on crossovers and mutations, and the underlying rules are induced from examples of mutations only (legend M-XM).

 The knapsack problem. Dynamics of evolution.

ure 1 :

 1 selective pressure is 1.2. ; D = I = 95%).3.5 REMARKSOn these three arti cial problems, ML-based control built from examples of mutations signi cantly and consistently improves on classical GA and other GA-based controls. On the other hand, ML-based control built from examples of crossovers proves disastrous.

Table 1

 1

	shows some examples in f0; 1g 6 belonging to classes good and bad, together with a rule. Induction attempts to optimize a quality function involving sev-

eral features: (a) Generality, i.e. order of the schema in the rule; (b) Signi cance, i.e. number of examples

Table 1 :

 1 Induction from examples

	E1 E2 E3 E4 E5 R	1 1 1 0 0 1 good 0 0 0 1 1 1 good 1 1 0 0 1 1 bad 1 0 0 0 1 1 bad 0 0 0 0 1 1 good ? ? ? 0 1 ? bad
	the rule generalizes. (R generalizes E 3 and E 4), and (c) Accuracy, i.e. ratio of generalized to covered ex-amples (R covers E 3 ; E 4 and E 5 ; its accuracy is 2/3).
	Induction proceeds by exploring the training examples either in a top-down or in a bottom-up fashion. In the top-down approach (Quinlan 1986), one builds rules or decision trees by repeatedly selecting the most discrim-inant gene, i.e. the gene whose value gives maximal information regarding the class of the examples. In the bottom-up approach

Table 2 :

 2 Table 2 shows examples of 2point crossovers together with a rule induced from these examples. Induction from examples of crossover

	Chromosome	Mask	Class
	E1		

Table 3 :

 3 The Royal Road. Percentage of success of GA

	s.p. 1.2	with and without control Controlled GA GA Ctrl ML Ctrl GA Sp S-M m-m m-mx x-x x-xm 80 83 73 93 95 55 44
	2	

Table 4 :

 4 The Royal Road. Detailed results of ML-based control. Selective pressure = 1.2

	D I M M 73 60 93 93 100 87 50% 67% 95% 50% 50% 67% 50% 67% 95% M MX 47 80 73 100 87 100 X X 33 47 27 60 53 53 X XM 40 73 80 33 47 53

Table 5

 5

	s.p. 1.2 2	: A GA-deceptive problem. Percentage of success of GA with and without control Controlled GA GA Ctrl ML Ctrl GA Sp S-M m-m m-mx x-x x-xm 80 83 87 93 93 61 42 93 90 87 100 100 58 49
	Table 6: A GA-deceptive problem. Detailed results of ML-based control. Sel. pres.= 1.2
	D I M M 87 73 93 100 80 100 50% 67% 95% 50% 50% 67% 50% 67% 95% M MX 93 93 80 93 87 100 X X 40 53 40 73 57 53 X XM 27 7 47 27 13 87

Table 7 :

 7 The knapsack problem. Percentage of success of GA with and without control

	GA Ctrl	Controlled GA ML Ctrl
	s.p.	

Table 8 :

 8 The knapsack problem. Detailed results of ML-based control. Sel. pres.= 1.2

	D I M M 27 20 20 40 40 27 50% 67% 95% 50% 50% 67% 50% 67% 95% M MX 47 13 33 20 27 27 X X 7 13 7 7 13 7

The average number of o spring allowed for the best individual(s)

The chances for o springs not to convey the same relevant information as parent(s).

Note that crossing over parent1 with parent2 according to a given crossover mask may happen to be good, while crossing over parent1 with parent3 according to the same crossover mask is bad. Then, if only one parent (say parent1) is considered in the example description, one gets two examples with identical descriptions belonging to distinct classes, i.e. inconsistent examples. Inconsistencies are even more likely, if the parent is omitted from the example description. Fortunately many learning algorithms can deal with a limited amount of inconsistencies, so this is not a real limitation.

The rst mutation examples have very few active bits. By rejecting the schemas containing some of them, mutation masks are gradually biased toward regions with more and more active bits.

Acknowledgments

We heartfully thank Marc Schoenauer from CMAP, Ecole Polytechnique, who took part in the beginnings of Advanced Evolution, for his invaluable comments about the present paper.