
HAL Id: hal-00116419
https://hal.science/hal-00116419v1

Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Controlling evolution by means of machine learning
Michèle Sebag, Caroline Ravisé, Marc Schoenauer

To cite this version:
Michèle Sebag, Caroline Ravisé, Marc Schoenauer. Controlling evolution by means of machine learn-
ing. 5th Annual Conference on Evolutionary Programming, 1996, San Diego, United States. pp.57-66.
�hal-00116419�

https://hal.science/hal-00116419v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Controlling Evolutionby means of Machine LearningMich�ele Sebag1, Caroline Ravis�e1, Marc Schoenauer2(1) : LMS, CNRS-URA 317 (2) : CMAP, CNRS-URA 756Ecole Polytechnique, F-91128 PalaiseaufMichele.Sebag,Caroline.Ravise,Marc.Schoenauerg@polytechnique.frAbstractA safe control of evolution consists in preventing past errors of evolution to be repeated,which could be done by keeping track of the history of evolution. But maintaining andexploiting the complete history is intractable. This paper therefore investigates the useof machine learning (ML), in order to extract a manageable information from this history.More precisely, induction from examples of past trials and errors provides rules discriminatingerrors from trials. Such rules allow to a priori estimate the opportunity of next trials; thisknowledge can support powerful strategies of control.Several strategies of ML-based control are experimented on the Royal Road, a GA-deceptive and a combinatorial optimization problem. The control of mutations unexpectedlycompares to that of crossovers.1 IntroductionControl of evolution aims at keeping some balance between the exploitation and the explorationtasks devoted to evolutionary search [7]. This control involves both the selective pressure (theaverage number of o�spring allowed for the best individual(s)) and the disruptiveness of evolutionoperators, which must be su�cient to discourage premature convergence [3]. Simply put, thedisruptiveness of operators is evaluated from the chances for o�spring not to convey the samerelevant information than parents. Only boolean search spaces and crossover and mutationoperators are considered throughout this paper.Controlling the disruptiveness of crossover and mutation can be done at three levels:� The search space can be designed as to decrease the disruptiveness of operators regardingrelevant schemas; e.g. allowing don't care zones, termed introns, decreases the disruptive-ness of both mutation and crossover [14, 12].� Disruptiveness is directly concerned by the crossover and mutation rates. These maybe adjusted by means of brute force [23] (still the most usual way), as well as throughstatistical estimations [9], or adaptation [8, 2], or evolution itself [13].� Last, the e�ects of crossover and mutation can be adjusted by evolution itself [24, 29, 26, 4]:this only requires to include the control choices in the search space. Evolution can therebyoptimize the type of crossover [29], or the mask of crossover [24], or the variance of mutation[26, 4] most suited to an individual, for free.The control of evolution presented in this paper aims at adjusting the e�ects of crossover andmutation, and is originated from a common sense remark: what has been done with bad resultsin the past (e.g., give birth to an individual that was not to be retained in the population), needsnot be repeated. Preventing evolution from repeating its past errors constitutes a safe control,i.e. a control that cannot mislead evolution. However, maintaining and exploiting the list ofpast errors of evolution is intractable. Therefore, the history of evolution needs be summarized1

and put in some tractable way. This paper investigates the use of machine learning (ML) tothis end; more precisely, induction from examples [16, 19] is used to extract rules from the pasterrors and trials of evolution. Such rules enable to a priori estimate the opportunity of nexttrials; by means of this estimate, several strategies of control, termed ML-based controls, areallowed to command the next steps of evolution.The paper is organized as follows. Section 2 describes the automatic extraction of rules aboutevolution, from examples obtained through experimenting on a population or spying evolution.The use of such knowledge in order to guide the next evolution steps is discussed, and a hybridalgorithm interleaving evolution and induction is proposed.Section 3 presents an experimental study of several ML-based controls of evolution. Besidestwo well-studied GA problems, the Royal Road [17, 18], and a GA-deceptive problem [31], acombinatorial optimization problem is considered, the multiple knapsack problem [11, 20].The scope and limitations of ML-based control are discussed in section 4, with respect to relatedworks devoted to the control of evolution [8, 24, 29] and cultural algorithms [22, 1].2 Knowledge-Controlled EvolutionML-based control of evolution is grounded on the following remark: evolution is made of goodand bad events (crossovers and mutations). This section �rst shows how ML, more preciselyinductive learning, can be used to characterize the classes (sets) of good and bad events, throughrules induced from examples. These rules provide an a priori estimate of the class, good or bad,of new incoming events. How such rules can be used on-line by evolution, is then discussed.2.1 Inductive LearningLet us �rst briey introduce inductive learning (see [16, 21] for a thorough presentation).Examples are points of the search space which have been classi�ed (e.g. by an expert). Thegoal of induction is to extract rules from training examples; a rule can be viewed as a schemaof the search space associated to a given class. A rule R covers an example i� the examplebelongs to the schema of R. A rule generalizes an example, i� it covers this example and theyboth belong to the same class. E1 1 1 1 0 0 1 goodE2 0 0 0 1 1 1 goodE3 1 1 0 0 1 1 badE4 1 0 0 0 1 1 badE5 0 0 0 0 1 1 goodR ? ? ? 0 1 ? badTable 1 : Induction from examplesTable 1 shows some examples in f0; 1g6 representing classes good and bad, together with a rule.Induction attempts to optimize a quality function involving several features: (a) Generality, i.e.order of the schema in the rule; (b) Signi�cance, i.e. number of examples the rule generalizes.(R generalizes Ex3 and Ex4), and (c) Accuracy, i.e. ratio between the number of examples therule generalizes and the number of examples it covers (R covers Ex3; Ex4 and Ex5; its accuracyis 2/3). 2

Induction proceeds by exploring the training examples either in a top-down or in a bottom-upway. In the top-down approach [21], one builds rules or decision trees by repeatedly selecting themost discriminant genes, i.e. the gene whose value gives a maximal information regarding theclass of the examples. In the bottom-up approach [16], one starts from a given example and �ndsout the rules that generalize this example and maximize some user-supplied quality function.Then the examples generalized by these rules are removed from the training set, and anotherexample is considered. The learning algorithm used in this paper is a bottom-up algorithmthat determines all rules maximally general with a given prescribed (user-supplied) accuracy; aconstraint-based formalism allows to build such rules with a polynomial complexity [27].Induction ultimately allows for classifying any point E in the search space: E is associatedto the class of the rules covering E, (with majority vote in case of conicts). In case where E isnot covered by any rule, it is classi�ed unknown.2.2 Examples about evolutionIn order to apply inductive learning, we need examples relevant to evolution, and easy to gather.The possibility investigated in this paper is to take as examples the elementary events of evolu-tion, namely the birth of new individuals through crossover or mutation.Description of examples. A crossover event is de�ned by a pair of parents and the crossovermask applied on these parents. Following Syswerda [30], a crossover c can be represented by abinary mask (c1; : : : cN), ci 2 f0; 1g:x1 : : : xNy1 : : : yN ! x01 : : : x0Ny01 : : : y0N with x0i = xi y0i = yi if ci = 1x0i = yi y0i = xi otherwiseLikewise, a mutation event is de�ned by a parent and the mutation applied on this par-ent. A mutation can also be represented through a binary mask m = (m1; ::mN), such thatx1 : : : xN ! x01 : : : x0N with : x0i = (1� xi if mi = 1xi otherwiseBoth kinds of events can then be represented through the operator mask and the parent(s).In this paper, the description of an example consists of the operator mask, and optionallythe parent the operator applies on (the most �t parent in the crossover case).Then, examples must be classi�ed in order to permit induction. It seems natural, as far aslearning intends to serve control, to classify events as to whether they contribute to the currentoptimization task. The choice made in this paper is the following: the class of an event dependson the way the �tness of o�spring compares to the �tness of parent(s). The class of an event is:� good if the (best) o�spring has higher �tness than the (best) parent,� bad if the (best) o�spring has lower �tness than the (best) parent� inactive if the (best) o�spring and the (best) parent have the same �tness.Acquisition of examples. At the moment, examples are gathered through experimenting ona given population, termed reference population:3

1. An operator mask is randomly generated according to the parameters of the evolution-ary algorithm (e.g. mutation rate, n-point crossover or uniform crossover,...); inactiveoperators are rejected (e.g. mask 00:::0);2. One or two chromosomes (depending on whether the operator is mutation or crossover)are randomly selected in the reference population;3. The operator is performed according to the mask and parent(s) selected. The �tness of theo�spring is computed and compared to that of the parent(s). This comparison determinesthe class of the event, good, bad or inactive;4. The example composed of the operator mask, optionally the (most �t) parent, and theassociated class, is stored1.2.3 Rules about evolutionRules are induced from the gathered examples. Only signi�cant rules (covering more than oneexample) are retained.Scope of the rules. Table 2 shows examples of 2-point crossovers together with a rule in-duced from these examples. Chromosome Mask ClassE1 1 1 1 0 0 0 1 1 1 0 0 1 goodE2 1 1 1 0 0 0 0 0 0 1 1 1 goodE3 1 1 1 0 0 0 1 0 1 1 1 1 badE4 1 1 1 0 0 0 0 0 1 1 1 1 badR 1 1 1 ? ? ? ? 0 1 ? ? ? badTable 2 : Induction from examples of crossoverRule R states that : The crossover of an individual in schema H = 111 ? ?? according toa crossover mask in schema ?01 ? ??, gives a bad result, i.e. the o�spring are less �t than theparents. This can be interpreted as: don't set a crossing point between bits 2 and 3 if the parentbelongs to schema H.Rules reect the reference population: note that R cannot be learnt before schema H isdiscovered, and will hardly be learnt if many individuals in the population belong to H.ML-based control. Such rules enable to a priori estimate whether a next event (crossoversor mutations) is bad, good, or inactive. This estimate can accommodate several strategies ofcontrol:� Favoring desirable events, by actuating only good events. However, this strategy wouldlikely break the balance between exploration and exploitation in favor of the latter.� Limiting the disruptiveness of operators, by rejecting bad events. This strategy of controlis termed classical.1Note that crossing over parent1 with parent2 according to a given crossover mask may happen to be good,while crossing over parent1 with parent3 according to the same crossover mask is bad. Then, if only one parent(say parent1) is considered in the example description, one gets two examples with same description belonging todistinct classes, i.e. examples are inconsistent. Inconsistencies are still more likely, if the parent is omitted in theexample description. Fortunately many learning algorithms can deal with a limited amount of inconsistencies, sothis is not a real limitation. 4

� Increasing the diversity of the population, by rejecting inactive events. This strategy ofcontrol is termed modern.Neither classical nor modern control actually breaks the balance between exploration andexploitation: rather, the rules delineate regions where exploration or exploitation have led tobad or null results. This allows to both biase exploration and exploitation toward other regions.ML-based control involves two kinds of cost:� The acquisition of K examples implies at most 2�K �tness computations. The numberof examples considered by induction is experimentally set to the number P of individualsin the population.This extra cost could be avoided if examples were gathered through spying evolutioninstead of experimenting on the reference population.� The cost of induction from examples (in O(P 2 � N), where N denotes the dimension ofthe search space, for the learner used in our experiments).Limitations. The presented approach can fail in two ways: control may be disabled, or, evenworse, misleading.Control is disabled when induction fails to deliver signi�cant or usable rules. This may be thecase if the reference population (2.2) does not contain relevant schemas; then no trends aboutdisruptive or inactive operators can be learnt. It may also happen that all acquired examplesfall in the same class; discriminant induction then does not apply.A much worse case is that of a misleading control, discouraging the discovery of optimalregions: control would then be properly deceptive. The deceptivity of control is to blame on therules:Rules may become globally erroneous, for instance if the reference population is too di�erent fromthe populations undergoing control. (Similarly, the estimations made from random individualsmay be not reliable as evolution goes toward regions of better and better �tness [9]).And rules may be locally erroneous, since they generalize rather than compact the availableexamples. However, would the rules only compact examples, they would also allow for very fewclassi�cations, leading again to a disabled control.Some of these limitations are addressed by the following coupling of evolution and induction.2.4 Interleaving evolution and inductionWe propose to distinguish three phases in the \game" of evolution.The beginning of the game is characterized by a (relatively) high probability of getting o�springmore �t than parents. During this phase, evolution obviously needs not be controlled. Practi-cally, the �rst generations do not undergo any control.ML-control then waits until relevant schemas appear, so that signi�cant rules can be learnt.This prevents the �rst risk of disabled control.The middle of the game is characterized by a high probability of getting o�spring less �tthan parents. During this phase, relevant schemas likely have emerged, but not yet crowdedthe population. The main concern here is to limit the disruptiveness of operators, which can bedone through a classical ML-control (discarding disruptive operations).The end of the game is characterized by a (relatively) high probability of getting o�spring as�t as the parents. During this phase, the population is getting homogeneous. A main concern5

would then be to preserve the diversity of the population, which can be done through a modernML-control (discarding inactive operations).The deceptivity of the control is partially prevented through periodically updating the rules.Every M generations, the reference population being set to the current population, new exam-ples are gathered.If these new examples do not enable induction (characterized as, the fraction of examples inthe majority class exceeds some user-supplied threshold D, with D < 100%) then control isdisabled. The next M generations undergo darwinian evolution.Otherwise, if the age of evolution is quali�ed as \middle of the game" (characterized as, thefraction of inactive examples is less than some user-supplied threshold I, with I � D), then aclassical ML-control is performed in order to limit disruptiveness during the nextM generations,termed classical period.Otherwise, the age of evolution is quali�ed as \end of the game" and a modern control is per-formed in order to preserve diversity during the next M generations, termed modern period.The numberM of successive generations controlled through the same rules (in case of classicalor modern periods) is experimentally set to 3: a large value ofM may lead to a deceptive controlin the last generations of the period; and small values ofM increase the overall cost of controlledevolution, without de�nite bene�ts.ML-controlled evolution can then be viewed as a mixture of darwinian, classical and modernperiods. The occurrences of darwinian periods are governed by parameter D: as D decreases,the majority class tends to be represented by more than D% of the examples. Similarly, theoccurrences of modern periods are governed by parameter I.3 Experimental ValidationThe aim of the presented experimentations is twofold. The behavior of an ML-controlled evolu-tion is studied through varying values of D and I, which allows to compare di�erent mixturesof darwinian, classical and modern periods. Besides, this approach gives a unique opportunityto study the roles respectively devoted to mutation and crossover, by comparing what happenswhen mutations only, then crossovers only, are controlled.Three problems are considered: the Royal Road problem [17], a GA-deceptive problem [31],and a combinatorial optimization problem [11].3.1 Experimental settingsThe evolutionary algorithm is a standard GA [7] with bit-string encoding, roulette wheel se-lection with �tness scaling, two-points crossover at a rate of 0.6 with both o�spring replacingthe parents. Mutation is performed at a rate of 0.005. The evolution stops after 15000 �tnessevaluations. Fitness scaling is used with a selective pressure 1.2 or 2. The size of the populationis 25.The ML algorithm used, called CBI for Constraint-Based Induction, is described in detail in[27].Acquisition of examples and induction are performed every 3 generations, the �rst three gener-ations being darwinian. 6

The results are given in terms of percentage of success over 15 independent runs (successis intended as hitting the maximum, known for all considered problems). The dynamics ofevolution is visualized by plotting the average best �tness (over 15 runs) obtained for a givennumber of �tness calculations. These include of course the extra calculations required by ML-control.Several evolution schemes are compared: A classical GA �rst (legend GA) that serves asreference. Then two GAs with a GA-based control of crossover are experimented: the crossovercontrol described by Spears [29] (legend Sp) where an additional bit commands the kind ofcrossover, uniform or 2-point, to be applied on the individual ; and the crossover control describedby Scha�er and Morishima [24] (legend S-M) where individuals are augmented by the crossovermask to be applied on them. Last, four schemes of ML-based control are experimented:� Control applies on crossovers only, and the underlying rules are induced from only examplesof crossovers (legend X-X).� Control applies on crossovers and mutations, and the underlying rules are induced fromonly examples of crossovers (legend X-XM).� Control applies on mutations only, and the underlying rules are induced from only examplesof mutations (legend M-M).� Control applies on crossovers and mutations, and the underlying rules are induced fromonly examples of mutations (legend M-XM).The fact that a given kind of operations can be controlled through rules learnt from operationsof another kind, can be justi�ed as follows. Mutating an individual x through a mutation maskm can be viewed as crossing-over x with its complementary :x through crossover mask c = m.(See also [10]). This implies that rules learnt from mutations enable a too severe control ofcrossovers (x is usually crossed with an individual nearer to x than :x ; and crossover gives twoo�spring), and reciprocally, rules learnt from crossovers enable a loose control of mutations. Inboth cases, the control is still worth trying.3.2 The Royal RoadThe Royal Road problem was conceived by Holland and Mitchell [17] to study into details thecombination of features most adapted to GA search (laying a Royal Road). An analysis of theunexpected di�culties of this problem can be found in [18, 6].Table 3 shows the results obtained on the Royal Road problem, modi�ed as in [18], for selec-tive pressure 1.2 and 2. Results indicated for ML-controlled evolutions correspond to the averageof the results obtained forD = 95% and I in f50%; 67%; 95%g (see Table 4 for detailed results).sel. press. GA Controlled GAGA-based Ctrl ML-based CtrlSp S-M M-M M-MX X-X X-MX1.2 80 83 73 93 95 55 442 93 100 100 100 100 95 84Table 3: The Royal Road. Percentage of success of GA with and without control7

Obviously, there is few room for control when the classical GA is e�cient, i.e. for selectivepressure 2. But globally, the ML-control built from examples of crossovers (X�X andX�XM)is harmful, and in any case much less e�cient than other GA-based controls of crossover.In opposition, the ML-control built from examples of mutations (M �M andM �MX) reachesthe same results than GA-based control for selective pressure 2., and signi�cantly supersedesother evolution schemes for selective pressure 1.2.The inuence of parameters D (commanding the occurrences of darwinian periods) and I(commanding the occurrences of modern periods), is shown in Table 4, and discussed in 3.5.ML-control D = I = 50% D = 67% D = 95%I = 50% I = 67% I = 50% I = 67% I = 95%M �M 73 60 93 93 100 87M �MX 47 80 73 100 87 100X �X 33 47 27 60 53 53X �XM 40 73 80 33 47 53Table 4: The Royal Road. Detailed results of ML-based control. Selective pressure = 1.23.3 A GA-deceptive problemAn elementary deceptive �tness is de�ned on
 = f0; 1g3, by F(x) = 3 if x = 111; F(x) = 2for x in 0 ? ?, and F(x) = 0 otherwise. The deceptive problem we considered is composed of 10concatenated elementary deceptive problems [31].The percentages of success are indicated in Table 5. Results of ML-controlled schemes areaveraged over 45 runs, corresponding to D = 95% and I in f50%; 67%; 95%g (detailed resultsfor selective pressure 1.2 are given in Table 6).sel. press. GA Controlled GAGA-based Ctrl ML-based CtrlSp S-M M-M M-MX X-X X-MX1.2 80 83 87 93 93 61 422 93 90 87 100 100 58 49Table 5: A GA-deceptive problem. Percentage of success of GA with and without controlML-control D = I = 50% D = 67% D = 95%I = 50% I = 67% I = 50% I = 67% I = 95%M �M 87 73 93 100 80 100M �MX 93 93 80 93 87 100X �X 40 53 40 73 57 53X �XM 27 7 47 27 13 87Table 6: A GA-deceptive problem. Detailed results of ML-based control. Sel. pressure = 1.23.4 The multiple knapsack problemThe multiple knapsack problem [11] is a combinatorial optimization problem de�ned as follows:� Let P knapsacks have respective capacities c1::cP ,� Let O denote a set of N objects, whose cost is respectively p1::; pN ,8

� Let wi;j be the overall dimension of object i regarding knapsack j;Determine a subset of O, noted X = x1; ::xN , with xi boolean, that is feasible, i.e. satis�es theconstraints relative to the maximal capacities of all knapsacks, and maximizes the overall pro�t:Max f NXi=1 pi:xi ; 8j = 1::P; NXi=1wi;jxi < cj :gMuch attention has been paid to evolutionary constrained optimization [15, 25]. A usualheuristics consists in reducing the �tness of non feasible individuals by a penalty term. Weconsidered a multiplicative penalization:F (X) = 8><>: PNi=1 pixi if X is feasibler2PNi=1 pixi if r is the percentage of satis�ed constraintsTable 7 reports the results obtained on the fourth problem de�ned by Petersen [20], withN = 20 and P = 10. Similar results are obtained on the other data sets. Again, resultsindicated for ML-based controls are averaged on several values of D and I, which are detailedin Table 8. sel. press. GA Controlled GAGA-based Ctrl ML-based CtrlSp S-M M-M M-MX X-X X-MX1.2 13 20 0 29 28 9 172 0 0 0 19 11 0 4Table 7: The knapsack problem. Percentage of success of GA with and without controlThe dynamics of evolution (Figure 1) shows that ML-based control of mutations reachessooner better solutions.

Number of function evaluations

F
it

n
e
ss

 (
M

a
x

 =
 6

1
2

0
)

0 41. 1035. 10 41.5 10

5000

6000

5500

AG
S-M
Sp
M-M

Number of function evaluations

F
it

n
e
ss

 (
M

a
x

 =
 6

1
2

0
)

0 41. 1035. 10 41.5 10

5000

6000

5500

M-M
M-MX
X-X
X-XM(a) With and without control (b) ML-controlsFigure 1 : The knapsack problem. Dynamics of evolution. Sel. pressure 1.2. ; D = I = 95%ML-control D = I = 50% D = 67% D = 95%I = 50% I = 67% I = 50% I = 67% I = 95%M �M 27 20 20 40 40 27M �MX 47 13 33 20 27 27X �X 7 13 7 7 13 7X �XM 13 33 - 13 27 13Table 8: The knapsack problem. Detailed results of ML-based control. Selective pressure = 1.29

3.5 RemarksOn these three arti�cial problems, the ML-based control built from examples of mutationssigni�cantly and consistently improves on classical GA and other GA-based controls. In themeanwhile, the ML-based control built from examples of crossovers shows disastrous.In the Royal Road and the GA-deceptive problems, the best option is that of a classicalpermanent control (D = I = 95%), preventing disruptive mutations only. In the combinatorialoptimization problem, the best control is also classical, but prevents disruptive crossovers aswell as disruptive mutations.4 DiscussionFrom the above results, it appears that controlling the disruptiveness of mutation can be moree�ective than that of crossover. After an attempt to explain this fact, we focus on the MLaspects of the presented control, with respect to some related works.4.1 Controlling mutationThe disruptiveness of crossovers seems at �rst to deserve more attention than that of mutations,since the crossover rate is one or several orders of magnitude greater than the mutation rate[14, 29, 24, 3, 28].However, the homogenization of population can e�ciently counteract the disruptiveness ofcrossovers, and does so in the end of evolution. In the meanwhile, nothing can ever counteractthe disruptiveness of mutations, but control. A controlled mutation then appears a powerfulmeans to prevent the loss of near-optimal schemas in the end of evolution. This way, it improvesthe \memory" of evolution.Such e�ect was so far expected from selection only: the loss of good individuals can also beprevented through elitist replacement or strong selection.If the memory of evolution is too e�cient, due to either controlled mutation, elitism orstrong selection, this favors premature convergence. But controlled mutation leaves less roomthan selection to premature convergence: First, mutation tends to increase the diversity ofa homogeneous population; in opposition, selection and elitism always decrease this diversity.Second, controlled mutation tends to increase the number of active bits in a mutation mask2,thereby increasing the mutation rate.4.2 A ML approachThe presented approach involves three points.First, we formalize the goal of control in terms of what should be avoided (disruptivenessor loss of diversity); in opposition, previous approaches of control rather attempt to determinewhat should be done [29, 24, 26]. We claim that a negative control (made of inhibitions), is saferthan a positive one (made of recommendations). On one hand, suitable recommendations are2The �rst mutation examples have very few bits active. By rejecting the schemas containing some of them,mutation masks are gradually biases toward regions with more and more active bits.10

outnumbered by suitable inhibitions, especially in the end of evolution. On the other hand, weknow part of the suitable inhibitions (e.g., the past errors of evolution) while we know nothinglike a priori suitable recommendations for non-trivial problems.Second, we express control within the formalism of logical rules. Previous approaches aimat controlling evolution either at a global level (e.g., operator rates [8, 9, 13]) or at the levelof each individual (e.g., suited type or mask of operators [29, 24, 26]). Rules o�er a tractableand compact way to handle schemas of operators: the rule-based control applies on the wholepopulation, and can still take into account the topology of the search space (e.g. don't mutatea given bit; mutate simultaneously a set of bits,: : :).Last, we propose a procedure to extract the rules underlying control: inductive learningfrom examples. A further perspective of research deals with setting the rules through evolutionitself: according to the fans of Nature Only, evolution can handle all choices pertaining to therepresentation space, and does so in an optimal way. Experimentations will tell whether rulesof control are better adjusted by evolution, or faster extracted by an ad hoc external algorithm.4.3 Cultural algorithmsThe presented approach can be viewed as a particular type of cultural algorithm [22, 1]. Culturalalgorithms involve both the space of individuals, and the space of schemas of individuals, termedbeliefs. A belief is built by generalization of individual experience in the population; a latticeof shared beliefs is then built, which allows via a communication protocol, to biase the nextoperations to be applied on individuals.Both beliefs and control rules encapsulate some knowledge about evolution, that is automat-ically extracted; this knowledge is similarly used to guide the next evolution steps.The main di�erence lies in the way this knowledge is updated. The update of the beliefs ismainly a cumulative mechanism, as it proceeds by generalization of individual experiences. Fur-thermore, these experiences themselves are biased by the control. The risk is then to graduallyvalidate some erroneous generalizations; simply put, this mechanism is apt to build prejudicesas well as beliefs.In opposition, we propose a quite rough update mechanism: every M generations, rules arelearnt anew. Furthermore, they are learnt from experiences which are not biased by the control.In other words, the \memory" of the control is erased. This gives opportunity to get rid of oldprejudices (erroneous rules). Other prejudices may be introduced, but long lasting prejudicesare less likely to distort the control and the course of evolution.5 Conclusion and PerspectivesThis work is oriented toward building and using an explicit memory of evolution, expressedthrough rules. The rule formalism allows for handling knowledge that is both general (relatedto the whole population) and speci�c (related to particular genes or sets of genes).Rules are used to express the signi�cant trends regarding disruptive and inactive operations;these are periodically built by induction from experimentations conducted on the current pop-ulation. These rules enable to a priori estimate the e�ects of further operations. Two modes ofcontrol are then possible: Classical control aims at preventing disruptiveness, through rejectingdisruptive operations. Modern control aims at increasing the diversity of the population through11

rejecting inactive operations.An hybrid evolution, interleaving darwinian periods and periods undergoing a classical ormodern control, is described. The strategy of control is inspired from the analogy betweengames and evolution. Evolution is darwinian during the beginning phase, then it undergoes aclassical control during the middle of the game, and it undergoes a modern control during theend of the game. Indicators of transition are suggested.This approach addresses the control of both crossovers and mutations. Quite unexpectedly,experimentations demonstrate the control of mutations to be much more e�cient than that ofcrossovers, in spite of the fact that the crossover rate is much greater than the mutation rate.A tentative explanation is given (4.1).These results suggest several avenues for further research.First, the strategy of control could be de�ned in a more exible way. For instance, thedescription of an individual could include the mode of control, classical, modern or darwinian,to be applied on this individual. Evolution would thereby optimize for free the strategy ofcontrol, a la Spears [29].Second, ML-control will be experimented in the evolutionary programming frame. Furtherexperimentations will be conducted to understand the potentialities of controlled mutation, andsee to what extent it constitutes an alternative to crossover [5, 10].Third, this approach will be extended to handle real-valued search spaces. The feasibilityof this extension is straightforward: Mutation and crossover can be given a mask representa-tion with masks in [�1; 1]N [15]. Many learners allow to extract rules (hyper rectangles) fromexamples in IRN . But unexpected problems are likely to appear with experimentations.References[1] M.J. Cavaretta. Using a cultural algorithm to control genetic operators. In A.V. Sebald and L.J. Fo-gel, editors, 3rd Annual Conference on Evolutionary Programming, pages 158{166, World Scienti�c,1994.[2] L. Davis. Adapting operator probabilities in genetic algorithms. In Proceedings of the 3rd Interna-tional Conference on Genetic Algorithms, pages 61{69, Morgan Kaufmann, 1989.[3] K.A. DeJong and W.M. Spears. A formal analysis of the role of multi-point crossover in geneticalgorithms. Arti�cial Intelligence, 5:1{26, 1992.[4] D. B. Fogel, L. J. Fogel, W. Atmar, and G. B. Fogel. Hierarchic methods of evolutionary pro-gramming. In L. J. Fogel and W. Atmar, editors, Proceedings of the First Annual Conference onEvolutionary Programming, pages 175{182, 1992.[5] D.B. Fogel and L.C. Stayton. On the e�ectiveness of crossover in simulated evolutionary optimiza-tion. BioSystems, 32:171{182, 1994.[6] S. Forrest and M. Mitchell. What makes a problem hard for a genetic algorithms : Some anomalousresults and their explanation. Machine Learning, pages 285{319, 1993.[7] D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley,1989.[8] J. J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Trans. onSystems, Man and Cybernetics, SMC-16, 1986.[9] J. J. Grefenstette. Virtual genetic algorithms: First results. Technical Report AIC-95-013, NavyCenter for Applied Research in Arti�cial Intelligence, February 1995.12

[10] T. Jones. Crossover, macromutation and population-based search. In L. Eschelman, editor, Pro-ceedings of 6th International Conference on Genetic Algorithms, pages 73{80, Morgan Kaufmann,1995.[11] S. Khuri, T. B�ack, and J. Heitk�otter. The 0/1 multiple knapsack problem and genetic algorithms.In Proceedings of the ACM Symposium of Applied Computation, 1994.[12] J. R. Koza. Genetic Programming: On the Programming of Computers by means of Natural Evolu-tion. MIT Press, Massachussetts, 1994.[13] M.A. Lee and H. Takagi. Dynamic control of genetic algorithms using fuzzy logic techniques. InS. Forrest, editor, Proceedings of 5th International Conference on Genetic Algorithms, pages 76{83,Morgan Kaufmann, 1993.[14] J. R. Levenick. Inserting introns improves genetic algorithm success rate : Taking a cue frombiology. In R.K. Belew and L.B. Booker, editors, Proceedings of 4th International Conference onGenetic Algorithms, pages 123{127, Morgan Kaufmann, 1991.[15] Z. Michalewicz. Genetic Algorithms+Data Structures=Evolution Programs. Springer Verlag, 1992.[16] R.S. Michalski. A theory and methodology of inductive learning. In R.S Michalski, J.G. Carbonell,and T.M. Mitchell, editors,Machine Learning : an arti�cial intelligence approach, volume 1. MorganKaufmann, 1983.[17] M. Mitchell, S. Forrest, and J.H. Holland. The royal road for genetic algorithms : Fitness landscapesand ga performance. In F. J. Valera and P. Bourgine, editors, Proceedings of the First EuropeanConference on Arti�cial Life-93, pages 245{254. MIT Press, 1993.[18] M. Mitchell and J.H. Holland. When will a genetic algorithm outperform hill-climbing ? In S.Forrest, editor, Proceedings of the 5th International Conference on Genetic Algorithms page 647,1993.[19] T.M. Mitchell. Generalization as search. Arti�cial Intelligence, 18:203{226, 1982.[20] C.C. Petersen. Computational experience with variants of the balas algorithm applied to the selectionof r & d projects. Management Science, 13:736{750, 1967.[21] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.[22] R.G. Reynolds. An introduction to cultural algorithms. In A.V. Sebald and L.J. Fogel, editors, 3rdAnnual Conference on Evolutionary Programming, World Scienti�c, pages 131{139, 1994.[23] J. D. Scha�er, R. A. Caruana, L. Eschelman, and R. Das. A study of control parameters a�ecting on-line performance of genetic algorithms for function optimization. In J. Scha�er, editor, Proceedingsof the 3rd International Conference on Genetic Algorithms, pages 51{60, Morgan Kaufmann, 1989.[24] J.D. Scha�er and A. Morishima. An adaptive crossover distribution mechanism for genetic algo-rithms. In ICGA2, pages 36{40, Morgan Kaufmann, 1987.[25] M. Schoenauer and S. Xanthakis. Constrained ga optimization. In Forrest S., editor, Proceedings of4th International Conference on Genetic Algorithms, pages 573{580, Morgan Kaufmann, 1993.[26] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, New-York, 1981.[27] M. Sebag. Using constraints to building version spaces. In L. De Raedt and F. Bergadano, editors,Proceedings of ECML-94, European Conference on Machine Learning, Springer Verlag, 1994.[28] M. Sebag and M. Schoenauer. Controlling crossover through inductive learning. In H.P. Schwefel,editor, Proceedings of PPSN-94, Parallel Problem Solving from Nature. Springer-Verlag, LNCS 866,1994.[29] W. M. Spears. Adapting crossover in a genetic algorithm. In R. K. Belew and L. B. Booker, editors,Proceedings of the 4th International Conference on Genetic Algorithms, Morgan Kaufmann, 1991.[30] G. Syswerda. Uniform crossover in genetic algorithms. In J. D. Scha�er, editor, Proceedings of the3rd International Conference on Genetic Algorithms, pages 2{9, Morgan Kau�man, 1989.[31] D. Whitley. Fundamental principles of deception in genetic search. In G. J. E. Rawlins, editor,Foundations of Genetic Algorithms. Morgan Kaufmann, 1991.13

