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Abstract

This paper is concerned with alleviating the

choice of learning biases via a two-step pro-

cess:

� The set of all hypotheses that are consis-

tent with the data and cover at least one

training example, is given an implicit char-

acterization of polynomial complexity. The

only bias governing this induction phase is

that of the language of hypotheses.

� Classi�cation of further examples is done

via interpreting this implicit theory; the in-

terpretation mechanism allows one to relax

the consistency requirement and tune the

speci�city of the theory at no extra induc-

tion cost.

Experimental validations demonstrate very

good results on both nominal and numerical

datasets.

1 INTRODUCTION

In a seminal paper, Mitchell (1980) introduced the

term of bias to refer to any basis for choosing one gen-

eralization over another, other than strict consistency

with the training instances.

Learning biases proceed from at least two motivations:

improve the predictive power of the induced theory

(Mitchell 1980) and make induction tractable (Muggle-

ton & De Raedt 1994). Top-down learners are driven

by optimality criterions (e.g. quantity of information,

Gini criterion, MDL principle) allowing one both to

cope with noisy data and to restrict the search to op-

timal or near optimal regions of the hypothesis space

(Quinlan 1993, Botta & Giordana 1993). Divide-and-

conquer algorithms also employ learning biases to deal
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with noise, through specifying the maximal number of

inconsistencies acceptable for a hypothesis (Michalski

1983, Ganascia 1993, Muggleton 1995) or the noise

model (Norton & Hirsh 1993).

Most learning biases (language biases, built-in heuris-

tics, parameters of control of the learner...) are chosen

once and for all before induction. Hence the learner

constructs a theory biased according to the expert's

knowledge | or guesses | concerning the quality of

data and the adequate optimality criterion. But what

if expert's guesses are wrong ? A trial and error pro-

cess then takes place (Srinivasan & Muggleton 1995):

the relevance of the biases is estimated from the pre-

dictive accuracy of the biased theory (e.g. if many

test examples are unclassi�ed, the threshold on the

maximal number of inconsistencies is likely too low).

However, adjusting the biases by trials and errors is

rather expensive: each trial implies performing anew

induction from scratch.

This paper is concerned with delaying the choice of

search biases until the classi�cation step:

Induction is achieved by a learner inspired from the

version spaces framework (Mitchell 1982), termed

DiVS for Disjunctive Version Spaces, which charac-

terizes all consistent hypotheses that cover at least one

training example. This set of hypotheses is given an

implicit characterization of polynomial complexity (re-

mind that an explicit characterization of version spaces

is of exponential complexity (Haussler 1988)).

Classi�cation of further examples is done via interpret-

ing this implicit theory. The point is that the mecha-

nism of interpretation allows one to control the degrees

of consistency and speci�city of the theory, for free.

Within this two-step scheme, the only bias inuencing

induction is that of the language of hypotheses. The

search biases reecting the quality of the data can be

tuned thereafter (typically, depending on the classi�-

cation results) at no extra inductive cost.

The paper is organized as follows. Section 2 describes

algorithm DiVS, and shows how embedding the ver-



sion space framework into a non standard divide-and-

conquer approach allows one to resist noisy data with-

out the need for speci�c search bias. Section 3 de-

tails the interpretation of the implicit theory built by

DiVS; this interpretation allows one to classify further

instances and can be tuned depending on the noise

and sparseness of the training data. Experimentations

on numerical and qualitative problems are discussed in

section 5. Some perspectives for further research are

last presented.

2 DISJUNCTIVE VERSION SPACE

This section is primarily interested in getting rid of

search biases. As stated by Mitchell (1980), unbiased

generalization procedures build the set of all hypothe-

ses complete and consistent with training examples,

termed Version Space (VS); unfortunately, VS suf-

fers from severe practical and computational limita-

tions. These shortcomings are addressed via hybridiz-

ing VS and the divide-and-conquer approach (Michal-

ski 1983).

Only attribute-value languages are considered in this

paper. An extension of this approach to �rst order

logic can be found in (Sebag & Rouveirol 1995, 1996).

2.1 STATE OF THE ART

VS characterizes the set of consistent hypotheses from

its upper bound G, and the set of complete hypotheses

from its lower bound S. When there exists no hypoth-

esis both complete and consistent (S 6� G), the VS

fails and this failure is blamed on either too much spe-

cialization of G, or too much generalization of S. Fail-

ures occur when dealing with erroneous examples, or

learning a target concept that does not �t the hypoth-

esis language (typically, when a disjunctive concept is

sought for in a conjunctive concept space).

These shortcomings can be addressed in a more or less

deterministic way. For instance, Manago and Blythe

(1989) employ ID3 as a pre-processor to determine the

conjunctive sub-concepts involved in the target dis-

junctive concept (the leaves of the tree), and there-

after iteratively use VS to characterize these conjunc-

tive sub-concepts.

In another line, Norton and Hirsh (1992) use a model

of the noise in the data and hypothesize the true data

from the observed (possibly corrupted) data. Each ob-

served example gives rise to a set of supposed examples

(possibly true), together with their probability. This

amounts to \inversing" the noise model. The Prob-

abilistic Evidence Combination process (a) maintains

in parallel all VSs consistent with (at least) one sup-

posed example originated from any observed example;

(b) computes the a posteriori probability of a VS by

summing the probabilities of the supposed examples it

is consistent with; (c) eventually returns the VS with

maximum a posteriori probability. This approach has

been extended to learn disjunctive concepts (Norton &

Hirsh 1993) via a divide-and-conquer approach: pos-

itive training examples, termed seeds, are considered

one at a time; examples not belonging to the same

conjunctive sub-concept than the current seed can be

regarded as noise with respect to this sub-concept; pos-

itive examples covered by the current VS are removed

from the training set and another seed is considered.

As mentioned by the authors, Probabilistic Evidence

Combination asks the question of how noise models

and their parameters are acquired. Practically, the

number of supposed examples corresponding to an ob-

served example is in L

K

if L is the number of modali-

ties of an attribute, and if the noise model allowsK at-

tributes to be simultaneously corrupted. Further, the

number of VSs maintained in parallel during the early

stages of learning is exponential

1

. Last, this scheme is

basically limited in what regards numerical attributes

(these are currently handled via some preliminary dis-

cretization): to directly handle numerical attributes,

one should determine the (continuous) distribution of

true data from the observed data, and symbolic induc-

tion is ill-prepared to learn from such distributions.

2.2 BUILDING ALL CONSISTENT

HYPOTHESES

Our approach is guided by two priorities:

� to survive the lack of relevant bias (and the absence

of experts);

� to successfully handle numerical attributes with-

out requiring any preliminary discretization (count-

less works have reported how much the accuracy of

\pure" symbolic induction depends on the discretiza-

tion stage).

We take advantage of the fact that VS will not collapse

in one particular case

2

: when it considers a single pos-

itive example, termed seed, and several negative exam-

ples, provided that the list of negative examples does

not include the seed. This condition is easy to sat-

isfy by discarding either the negative examples having

same description than the seed, or the seed itself.

The VS learnt from a seed (the star of the seed) is the

disjunction of all consistent hypotheses covering this

seed. This disjunction is unduly speci�c in case false

negative examples are encountered, but it yet includes

1

It decreases thereafter, as most VSs collapse and are

removed from the list.

2

To be precise, VS is also ensured not to collapse if

either the list of positive examples or the list of negative

examples is empty. However, such VSs would be heavily

corrupted in case of noisy examples or disjunctive concept.



consistent hypotheses only. Now, if the seed itself is a

false positive example, the corresponding star encom-

passes hazardous hypotheses. This drawback is ad-

dressed by symmetrically considering the target con-

cept and its negation: more precisely, every example

in turn is taken as seed and generalized against all

examples belonging to other concepts than the seed,

termed counter-examples to the seed

3

. This hopefully

allows hazardous hypotheses learnt from false nega-

tive examples to counterbalance hazardous hypotheses

learnt from false positive examples.

Formally, DiVS builds a theory H which is the dis-

junction of stars learnt from seed Ex, noted H(Ex),

for Ex ranging over the training set. H(Ex) includes

all hypotheses that coverEx and discriminate counter-

examples to Ex; it is given by the conjunction of the

set of hypotheses that cover Ex and discriminate Ce,

noted D(Ex;Ce) (with D for discriminate), for Ce

ranging over the counter-examples to Ex:

DiVS Algorithm

H = False.

For each Ex training example

H(Ex) = True

For each Ce counter-example to Ex

Build D(Ex;Ce) (see section 2.3)

H(Ex) = H(Ex) ^D(Ex;Ce)

H = H _H(Ex).

DiVS di�ers from other divide-and-conquer algo-

rithms in two respects. First, most authors (Michal-

ski 1983, Norton and Hirsh 1992, 1993, Muggleton

1995) restrict themselves to learning the target con-

cept, while we both learn the target concept and its

negation. As already said, this allows the e�ects of

noisy positive and negative examples to counterbal-

ance each other without the need for speci�c bias, such

as lower bounds on the number of examples covered

by a hypothesis, or noise models.

Second, we consider all training examples instead of

pruning the examples covered by previous hypotheses.

The problem with pruning is that it induces an addi-

tional bias (the eventual theory depends on the choice

of seeds) while increasing the complexity of induction

(see section 2.5).

Finally DiVS characterizes all hypotheses that cover

at least one training example (the seed) and only cover

examples with same label as the seed. In contrast with

3

The counter-examples to a positive example are the

negative examples; and the counter-examples to a negative

example are the positive examples. More generally, when

the data represent several mutually exclusive concepts, the

counter-examples to an example of one concept are the

examples of all other concepts.

(Sablon 1995), no additional optimality criterion is in-

troduced, viz. we do not require the number of con-

juncts involved in the Disjunctive Version Space to be

minimal.

2.3 LANGUAGE OF HYPOTHESES

The elementary step of the DiVSapproach consists of

characterizing the set of hypotheses D(Ex;Ce) that

cover the current seed Ex and discriminate a counter-

example Ce to the seed.

We restrict ourselves to hypotheses expressed as con-

junction of selectors [ att 2 V ], where V denotes a

subset of the domain of attribute att (Michalski 1983).

We furthermore require V to be an interval if att is

linear (valued in IR or IN), and a single value if att

is nominal (valued in a �nite set). These restrictions

meet most real-world problems; besides, they ensure

that H(Ex;Ce) will di�er from the simple negation of

Ce. More details on this, among which the handling

of tree-structured attributes, can be found in (Sebag

1994).

Assumption. In the remainder, we assume that any

two examples belonging to di�erent target concepts

can be discriminated in the hypothesis space.

Table 1: a seed and a counter-example

Shape Size Color Thickness class

Ex circle 3 blue 7.25 A

Ce triangle 12 blue 3.1 B

Of evidence, a selector can discriminate Ex and Ce

only if it is based on an attribute that takes di�erent

values for Ex and Ce: examples in Table 1 cannot be

di�erentiated from their color.

Attribute Size does take di�erent values for Ex and

Ce. As interval [0; 12) is the maximal range of size

including the size of Ex and excluding the size of Ce,

selector [Size 2 [0; 12)] (for short, [Size < 12]) is the

maximally general selector built on Size that covers

Ex and discriminates Ce; following (Michalski 1983),

such a selector is termed maximally discriminant.

Similarly, the maximally discriminant selectors respec-

tively built on the linear attribute Thickness and on

the nominal attribute Shape in our hypothesis lan-

guage are [Thickness > 3:1] and [Shape = circle].

Clearly, a conjunctive hypothesis covers Ex and dis-

criminates Ce i� it is less general than the disjunction

of maximally discriminant selectors:

[Shape = circle] _ [Size < 12] _ [Thickness > 3:1]

More generally, let Sel

k

(Ex;Ce) be the maximally

general selector based on attribute att

k

that discrim-

inates Ex from Ce, if it exists, and false otherwise.

Then, a hypothesis h belongs to D(Ex;Ce) i� it is

less general than Sel

k

(Ex;Ce) for some k, i.e. i� it is



less general than the disjunction of Sel

k

(Ex;Ce) over

k (noted _

k

Sel

k

(Ex;Ce) � h):

(h 2 D(Ex;Ce) ) () (

_

k

Sel

k

(Ex;Ce) � h)

(1)

By de�nition, the set H(Ex) of consistent hypotheses

covering Ex is given by the conjunction of D(Ex;Ce)

for Ce ranging over the counter-examples to Ex:

H(Ex) =

^

Ce counter�example to Ex

D(Ex;Ce) (2)

2.4 STANDARD CLASSIFICATION

One can derive from relations (2) and (1) whether a

given instance E is covered by a hypothesis in H(Ex),

(noted E belongs to H(Ex)): E belongs to H(Ex) i�

E belongs to everyD(Ex;Ce), for Ce ranging over the

counter-examples to Ex ; and E belongs toD(Ex;Ce),

i� it satis�es

4

at least one selector discriminating Ex

from Ce.

But knowing whether E belongs to any H(Ex) gives

enough means to classify E, via a nearest neighbor-

like process. Let E be de�ned as \neighbor" to Ex if

E belongs to H(Ex); the class of E can thereafter be

determined by a majority vote among its neighbors in

the training set.

Neighbor (E, Ex) : (E belongs to H(Ex))

For each Ce counter-example to Ex

if NOT Belongs(E, D(Ex;Ce))

return false

return true

Belongs(E, D(Ex;Ce)) :

For each attribute att

k

if E satisfies Sel

k

(Ex;Ce)

return true

return false

Simply put, DiVS rather constructs an oracle than an

explicit theory. This oracle achieves the classi�cation

of further examples; it is made of theory H (stored as

the list of D(Ex

i

; Ex

j

), for Ex

i

in the training set and

Ex

j

counter-example to Ex

i

), and this theory is inter-

preted according to relations (1) and (2). More pre-

cisely, the actual classi�er constructed by DiVS con-

sists of H and of the standard nearest neighbor algo-

rithm, calling the above Neighbor boolean function.

2.5 COMPLEXITY

Under the standard assumption that attribute do-

mains are explored with a bounded cost (Hirsh 1992),

the complexity of induction in DiVS is O(N

2

� P ),

4

E satis�es the selector [ att

k

2 V ] i� att

k

(E) 2 V .

where N denotes the number of training examples

and P the number of attributes. This complexity in-

creases up to O(N

3

� P ) if training examples covered

by the current hypotheses are pruned. Classi�cation

has same complexity.

This approach resembles that of Hirsh (1992), in the

sense it polynomially characterizes the extension of the

Version Space. One important di�erence lies in the

fact that DiVS can deal with disjunctive concepts

and noisy examples; a more thorough discussion will

be found in (Sebag 1994).

3 TUNING THE CLASSIFICATION

This section describes how to adjust the above clas-

si�cation process, in order to account for the rate of

noise and the sparseness of the training set.

3.1 TUNING THE CONSISTENCY

Real-world datasets always include false examples; as

noted by Clark and Niblett (1987), this implies that

the set of strictly consistent hypotheses is both large

and not of the highest predictive power. Hence, most

learners are nowadays concerned with �nding hypothe-

ses \consistent enough", i.e. admitting a bounded

number of inconsistencies within the training exam-

ples, rather than consistent.

Let " be a positive integer, and let H

"

(Ex) denote the

set of hypotheses that cover Ex and cover at most "

counter-examples to Ex. A given instance E is said

neighbor to Ex with inconsistency ", or for short, "-

neighbor to Ex, if it belongs to H

"

(Ex).

The following simple counting procedure returns true

if E is "-neighbor to Ex:

"-Neighbor(E; Ex; ") :

NI = 0

For each Ce counter-example to Ex

if (NOT Belongs(E, D(Ex;Ce)))

NI = NI + 1

If (NI > ")

return false

return true

The oracle described in section 3 can thus be modi-

�ed to accommodate an arbitrary level of noise, via

replacing function Neighbor by the relaxed "-Neighbor

function. Note this implies not extra computational

cost.

Let us consider the classi�er de�ned by the nearest

neighbor process relying on the above "-neighbor func-

tion. Parameter " clearly de�nes a bias on this clas-

si�er; and the judicious value for " depends on the

quality of the training set.

But the advantage of our approach is that the degree



of inconsistency " needs not be known at the time of

induction, since H does not depend on ".

In case the expert does not know precisely the rate

of noise in his/her data (which is rather frequent), "

will still be adjusted by a trial and error process. But

induction is here done once and for all, whereas, when-

ever the theory produced by induction depends on ",

each trial requires to perform induction anew.

3.2 TUNING THE GENERALITY

By construction, a star H(Ex) includes hypotheses

maximally general among the consistent hypotheses

covering Ex (the G set). The problem is that H(Ex)

may turn out to be too general, especially when train-

ing data are sparse. Concretely, this shows up as most

further instances belong to most stars, hence are con-

sidered neighbors to most training examples; via the

nearest neighbor process, such instances are all classi-

�ed in the majority class.

We must thus be able to somehow restrict the gener-

ality of hypotheses in H(Ex). This is done via spe-

cializing D(Ex;Ce), more precisely the function Be-

longs(E,D(Ex,Ce)): The idea consists in requiring E

to satisfy several selectors in D(Ex;Ce) (instead of

only one), in order to belong to D(Ex;Ce).

More formally, let M be a positive integer (M � 1),

and consider the M � of � P concept built from se-

lectors Sel

k

(Ex;Ce), noted D

M

(Ex;Ce): E belongs

to D

M

(Ex;Ce) if it satis�es at most M selectors

Sel

k

(Ex;Ce). Of evidence, D

1

(Ex;Ce) is D(Ex;Ce),

and D

M

(Ex;Ce) becomes more and more speci�c

as M increases. The following function computes

whether E belongs to D

M

(Ex;Ce):

M-Belongs(E; D(Ex;Ce); M) :

NS = 0

For each attribute att

k

if E satisfies Sel

k

(Ex;Ce))

NS = NS + 1

If (NS �M)

return true

return false

Let now H

M

(Ex) be de�ned as the conjunction

of D

M

(Ex;Ce), for Ce ranging over the counter-

examples to Ex:

H

M

(Ex) =

^

Ce counter�example to Ex

D

M

(Ex;Ce)

Similarly, H

1

(Ex) is H(Ex) and H

M

(Ex) becomes

more and more speci�c as M increases.

Proposition : Let h be a maximally general hypothe-

sis in H

M

(Ex); then h does not belong to H

M+1

(Ex).

Proof. Let h be a maximally general hypothesis in

H

M

(Ex), and assume h belongs to H

M+1

(Ex). For

the sake of brevity, the proof is given in the case of a

boolean language. Let us write h as L^h

0

, where L is

a literal that does not appear in h

0

.

Let E be the set of counter-examples Ce to Ex such

that L appears in H(Ex;Ce).

The fact that h belongs to H

M

(Ex) implies that h be-

longs to D

M

(Ex;Ce) for any counter-example Ce.

Now consider h

0

: h

0

belongs toD

M

(Ex;Ce) for any Ce

not in E . But the fact that h belongs toD

M+1

(Ex;Ce)

implies that h

0

belongs to D

M

(Ex;Ce) for any Ce

in E . Finally, h

0

belongs to D

M

(Ex;Ce) for every

counter-example Ce; hence h

0

belongs to H

M

(Ex),

which contradicts the fact that h is maximally gen-

eral in H

M

(Ex). 2

A given instance E is said neighbor to Ex with speci-

�city M , or for short, M-neighbor to Ex, if it belongs

to H

M

(Ex). This can be computed by calling M -

Belongs instead of Belongs in function Neighbor.

3.3 TUNING BOTH

In order to tune both the consistency and the gener-

ality of the classi�cation, we �nally de�ne a ( "; M)-

neighbor function:

(";M)-Neighbor(E; Ex; "; M) :

NI = 0

For each Ce counter-example to Ex

if (NOT M-Belongs(E, D(Ex;Ce); M))

NI = NI + 1

If (NI > ")

return false

return true

Consider the classi�er given by the nearest neighbor

process based on the above neighbor function, with

tunable inconsistency " and speci�city M , and let us

examine the combined e�ects of parameter M and ".

ParameterM controls the \size" of star H

M

(Ex): the

biggerM , the smaller (i.e. the more speci�c) the stars,

the less neighbors an instance E has in the training set.

Therefore, the classi�er makes less and less mistakes as

M increases | but, unfortunately, it also classi�es less

and less instances: E is unclassi�ed if it has no neigh-

bors. A tradeo� between the rates of misclassi�ed and

unclassi�ed examples must thus be sought, via tuning

the degree of speci�city M . This is a general concern;

again, the point is that our approach allows one to set

the degree of speci�city of the classi�er after induction

instead of before.

In opposition, the bigger ", the bigger (i.e. the more

general) the stars, since they are allowed to cover more

counter-examples. The e�ects of M and " thus coun-

terbalance each other.



4 EXPERIMENTAL VALIDATION

This section reports experimental validation of our

learning scheme on several datasets at the UC Irvine

Repository (Murphy and Aha 1995).

4.1 EXPERIMENTAL SETTINGS

For each dataset, H was built as described in section

2, and we vary the consistency " and speci�city M of

the classi�cation. Parameter " is here used as an upper

bound on the percentage of inconsistencies, rather than

on the number of inconsistencies, in order to ease the

interpretation of the results; " ranges from 0 to 25%.

Parameter M varies in [1::20].

We detail the experiments conducted on two problems:

a nominal problem originated from biology and a nu-

merical problem designed by Breiman et al. (1984).

Results obtained on other problems are more briey

discussed.

4.2 THE PROMOTER GENE SEQUENCE

Examples are composed of sequences of nucleotides.

They are described by 59 attributes valued in

fA;C;G; Tg. The associated class gives the promoter

activity of the example (boolean). The 106 examples

are equally distributed among the two classes. See

(Towell et al. 1990) for more details.

Table 2: Errors on the promoter problem

estimated by the leave-one-out procedure

Reference Results Total Errors

KBANN 4

BP 8

k-NN 13

ID3 19

DiVS Results

" M Misc. Unc. Total Errors

5 3 1 4

6 4 1 5

0 7 2 1 3

8 1 1 2

9 2 2 4

5 16 12 28

6 4 6 10

5 % 7 8 0 8

8 1 1 2

9 3 3 6

Table 2 �rst shows some reference results. KBANN

is an hybrid learner, where an incomplete human ex-

pertise has been encoded into a neural net (NN), and

re�ned using and adapting the NN machinery (Towell

et al. 1990); BP denotes the standard backpropaga-

tion, k-NN stands for a k-nearest neighbor classi�er

(with k = 3); and ID3 needs no presentation here.

For various values of " and M , DiVS failures are de-

composed into misclassi�ed (Misc) and unclassi�ed

(Unc) examples. The number of unclassi�ed exam-

ples typically increases when M is either too low (be-

cause instances are covered by many hypotheses and

tie conicts are observed), or too high (because many

instances are covered by none hypothesis).

The most striking point is that, whereas DiVS has

been supplied with no additional information, it can

outperform KBANN, which bene�ts both from avail-

able human expertise and from the power of NN .

Experimenting with DiVS gives precise hints as to the

quality of the data: these data likely include very few

noise (the classi�er behaves better for " = 0). Also,

the redundancy of the description is rather high: no

matter what the value of " is, the optimal value of

M is 8. A naive interpretation would be: \it needs

at least 8 attributes to make a real di�erence between

two examples".

4.3 THE WAVEFORM PROBLEM

Examples are built by linear combinations of �xed

waveforms (Breiman et al. 1984). An example is

described by 21 real-valued attributes; examples are

equally distributed among three classes.

The waveform problem presents three di�culties from

the standpoint of ML algorithms: classes are overlap-

ping and data involve numerical noise

5

; last, the sep-

aration of the classes is basically an additive law.

Table 3: Error rates on the waveform pb

averaged on 10 independent selections of 300-example

training sets, and measured on a �xed 5 000 test set.

Reference Results % Errors

BP 17.1 � 1

LD 20.4 � 1

SIA 24.3 � 0.7

k-NN 27 � 1.7

ID3 28 � 1.8

DiVS Results

" M % Errors

8 18.5 � 0.4

5 % 9 19.2 � 0.2

10 20.1 � 0.2

8 17.9 � 0.3

10 % 9 18.7 � 0.3

10 19.3 � 0.1

8 18.6 � 0.1

15 % 9 18 � 0.3

10 18.6 � 0.2

5

If the three classes are equi-represented, the misclassi-

�cation rate is lower bounded by 14%.



Table 4: Predictive accuracy observed on other datasets

estimated using a ten-fold cross-validation
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Dataset P N Majority best so far best of DIVS " M

breast-wis 10 699 65.5 C4.5 : 95.4 � 0.7 95.6 � 0.6 5% 1

hepatitis 19 155 79.2 C4.5 : 80.0 � 3.7 84 � 1 10% 3

iris 4 150 23.3 LD : 98 97.2 � 1 15% 2

labor-neg 16 53 65.3 C4.5 : 85.7 � 3.5 93.3 � 3 15% 1

tic-tac-toe 9 958 65.4 C4.5 : 85.6 � 1.1 91.4 � 0.6 10% 2

vote 16 435 61.4 NN : 95.3 93.7 � 1 0 1

vote-free 15 435 61.4 IDC : 89.1 � 1.8 89.8 � 1 5% 2

Table 3 shows results obtained by standard backprop-

agation (BP ), linear discriminant (LD), an AQ-like

algorithm optimized by genetic algorithm (SIA) (Ven-

turini 1993), a k-nearest neighbor classi�er (k-NN)

(with k=1) and ID3.

All these results are reported from (Gascuel et al.

1995). Again, the most striking point is that DiVS can

outperform linear discriminant and k-NN on purely

numerical data, in spite of its poor \numerical skills":

remind it is only allowed to compare a value with val-

ues encountered in the training set.

The variation of the predictive accuracy of DiVS

demonstrates that the \true" percentage of noise is

near to 15%, and the redundancy of the description is

rather high. Note the standard deviation of the accu-

racy is very low.

4.4 OTHER PROBLEMS

A few other problems have been considered so far. For

each of these problems, Table 4 gives the number of

attributes (P ), the number of examples in the dataset

(N), the percentage of examples in the majority class

(Majority), the best result found in the literature, ref-

erencing either C4:5 (Quinlan 1993), the decision table

approach (IDT ) (Kohavi 1995), the decision commit-

tees approach (IDC) (Nok & Gascuel 1995), or neural

nets (NN) and linear discriminant (LD) (Holte 1993).

The best results obtained by DiVS are indicated to-

gether with the corresponding values of " and M .

Of course, this comparison is biased since it only re-

ports the best predictive accuracy obtained with DiVS.

On-going experiments investigate the use of two test

sets: the �rst one allows DiVS to internally deter-

mine the optimal values of " and M , and the second

one allows one to estimate the actual predictive ac-

curacy of DiVS, according to the values determined

on the �rst test set. Preliminary results indicate that

optimal values of " and M are quite steady: actual

predictive accuracy is very close to the optimal one

indicated above.

5 DISCUSSION AND

PERSPECTIVES

After discussing the main strengths and weaknesses of

DiVS, we present some avenues for further research.

5.1 STRENGTHS

As claimed in the introduction, the presented frame-

work frees induction from all search biases, in the sense

that it constructs a theory H that only depends on the

training examples and on the hypothesis language.

In particular, induction does not require any a priori

knowledge about the quality of the data. This prop-

erty is much desirable on many real-world problems:

most experts are far from knowing beforehand the rate

of noise, the noise model or the representativity of their

data.

The classi�cation based on H can nevertheless be

tuned according to two parameters, " and M , that re-

spectively control the degree of consistency and speci-

�city of the hypotheses used for classi�cation. As a

matter of fact, the predictive accuracy of DiVS, viewed

as a function of " and M , gives precise indications as

to the rate of noise and representativity of the data

(see Tables 2 and 3). DiVS could therefore be used

to a posteriori determine the quality of the data.

Furthermore, as demonstrated on the waveform prob-

lem (Table 3), DiVScan successfully handle numerical

data without a priori discretization; this is a signi�-

cant advantage compared to the Probabilistic Evidence

Combination process (Norton & Hirsh 1993), IDT

(Kohavi 1995) or IDC (Nok & Gascuel 1995). An-

other advantage lies in the polynomial complexity of

DiVS (quadratic with respect to the number of exam-

ples, linear with respect to the number of attributes),

whereas both IDT and IDC are basically exponential

in the number of attributes (in O(P

k

) if P is the num-

ber of attributes and k the maximal size of monomials

involved in decision tables or committees).

Last, this approach gives outstanding experimental re-

sults. These results are clearly over-estimated in Table

4, that reports the results of DiVS at its best; however,

Table 2 witnesses that DiVS at its best can outper-



form the state of the art. In our opinion, the quality of

these results is mainly explained by the redundancy of

the constructed theory. This explanation is accredited

by the comparison of DiVS and SIA (Table 3): both

learners explore the same search space, and the only

di�erence is that SIA �nds the \optimal" rules cov-

ering the examples (various optimality functions have

been considered), whilst DiVS �nds \all" rules. Re-

dundancy has been widely acknowledged as a factor of

robustness and reliability (see (Nok & Gascuel 1995)

among others). Clearly, the theory H constructed by

DiVS is maximally redundant, in the sense that it in-

cludes \all" consistent hypotheses provided they cover

at least one training example.

5.2 WEAKNESSES

The main weakness of our approach lies in the poor

comprehensibility of H. This is partly due to its form

(disjunction of conjunctions of disjunctions); but if H

was classically expressed as a disjunction of conjunc-

tions, it would be no easier to read, since its size is basi-

cally exponential in the number of attributes (Haussler

1988).

At �rst sight, DiVS may just seem another unintelli-

gible learner to be compared with, for instance, neural

nets.

However, two important characteristics distinguish

DiVS from neural nets. First, DiVS can be extended to

�rst order logic (Sebag & Rouveirol 1995, 1996). Sec-

ond, in spite of the unintelligibility of H, the classi�ca-

tion process is de�nitely not a black box: For any in-

stance E, an intelligible and concise excerpt of H that

\explains" the classi�cation of E can be determined

7

.

More details on this second-order intelligibility can be

found in (Sebag 1995).

5.3 PERSPECTIVES

As mentioned earlier on, on-going experiments are con-

cerned with an internal determination of optimal val-

ues of the biases (parameters) " and M .

Another perspective of this approach consists in using

the experimental information given by the DiVS the-

ory. Some training examples Ex

i

are such that

H(Ex

i

) exactly covers one training example, Ex

i

it-

self; such training examples clearly are isolated, and

can be considered corrupted. This information can be

7

By construction, the classi�cation of a given instance

E derives from its neighbors Ex

i

in the training set. For

any Ex

i

neighbor to E, let us consider the most speci�c

hypothesis covering E and Ex

i

; it is straightforward to

show that this hypothesis is consistent (up to the �xed

degree of inconsistency "), it covers E and Ex

i

and votes

for classifying E in the class of Ex

i

.

used to clean a dataset before learning.

A third perspective consists in extracting from H an

intelligible theory having same predictive accuracy.

The challenge is twofold: is there an actual correlation

between redundancy and predictive accuracy ? If the

answer is yes, this seemingly implies that the trade-o�

between intelligibility and accuracy is factual (redun-

dancy hinders intelligibility for simple reasons of the

size of the theory). If the answer is no, and optimally

accurate short theories exist, this asks a further ques-

tion (see also (Srinivasan & Muggleton 1995)): what

could be the relevant optimality function, allowing one

to sort the accurate hypotheses ?

Last but not least, this approach will be examined

from the standpoint of cognitive modeling: DiVS is

able to construct a theory from data with unknown re-

liability, to tune this theory depending on a posteriori

guesses concerning the reliability of these data, and to

use the tuned theory to classify further instances. Fur-

thermore, and still more typical of human beings: de-

spite it cannot articulate the theory it has constructed,

it can nevertheless provide articulate justi�cations for

its verdicts.
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