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Delaying the Choice of Bias : A Disjunctive Version Space Approach

This paper is concerned with alleviating the choice of learning biases via a two-step process:

The set of all hypotheses that are consistent with the data and cover at least one training example, is given an implicit characterization of polynomial complexity. The only bias governing this induction phase is that of the language of hypotheses.

Classi cation of further examples is done via interpreting this implicit theory; the interpretation mechanism allows one to relax the consistency requirement and tune the speci city of the theory at no extra induction cost. Experimental validations demonstrate very good results on both nominal and numerical datasets.

INTRODUCTION

In a seminal paper, [START_REF] Mitchell | The need for bias in learning generalizations[END_REF] introduced the term of bias to refer to any basis for choosing one generalization over another, other than strict consistency with the training instances. Learning biases proceed from at least two motivations: improve the predictive power of the induced theory [START_REF] Mitchell | The need for bias in learning generalizations[END_REF]) and make induction tractable [START_REF] Muggleton | Inductive logic programming: Theory and methods[END_REF]. Top-down learners are driven by optimality criterions (e.g. quantity of information, Gini criterion, MDL principle) allowing one both to cope with noisy data and to restrict the search to optimal or near optimal regions of the hypothesis space (Quinlan 1993, Botta & Giordana 1993). Divide-andconquer algorithms also employ learning biases to deal And Equipe I & A, LRI, Universit e Paris-Sud, 91405 Orsay, FRANCE.

with noise, through specifying the maximal number of inconsistencies acceptable for a hypothesis [START_REF] Michalski | A theory and methodology of inductive learning[END_REF], Ganascia 1993[START_REF] Muggleton | Inverse entailment and PROGOL[END_REF] or the noise model [START_REF] Norton | Learning DNF Via Probabilistic Evidence Combination[END_REF]. Most learning biases (language biases, built-in heuristics, parameters of control of the learner...) are chosen once and for all before induction. Hence the learner constructs a theory biased according to the expert's knowledge | or guesses | concerning the quality of data and the adequate optimality criterion. But what if expert's guesses are wrong ? A trial and error process then takes place [START_REF] Srinivasan | Comparing the use of background knowledge by two ILP systems[END_REF]: the relevance of the biases is estimated from the predictive accuracy of the biased theory (e.g. if many test examples are unclassi ed, the threshold on the maximal number of inconsistencies is likely too low). However, adjusting the biases by trials and errors is rather expensive: each trial implies performing anew induction from scratch. This paper is concerned with delaying the choice of search biases until the classi cation step: Induction is achieved by a learner inspired from the version spaces framework [START_REF] Mitchell | Generalization as search[END_REF], termed DiVS for Disjunctive Version Spaces, which characterizes all consistent hypotheses that cover at least one training example. This set of hypotheses is given an implicit characterization of polynomial complexity (remind that an explicit characterization of version spaces is of exponential complexity [START_REF] Haussler | Quantifying inductive bias : AI learning algorithms and Valiant's learning framework[END_REF]). Classi cation of further examples is done via interpreting this implicit theory. The point is that the mechanism of interpretation allows one to control the degrees of consistency and speci city of the theory, for free. Within this two-step scheme, the only bias in uencing induction is that of the language of hypotheses. The search biases re ecting the quality of the data can be tuned thereafter (typically, depending on the classication results) at no extra inductive cost. The paper is organized as follows. Section 2 describes algorithm DiVS, and shows how embedding the ver-sion space framework into a non standard divide-andconquer approach allows one to resist noisy data without the need for speci c search bias. Section 3 details the interpretation of the implicit theory built by DiVS; this interpretation allows one to classify further instances and can be tuned depending on the noise and sparseness of the training data. Experimentations on numerical and qualitative problems are discussed in section 5. Some perspectives for further research are last presented.

DISJUNCTIVE VERSION SPACE

This section is primarily interested in getting rid of search biases. As stated by [START_REF] Mitchell | The need for bias in learning generalizations[END_REF], unbiased generalization procedures build the set of all hypotheses complete and consistent with training examples, termed Version Space (VS); unfortunately, VS suffers from severe practical and computational limitations. These shortcomings are addressed via hybridizing VS and the divide-and-conquer approach [START_REF] Michalski | A theory and methodology of inductive learning[END_REF]. Only attribute-value languages are considered in this paper. An extension of this approach to rst order logic can be found in (Sebag & Rouveirol 1995, 1996).

STATE OF THE ART

VS characterizes the set of consistent hypotheses from its upper bound G, and the set of complete hypotheses from its lower bound S. When there exists no hypothesis both complete and consistent (S 6 G), the VS fails and this failure is blamed on either too much specialization of G, or too much generalization of S. Failures occur when dealing with erroneous examples, or learning a target concept that does not t the hypothesis language (typically, when a disjunctive concept is sought for in a conjunctive concept space). These shortcomings can be addressed in a more or less deterministic way. For instance, [START_REF] Manago | Learning disjunctive concepts[END_REF] employ ID3 as a pre-processor to determine the conjunctive sub-concepts involved in the target disjunctive concept (the leaves of the tree), and thereafter iteratively use VS to characterize these conjunctive sub-concepts. In another line, [START_REF] Norton | Classi er learning from noisy data as probabilistic evidence combination[END_REF] use a model of the noise in the data and hypothesize the true data from the observed (possibly corrupted) data. Each observed example gives rise to a set of supposed examples (possibly true), together with their probability. This amounts to \inversing" the noise model. The Probabilistic Evidence Combination process (a) maintains in parallel all VSs consistent with (at least) one supposed example originated from any observed example; (b) computes the a posteriori probability of a VS by summing the probabilities of the supposed examples it is consistent with; (c) eventually returns the VS with maximum a posteriori probability. This approach has been extended to learn disjunctive concepts [START_REF] Norton | Learning DNF Via Probabilistic Evidence Combination[END_REF]) via a divide-and-conquer approach: positive training examples, termed seeds, are considered one at a time; examples not belonging to the same conjunctive sub-concept than the current seed can be regarded as noise with respect to this sub-concept; positive examples covered by the current VS are removed from the training set and another seed is considered. As mentioned by the authors, Probabilistic Evidence Combination asks the question of how noise models and their parameters are acquired. Practically, the number of supposed examples corresponding to an observed example is in L K if L is the number of modalities of an attribute, and if the noise model allows K attributes to be simultaneously corrupted. Further, the number of VSs maintained in parallel during the early stages of learning is exponential1 . Last, this scheme is basically limited in what regards numerical attributes (these are currently handled via some preliminary discretization): to directly handle numerical attributes, one should determine the (continuous) distribution of true data from the observed data, and symbolic induction is ill-prepared to learn from such distributions.

BUILDING ALL CONSISTENT HYPOTHESES

Our approach is guided by two priorities: to survive the lack of relevant bias (and the absence of experts);

to successfully handle numerical attributes without requiring any preliminary discretization (countless works have reported how much the accuracy of \pure" symbolic induction depends on the discretization stage). We take advantage of the fact that VS will not collapse in one particular case 2 : when it considers a single positive example, termed seed, and several negative examples, provided that the list of negative examples does not include the seed. This condition is easy to satisfy by discarding either the negative examples having same description than the seed, or the seed itself. The VS learnt from a seed (the star of the seed) is the disjunction of all consistent hypotheses covering this seed. This disjunction is unduly speci c in case false negative examples are encountered, but it yet includes consistent hypotheses only. Now, if the seed itself is a false positive example, the corresponding star encompasses hazardous hypotheses. This drawback is addressed by symmetrically considering the target concept and its negation: more precisely, every example in turn is taken as seed and generalized against all examples belonging to other concepts than the seed, termed counter-examples to the seed3 . 

H(Ex) = H(Ex) ^D(Ex; Ce) H = H _ H(Ex).
DiVS di ers from other divide-and-conquer algorithms in two respects. First, most authors [START_REF] Michalski | A theory and methodology of inductive learning[END_REF][START_REF] Norton | Classi er learning from noisy data as probabilistic evidence combination[END_REF], 1993[START_REF] Muggleton | Inverse entailment and PROGOL[END_REF] restrict themselves to learning the target concept, while we both learn the target concept and its negation. As already said, this allows the e ects of noisy positive and negative examples to counterbalance each other without the need for speci c bias, such as lower bounds on the number of examples covered by a hypothesis, or noise models.

Second, we consider all training examples instead of pruning the examples covered by previous hypotheses.

The problem with pruning is that it induces an additional bias (the eventual theory depends on the choice of seeds) while increasing the complexity of induction (see section 2.5). Finally DiVS characterizes all hypotheses that cover at least one training example (the seed) and only cover examples with same label as the seed. In contrast with [START_REF] Sablon | Iterative Version Space[END_REF], no additional optimality criterion is introduced, viz. we do not require the number of conjuncts involved in the Disjunctive Version Space to be minimal.

LANGUAGE OF HYPOTHESES

The elementary step of the DiVSapproach consists of characterizing the set of hypotheses D(Ex; Ce) that cover the current seed Ex and discriminate a counterexample Ce to the seed.

We restrict ourselves to hypotheses expressed as conjunction of selectors att 2 V ], where V denotes a subset of the domain of attribute att [START_REF] Michalski | A theory and methodology of inductive learning[END_REF]. We furthermore require V to be an interval if att is linear (valued in IR or IN), and a single value if att is nominal (valued in a nite set). These restrictions meet most real-world problems; besides, they ensure that H(Ex; Ce) will di er from the simple negation of Ce. More details on this, among which the handling of tree-structured attributes, can be found in [START_REF] Sebag | Using constraints to building version spaces[END_REF].

Assumption. In the remainder, we assume that any two examples belonging to di erent target concepts can be discriminated in the hypothesis space. Simply put, DiVS rather constructs an oracle than an explicit theory. This oracle achieves the classi cation of further examples; it is made of theory H (stored as the list of D(Ex i ; Ex j ), for Ex i in the training set and Ex j counter-example to Ex i ), and this theory is interpreted according to relations (1) and ( 2). More precisely, the actual classi er constructed by DiVS consists of H and of the standard nearest neighbor algorithm, calling the above Neighbor boolean function.

COMPLEXITY

Under the standard assumption that attribute domains are explored with a bounded cost [START_REF] Hirsh | Polynomial-time learning with version spaces[END_REF], the complexity of induction in DiVS is O(N 2 P), 4 E satis es the selector att k 2 V ] i att k (E) 2 V .

where N denotes the number of training examples and P the number of attributes. This complexity increases up to O(N 3 P) if training examples covered by the current hypotheses are pruned. Classi cation has same complexity. This approach resembles that of [START_REF] Hirsh | Polynomial-time learning with version spaces[END_REF], in the sense it polynomially characterizes the extension of the Version Space. One important di erence lies in the fact that DiVS can deal with disjunctive concepts and noisy examples; a more thorough discussion will be found in [START_REF] Sebag | Using constraints to building version spaces[END_REF].

TUNING THE CLASSIFICATION

This section describes how to adjust the above classi cation process, in order to account for the rate of noise and the sparseness of the training set.

TUNING THE CONSISTENCY

Real-world datasets always include false examples; as noted by [START_REF] Clark | Induction in noisy domains[END_REF], this implies that the set of strictly consistent hypotheses is both large and not of the highest predictive power. Hence, most learners are nowadays concerned with nding hypotheses \consistent enough", i.e. admitting a bounded number of inconsistencies within the training examples, rather than consistent.

Let " be a positive integer, and let H " (Ex) denote the set of hypotheses that cover Ex and cover at most " counter-examples to Ex. A given instance E is said neighbor to Ex with inconsistency ", or for short, "neighbor to Ex, if it belongs to H " (Ex). The following simple counting procedure returns true if E is "-neighbor to Ex:

"-Neighbor(E; Ex; ") :

NI = 0
For each Ce counter-example to Ex if (NOT Belongs(E, D(Ex; Ce)))

NI = NI + 1 If (NI > ")
return false return true

The oracle described in section 3 can thus be modied to accommodate an arbitrary level of noise, via replacing function Neighbor by the relaxed "-Neighbor function. Note this implies not extra computational cost.

Let us consider the classi er de ned by the nearest neighbor process relying on the above "-neighbor function. Parameter " clearly de nes a bias on this classi er; and the judicious value for " depends on the quality of the training set. But the advantage of our approach is that the degree of inconsistency " needs not be known at the time of induction, since H does not depend on ".

In case the expert does not know precisely the rate of noise in his/her data (which is rather frequent), "

will still be adjusted by a trial and error process. But induction is here done once and for all, whereas, whenever the theory produced by induction depends on ", each trial requires to perform induction anew. Proof. Let h be a maximally general hypothesis in H M (Ex), and assume h belongs to H M+1 (Ex). For the sake of brevity, the proof is given in the case of a boolean language. Let us write h as L ^h0 , where L is a literal that does not appear in h 0 . Let E be the set of counter-examples Ce to Ex such that L appears in H(Ex; Ce).

TUNING THE GENERALITY

The fact that h belongs to H M (Ex) implies that h belongs to D M (Ex; Ce) for any counter-example Ce. Now consider h 0 : h 0 belongs to D M (Ex; Ce) for any Ce not in E. But the fact that h belongs to D M+1 (Ex; Ce) implies that h 0 belongs to D M (Ex; Ce) for any Ce in E. Finally, h 0 belongs to D M (Ex; Ce) for every counter-example Ce; hence h 0 belongs to H M (Ex), which contradicts the fact that h is maximally general in H M (Ex). 2

A given instance E is said neighbor to Ex with specicity M, or for short, M-neighbor to Ex, if it belongs to H M (Ex). This can be computed by calling M-Belongs instead of Belongs in function Neighbor.

TUNING BOTH

In order to tune both the consistency and the generality of the classi cation, we nally de ne a ( "; M)- Consider the classi er given by the nearest neighbor process based on the above neighbor function, with tunable inconsistency " and speci city M, and let us examine the combined e ects of parameter M and ". Parameter M controls the \size" of star H M (Ex): the bigger M, the smaller (i.e. the more speci c) the stars, the less neighbors an instance E has in the training set.

Therefore, the classi er makes less and less mistakes as M increases | but, unfortunately, it also classi es less and less instances: E is unclassi ed if it has no neighbors. A tradeo between the rates of misclassi ed and unclassi ed examples must thus be sought, via tuning the degree of speci city M. This is a general concern; again, the point is that our approach allows one to set the degree of speci city of the classi er after induction instead of before.

In opposition, the bigger ", the bigger (i.e. the more general) the stars, since they are allowed to cover more counter-examples. The e ects of M and " thus counterbalance each other. This section reports experimental validation of our learning scheme on several datasets at the UC Irvine Repository [START_REF] Murphy | UCI Repository of machine learning databases[END_REF].

EXPERIMENTAL SETTINGS

For each dataset, H was built as described in section 2, and we vary the consistency " and speci city M of the classi cation. Parameter " is here used as an upper bound on the percentage of inconsistencies, rather than on the number of inconsistencies, in order to ease the interpretation of the results; " ranges from 0 to 25%. Parameter M varies in 1::20].

We detail the experiments conducted on two problems: a nominal problem originated from biology and a numerical problem designed by [START_REF] Breiman | Classi cation and Regression by tree[END_REF]. Results obtained on other problems are more brie y discussed.

THE PROMOTER GENE SEQUENCE

Examples are composed of sequences of nucleotides. They are described by 59 attributes valued in fA; C; G; Tg. The associated class gives the promoter activity of the example (boolean). The 106 examples are equally distributed among the two classes. See [START_REF] Towell | Re nement of approximate domain theories by knowledge-based arti cial neural networks[END_REF]) for more details. Table 2 rst shows some reference results. KBANN is an hybrid learner, where an incomplete human expertise has been encoded into a neural net (NN), and re ned using and adapting the NN machinery [START_REF] Towell | Re nement of approximate domain theories by knowledge-based arti cial neural networks[END_REF]); BP denotes the standard backpropagation, k-NN stands for a k-nearest neighbor classi er (with k = 3); and ID3 needs no presentation here. For various values of " and M, DiVS failures are decomposed into misclassi ed (Misc) and unclassi ed (Unc) examples. The number of unclassi ed examples typically increases when M is either too low (because instances are covered by many hypotheses and tie con icts are observed), or too high (because many instances are covered by none hypothesis).

The most striking point is that, whereas DiVS has been supplied with no additional information, it can outperform KBANN, which bene ts both from available human expertise and from the power of NN.

Experimenting with DiVS gives precise hints as to the quality of the data: these data likely include very few noise (the classi er behaves better for " = 0). Also, the redundancy of the description is rather high: no matter what the value of " is, the optimal value of M is 8. A naive interpretation would be: \it needs at least 8 attributes to make a real di erence between two examples".

THE WAVEFORM PROBLEM

Examples are built by linear combinations of xed waveforms [START_REF] Breiman | Classi cation and Regression by tree[END_REF]). An example is described by 21 real-valued attributes; examples are equally distributed among three classes.

The waveform problem presents three di culties from the standpoint of ML algorithms: classes are overlapping and data involve numerical noise5 ; last, the separation of the classes is basically an additive law. 3 shows results obtained by standard backpropagation (BP ), linear discriminant (LD), an AQ-like algorithm optimized by genetic algorithm (SIA) (Venturini 1993), a k-nearest neighbor classi er (k-NN) (with k=1) and ID3.

All these results are reported from [START_REF] Gascuel | M ethodes symboliques-num eriques de discrimination. 5 emes[END_REF]. Again, the most striking point is that DiVS can outperform linear discriminant and k-NN on purely numerical data, in spite of its poor \numerical skills": remind it is only allowed to compare a value with values encountered in the training set. The variation of the predictive accuracy of DiVS demonstrates that the \true" percentage of noise is near to 15%, and the redundancy of the description is rather high. Note the standard deviation of the accuracy is very low.

OTHER PROBLEMS

A few other problems have been considered so far. For each of these problems, Table 4 gives the number of attributes (P ), the number of examples in the dataset (N), the percentage of examples in the majority class (Majority), the best result found in the literature, referencing either C4:5 (Quinlan 1993), the decision table approach (IDT ) [START_REF] Kohavi | The power of decision tables[END_REF], the decision committees approach (IDC) (Nok & Gascuel 1995), or neural nets (NN) and linear discriminant (LD) [START_REF] Holte | Very simple classi cation rules perform well on most commonly used datasets[END_REF]. The best results obtained by DiVS are indicated together with the corresponding values of " and M.

Of course, this comparison is biased since it only reports the best predictive accuracy obtained with DiVS. On-going experiments investigate the use of two test sets: the rst one allows DiVS to internally determine the optimal values of " and M, and the second one allows one to estimate the actual predictive accuracy of DiVS, according to the values determined on the rst test set. Preliminary results indicate that optimal values of " and M are quite steady: actual predictive accuracy is very close to the optimal one indicated above.

DISCUSSION AND PERSPECTIVES

After discussing the main strengths and weaknesses of DiVS, we present some avenues for further research.

STRENGTHS

As claimed in the introduction, the presented framework frees induction from all search biases, in the sense that it constructs a theory H that only depends on the training examples and on the hypothesis language.

In particular, induction does not require any a priori knowledge about the quality of the data. This property is much desirable on many real-world problems: most experts are far from knowing beforehand the rate of noise, the noise model or the representativity of their data.

The classi cation based on H can nevertheless be tuned according to two parameters, " and M, that respectively control the degree of consistency and specicity of the hypotheses used for classi cation. As a matter of fact, the predictive accuracy of DiVS, viewed as a function of " and M, gives precise indications as to the rate of noise and representativity of the data (see Tables 2 and3). DiVS could therefore be used to a posteriori determine the quality of the data. Furthermore, as demonstrated on the waveform problem (Table 3), DiVScan successfully handle numerical data without a priori discretization; this is a signicant advantage compared to the Probabilistic Evidence Combination process [START_REF] Norton | Learning DNF Via Probabilistic Evidence Combination[END_REF], IDT [START_REF] Kohavi | The power of decision tables[END_REF] or IDC (Nok & Gascuel 1995). Another advantage lies in the polynomial complexity of DiVS (quadratic with respect to the number of examples, linear with respect to the number of attributes), whereas both IDT and IDC are basically exponential in the number of attributes (in O(P k ) if P is the number of attributes and k the maximal size of monomials involved in decision tables or committees). Last, this approach gives outstanding experimental results. These results are clearly over-estimated in Table 4, that reports the results of DiVS at its best; however, Table 2 witnesses that DiVS at its best can outper-form the state of the art. In our opinion, the quality of these results is mainly explained by the redundancy of the constructed theory. This explanation is accredited by the comparison of DiVS and SIA (Table 3): both learners explore the same search space, and the only di erence is that SIA nds the \optimal" rules covering the examples (various optimality functions have been considered), whilst DiVS nds \all" rules. Redundancy has been widely acknowledged as a factor of robustness and reliability (see (Nok & Gascuel 1995) among others). Clearly, the theory H constructed by DiVS is maximally redundant, in the sense that it includes \all" consistent hypotheses provided they cover at least one training example.

WEAKNESSES

The main weakness of our approach lies in the poor comprehensibility of H. This is partly due to its form (disjunction of conjunctions of disjunctions); but if H was classically expressed as a disjunction of conjunctions, it would be no easier to read, since its size is basically exponential in the number of attributes [START_REF] Haussler | Quantifying inductive bias : AI learning algorithms and Valiant's learning framework[END_REF]. At rst sight, DiVS may just seem another unintelligible learner to be compared with, for instance, neural nets. However, two important characteristics distinguish DiVS from neural nets. First, DiVS can be extended to rst order logic (Sebag & Rouveirol 1995, 1996). Second, in spite of the unintelligibility of H, the classi cation process is de nitely not a black box: For any instance E, an intelligible and concise excerpt of H that \explains" the classi cation of E can be determined 7 .

More details on this second-order intelligibility can be found in [START_REF] Sebag | 2 nd order understandability of disjunctive version spaces[END_REF].

PERSPECTIVES

As mentioned earlier on, on-going experiments are concerned with an internal determination of optimal values of the biases (parameters) " and M.

Another perspective of this approach consists in using the experimental information given by the DiVS the- A third perspective consists in extracting from H an intelligible theory having same predictive accuracy. The challenge is twofold: is there an actual correlation between redundancy and predictive accuracy ? If the answer is yes, this seemingly implies that the trade-o between intelligibility and accuracy is factual (redundancy hinders intelligibility for simple reasons of the size of the theory). If the answer is no, and optimally accurate short theories exist, this asks a further question (see also [START_REF] Srinivasan | Comparing the use of background knowledge by two ILP systems[END_REF]): what could be the relevant optimality function, allowing one to sort the accurate hypotheses ? Last but not least, this approach will be examined from the standpoint of cognitive modeling: DiVS is able to construct a theory from data with unknown reliability, to tune this theory depending on a posteriori guesses concerning the reliability of these data, and to use the tuned theory to classify further instances. Furthermore, and still more typical of human beings: despite it cannot articulate the theory it has constructed, it can nevertheless provide articulate justi cations for its verdicts.

  ory. Some training examples Ex i are such that H(Ex i ) exactly covers one training example, Ex i itself; such training examples clearly are isolated, and can be considered corrupted. This information can be used to clean a dataset before learning.

  This hopefully allows hazardous hypotheses learnt from false negative examples to counterbalance hazardous hypotheses learnt from false positive examples. Formally, DiVS builds a theory H which is the disjunction of stars learnt from seed Ex, noted H(Ex), for Ex ranging over the training set. H(Ex) includes all hypotheses that cover Ex and discriminate counterexamples to Ex; it is given by the conjunction of the set of hypotheses that cover Ex and discriminate Ce, noted D(Ex; Ce) (with D for discriminate), for Ce ranging over the counter-examples to Ex:

	DiVS Algorithm H = False.

For each Ex training example H(Ex) = True For each Ce counter-example to Ex Build D(Ex; Ce) (see section 2.3)

Table 1

 1 Of evidence, a selector can discriminate Ex and Ce only if it is based on an attribute that takes di erent values for Ex and Ce: examples in Table1cannot be di erentiated from their color.Attribute Size does take di erent values for Ex and Ce. As interval 0; 12) is the maximal range of size including the size of Ex and excluding the size of Ce, selector Size 2 0; 12)] (for short, Size < 12]) is the maximally general selector built on Size that covers Ex and discriminates Ce; following[START_REF] Michalski | A theory and methodology of inductive learning[END_REF], such a selector is termed maximally discriminant. Similarly, the maximally discriminant selectors respectively built on the linear attribute Thickness and on the nominal attribute Shape in our hypothesis language are Thickness > 3:1] and Shape = circle]. Clearly, a conjunctive hypothesis covers Ex and discriminates Ce i it is less general than the disjunction of maximally discriminant selectors: Shape = circle] _ Size < 12] _ Thickness > 3:1] More generally, let Sel k (Ex; Ce) be the maximally general selector based on attribute att k that discriminates Ex from Ce, if it exists, and false otherwise. Then, a hypothesis h belongs to D(Ex; Ce) i it is less general than Sel k (Ex; Ce) for some k, i.e. i it is less general than the disjunction of Sel k (Ex; Ce) over k (noted _ k Sel k (Ex; Ce) h):

	: a seed and a counter-example
	Shape Size Color Thickness class Ex circle 3 blue 7.25 A Ce triangle 12 blue 3.1 B

(noted E belongs to H(Ex)): E belongs to H(Ex) i E belongs to every D(Ex; Ce), for Ce ranging over the counter-examples to Ex ; and E belongs to D(Ex; Ce), i it satis es 4 at least one selector discriminating Ex from Ce. But knowing whether E belongs to any H(Ex) gives enough means to classify E, via a nearest neighborlike process. Let E be de ned as \neighbor" to Ex if E belongs to H(Ex); the class of E can thereafter be determined by a majority vote among its neighbors in the training set.

Neighbor (E, Ex) :

(E belongs to H(Ex))

Table 2 :

 2 Errors on the promoter problem estimated by the leave-one-out procedure

	Reference Results KBANN BP k-NN ID3	Total Errors 4 8 13 19
	DiVS Results " M Misc. Unc. Total Errors 5 3 1 4 6 4 1 5 0 7 2 1 3 8 1 1 2 9 2 2 4 5 16 12 28 6 4 6 10 5 % 7 8 0 8 8 1 1 2 9 3 3 6

Table 3 :

 3 Error rates on the waveform pb averaged on 10 independent selections of 300-example training sets, and measured on a xed 5 000 test set.

	Reference Results % Errors BP 17.1 1 LD 20.4 1 SIA 24.3 0.7 k-NN 27 1.7 ID3 28 1.8
	DiVS Results " M 8 5 % 9 10 8 10 % 9 10 8 15 % 9 10	% Errors 18.5 0.4 19.2 0.2 20.1 0.2 17.9 0.3 18.7 0.3 19.3 0.1 18.6 0.1 18 0.3 18.6 0.2

It decreases thereafter, as most VSs collapse and are removed from the list.

To be precise, VS is also ensured not to collapse if either the list of positive examples or the list of negative examples is empty. However, such VSs would be heavily corrupted in case of noisy examples or disjunctive concept.

The counter-examples to a positive example are the negative examples; and the counter-examples to a negative example are the positive examples. More generally, when the data represent several mutually exclusive concepts, the counter-examples to an example of one concept are the examples of all other concepts.

If the three classes are equi-represented, the misclassication rate is lower bounded by 14%.

By construction, the classi cation of a given instance E derives from its neighbors Exi in the training set. For any Exi neighbor to E, let us consider the most speci c hypothesis covering E and Exi; it is straightforward to show that this hypothesis is consistent (up to the xed degree of inconsistency "), it covers E and Exi and votes for classifying E in the class of Exi.
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