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ABSTRACT. This article is concerned with the use of topological derivative as a tool for prelim-
inary elastic-wave probing of bounded or unbounded solids for buried objects. A formulation
for computing the topological derivative field, based on an adjoint solution, is presented. A set
of numerical results is included to illustrate the utility of topological derivative for outlining
the cavity location and size prior to doing an actual inversion of measurements. The results
presented here were obtained from a BIE solution, but the proposed methodology is applicable
to other computational platforms such as the finite element method.

RÉSUMÉ. Cet article porte sur l’application de la notion de gradient topologique à l’identifica-
tion d’objets enfouis à l’aide de données élastodynamiques. On présente une formulation, repo-
sant sur un état adjoint, pour le calcul du champ de dérivée topologique. Des exemples numé-
riques sont présentés dans le but d’illustrer l’utilité de la dérivée topologique pour l’estimation
de l’emplacement et de la taille d’une cavité, notamment dans le but d’obtenir une estimation
initiale préliminaire à une procédure d’inversion. Les résultats ont été obtenus au moyen d’un
programme fondé sur les éléments de frontière, mais le calcul de la dérivée topologique peut
être effectué via toute autre technique, en particulier les éléments finis.

KEYWORDS: cavity identification, elastodynamics, inverse scattering, adjoint field method, shape
sensitivity, topological derivative.

MOTS-CLÉS : identification de cavité, élastodynamique, diffraction inverse, méthode de l’état ad-
joint, dérivée géométrique, dérivée topologique.
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1. Introduction

Three-dimensional imaging of cavities embedded in a solid using elastic waves is a
topic of intrinsic interest in a number of applications ranging from nondestructive ma-
terial testing to oil prospecting and underground object detection. In situations when
detailed mapping of objects (defense facilities, buried waste) is required and only a
few measurements can be made, the use of surface discretization-based boundary inte-
gral equation (BIE) techniques provides the most direct link between the surface mea-
surements and the buried geometrical objects. Such an approach is well established
for acoustic problems [COL92]. More recently, a BIE-based analytical and computa-
tional framework for the identification of cavities in a semi-infinite solid from surface
elastodynamic measurements has been developed and reported in [GUZ03, NIN03].
Computing time considerations are such that global search methods are currently im-
practical for three-dimensional elastodynamic inverse scattering problems, and hence
led to using a conventional gradient-based ‘blind’ optimization scheme. As often with
such schemes, the highly non-convex character of the cost function makes the identi-
fication result dependent on the initial guess.

This has prompted the authors to investigate the use of topological derivative as a
tool for preliminary probing. The formulation presented in this article is applicable to
bounded or unbounded elastic media. A set of numerical results is included to illus-
trate the utility of topological derivative for outlining the cavity location, shape and
size prior to doing an actual inversion of measurements. Despite the fact that the re-
sults presented here were obtained from a BIE solution, the proposed methodology is
readily applicable to other computational platforms such as the finite element method.

2. Preliminaries

Let Ωtrue denote an elastic body bounded by the external surface S, divided into
complementary subsets SN and SD supporting prescribed tractions and displacements,
respectively. An unknown cavity (or a set thereof) Btrue bounded by the closed sur-
face(s) Γtrue is embedded in Ωtrue, so that Ωtrue = Ω\B̄true where Ω is the reference,
i.e. cavity-free, counterpart of Ωtrue. On applying a steady-state traction p on SN with
angular frequency ω, an elastodynamic state utrue arises which solves the problem

L(ω)utrue = 0 (in Ωtrue),

ttrue = p (on SN), ttrue = 0 (on Γtrue), utrue = 0 (on SD).
[1]

Here ρ is the mass density, C is the fourth-order isotropic elasticity tensor character-
ized by the shear modulus µ and Poisson’s ratio ν, L(ω) is the Navier linear partial
differential operator, i.e. L(ω)w = div(C :∇w) + ρω2w, and ttrue ≡ σtrue ·n = (C :
∇utrue)·n denotes the traction vector associated with the displacement utrue through
Hooke’s law. For simplicity, it is assumed that ω is not an eigenfrequency of any of
the boundary-value problems appearing in the ensuing developments.

For the inverse problem of interest, where the location, topology and geometry of
Btrue (or equivalently Γtrue) is being sought, the trace of utrue on S (denoted hereafter
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as uobs) is assumed to be available over the measurement region Sobs ⊂ SN. Let uc

denote the solution to the forward problem for a given excitation p and a trial cavity
Bc bounded by Γ: uc is then defined over Ωc = Ω\B̄c, and governed by the equations

L(ω)uc = 0 (in Ωc), tc = p (on SN), tc = 0 (on Γ). uc = 0 (on SD). [2]

where tc is the traction vector associated with uc. To solve the inverse problem, a
misfit cost function is set up in order to minimize the difference between uobs and uc.
Generic cost functions having the format

J (Ωc) =

∫

Sobs

ϕ(uc(ξ), ξ) dΓξ [3]

are considered. The output least-squares cost function, commonly used for such pur-
pose, corresponds to the particular case where 2ϕ(w, ξ) = (w(ξ)−uobs(ξ)) ·W (ξ) ·
(w(ξ)−uobs(ξ)), where W (ξ) is a 3× 3 matrix-valued weighting function, assumed
to be symmetric and positive definite (the simplest choice being W (ξ) = I2), while
overbar denotes complex conjugation.

3. Topological derivative

To aid the gradient-based minimization of J (Ω), a tool often used for identifying
Btrue on the basis of uobs, the development of topological derivative for the cost func-
tionals of form [3], which would facilitate a rational selection of the necessary initial
“guess” in terms of the location, topology and geometry of Btrue, is investigated. To
this end, let Bε(x

o) = xo + εB, where B ⊂ R
3 is a fixed bounded open set with

boundary S and volume |B| containing the origin, define the region of space occu-
pied by a cavity of (small) size ε > 0 containing a fixed sampling point xo. Following
[GAR01, SOK99], one is in particular interested in the asymptotic behavior of J (Ωε)
for infinitesimal ε > 0, where Ωε = Ω\Bε(x

o), and Bε(x
o) is the closure of Bε(x

o).
The topological derivative T (xo) of the cost functional J (Ω) at xo for a cavity-free
body is hence defined through an expansion of the form:

J (Ωε) = J (Ω)+f(ε) |B| T (xo)+o(f(ε)) (ε ≪ Diam(Ω), Bε(x
o) ⊂ Ω) [4]

where the function f defines the leading asymptotic behavior of J (Ωε) and is such
that f(ε) → 0 as ε → 0. The definition [4] is not restricted to spherical infinitesimal
cavities (for which B is the unit ball, S the unit sphere and |B| = 4π/3). In general,
the value T (xo) is expected to depend on the shape of B.

With reference to [4], the evaluation of J (Ωε) requires the knowledge of the elas-
todynamic solution uε to the forward problem [2] with Bc replaced by Bε ≡ Bε(x

o).
It is thus convenient to decompose the total displacement field uε as uε = u + ũε,
where ũε denotes the scattered field and u is the free field defined as the response of
the void-free (reference) solid Ω due to given excitation (i.e. boundary traction) p, so
that

L(ω)u = 0 (in Ω), t = p (on SN), u = 0 (on SD), [5]
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where t is the traction vector associated with u, and

L(ω)ũε = 0 (in Ωε),

t̃ε = 0 (on SN), ũε = 0 (on SD), t̃ε = −(C :∇u)·n (on Γε)
[6]

where σ = C : ∇u is the stress tensor associated with the free field [5], Γε is the
boundary of Bε, and n is the normal on S ∪ Γε outward to Ωε. For infinitesimal ε the
scattered field is expected to vanish, i.e. limε→0 |ũ

ε(x)| = 0 (x ∈ Ωc), whereas the
free-field, by its definition [5], does not depend on ε. One may expand J (Ωε) with
respect to ũε as

J (Ωε) =

∫

Sobs

ϕ(uε(ξ), ξ) dΓξ

=

∫

Sobs

[

ϕ(u(ξ), ξ) + Re
(∂ϕ

∂u

(

u(ξ), ξ
)

·ũε(ξ)
)

+ o(|ũε(ξ)|)
]

dΓξ

= J (Ω) +

∫

Sobs

Re
(∂ϕ

∂u

(

u(ξ), ξ
)

·ũε(ξ)
)

dΓξ + o(‖ũε‖) [7]

where
∂ϕ

∂w
≡

∂ϕ

∂wR

− i
∂ϕ

∂wI

(

wR = Re(w) , wI = Im(w)
)

[8]

By means of [4] and [7], the topological derivative of J (Ω) can be recast as:

T (xo) = lim
ε→0

1

f(ε) |B|

∫

Sobs

Re
(∂ϕ

∂u

(

u(ξ), ξ
)

·ũε(ξ)
)

dΓξ. [9]

One is then left with the task of evaluating the leading contribution of the integral
in [9] for ε ≪ 1.

4. Adjoint field approach

Define the adjoint field
⋆

u(ξ) as the solution to the elastodynamic problem

L(ω)
⋆

u = 0 (in Ω),
⋆

t =
∂ϕ

∂u
(u, ·) (on Sobs),

⋆

t = 0 (on SN\Sobs),
⋆

u = 0 (on SD).
[10]

where u is the free-field defined by [5], the prescribed traction is defined in terms of
the cost function density ϕ, and the convention [8] is employed. Application of the
elastodynamic reciprocity theorem to

⋆

u and ũε over Ωε yields
∫

Γε

(
⋆

u·t̃ε − ũε ·
⋆

t) dΓξ =

∫

§obs

ũε ·
∂ϕ

∂u
(u, ·) dΓξ, [11]

which makes use of the boundary conditions in [6] and [10]. In practical terms, the
assumed distribution of

⋆

p over Sobs can be interpreted as being proportional to a
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measure of the misfit between the measured displacement field uobs and the (reference)
free-field u. In particular, in the least-squares case, ∂ϕ/∂u = W T(u − uobs) so that
⋆

p depends linearly on the observed scattered field u−uobs. On the basis of [6], [7]
and [11], one finds that

J (Ωε) = J (Ω) + Re

[
∫

Γε

⋆

u ·t̃ε dΓ −

∫

Γε

ũε ·
⋆

t dΓ

]

+ o(‖ũε‖)

= J (Ω) − Re

[
∫

Γε

⋆

u ·t dΓ +

∫

Γε

ũε ·
⋆

t dΓ

]

+ o(‖ũε‖) as ε→0. [12]

For a given primary excitation p, the first integral over Γε in [12] is known since the
adjoint field

⋆

u is determined solely in terms of u, uobs and the cost function density ϕ
(see [10]). In fact, by virtue of [5], one has

∫

Γε

⋆

u·t dΓ = −

∫

Bε

∇·(
⋆

u·C :∇u) dΩ =

∫

Bε

(

ρω2 ⋆

u·u −∇
⋆

u :C :∇u
)

dΩ

= ε3 |B|
(

ρω2 ⋆

u·u −∇
⋆

u :C :∇u
)

(xo) + o(ε3) as ε→0 [13]

where the minus sign in front of the first integral over Bε appears because t is defined
in terms of the unit normal n pointing to the interior of Bε.

To complete the expansion of J (Ωε) in [12], one is left with evaluating the leading
asymptotic behavior of the last integral for vanishing ε. To accomplish this task, the
asymptotic behavior of ũε on Γε must be investigated. This study [GUZ04] is based
on an asymptotic analysis of the governing BIE for ũε and yields the following result:

ũε(ξ) = εσkℓ(x
o)Ukℓ(ξ̄) + o(ε) (ξ ∈ Γε) [14]

with

{

∇ξ̄ ·(C :∇ξ̄U
kℓ) = 0 (ξ̄ ∈ R

3\B̄),

(C :∇ξ̄U
kℓ)·n = −(nkeℓ + nℓek)/2 (ξ̄ ∈ S ),

where ξ̄ = ξ/ε is a normalized position vector. The six canonical displacements
U

kℓ(ξ̄) are seen to solve normalized exterior elastostatic problems that do not depend
on xo and ε. Then, by employing [14], one obtains
∫

Γε

ũε·
⋆

t dΓ = ε3 ⋆

σij(x
o)σkℓ(x

o)

∫

S

U
kℓ
i (ξ̄)nj(ξ̄) dϑξ̄+o(ε3) as ε→0. [15]

where dϑξ̄ denotes the area differential element on the unit sphere. On substitut-
ing [15] and [13] into [12], the leading asymptotic behavior of J (Ωε) for vanishing ε
is found to take the form

J (Ωε) = J (Ω) + ε3 |B|Re
[

(

⋆

σ :A :σ − ρω2 ⋆

u·u
)

(xo)
]

. [16]

Note in particular, with reference to [4], that the analysis shows that f(ε) = ε3, which
is also known to hold for traction-free cavities in the 3-D elastostatic case [GAR01,
SOK99]. The constant fourth-order tensor A is defined by

Aijkℓ =
1

2µ

{

Iijkℓ −
ν

1 + ν
δijδkℓ

}

−
1

|B|

∫

S

Ukℓ
i (ξ̄)nj(ξ̄) dϑξ̄ [17]

5



Finally, by virtue of [4] and [16], the sought adjoint-field formula for the topological
derivative is

T (xo) = Re
[

(

⋆

σ :A :σ − ρω2 ⋆

u·u
)

(xo)
]

[18]

For an arbitrarily shaped infinitesimal cavity, the six canonical problems in [14] should
in general be solved numerically. This is a modest computational task, since in fact
one only needs to solve six elementary static problems which do not depend on xo.
For the particular case of a spherical infinitesimal cavity, the problems in [14] have
an analytical solution, from which the following closed-form expression of A is ob-
tained:

Aijkℓ =
3(1−ν)

4µ(7−5ν)

[

5(δikδjℓ + δjkδiℓ) −
1+5ν

1+ν
δijδkℓ

]

[19]

Expression [18] of the topological derivative is implicit in that it relies upon so-
lutions of boundary-value problems on the cavity-free reference body Ω. An ex-
plicit expression for T (xo) is obtained in terms of the elastodynamic Green’s tensor
û

k(ξ,x, ω), i.e. the elastodynamic displacement field generated by a unit point force
applied at x ∈ Ω along the k-th direction and satisfying the boundary conditions

ûk
i (ξ, x, ω) = 0 (ξ ∈ SD, ξ 
= x), t̂ki (ξ,x, ω;n) = 0 (ξ ∈ SN, ξ 
= x)

In this case, the free and adjoint displacement fields are given by

uk(x) =

∫

SN

pi(ξ)ûk
i (ξ,x, ω) dΓξ ,

⋆

uk(x) =

∫

SN

⋆

pi(ξ)ûk
i (ξ,x, ω) dΓξ [20]

and the expression [18] becomes explicit as well. Such Green’s tensors are explicitly
known for simple unbounded media, but not in general for finite domains.

5. Numerical examples

5.1. Pressurized annular sphere

To validate the foregoing developments, the elastodynamic Neumann problem for
a spherical shell (outer radius R, inner radius atrue< R), shown in Fig. 1, is consid-
ered. The shell, Ωtrue, is subjected to a uniform time-harmonic pressure p acting over
its external surface S. For this problem, the closed-form expression for topological
derivative, T (ro), where 0< ro<R denotes the radial coordinate of a sampling point
inside the void-free, i.e. reference body Ω (see Fig. 1), can be obtained for the least
squares cost function J with Sobs = S and W = I2. To provide a basis for compar-
ison, numerical values of the topological derivative T (ro) are computed by means of
a three-dimensional boundary element solution [PAK99] applied to the adjoint-field
formula [18] with p = µ, ν = 0.3, R/atrue = 3 and ωR

√

ρ/µ = 3. In the numerical
model, the inner and outer surfaces of the annular sphere were discretized using 486
and 150 eight-noded boundary elements, respectively, which provides at least 12 el-
ement lengths per shear wavelength for the excitation frequency chosen. The adjoint
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Figure 1. Spherical shell: geometry and notation (top); topological derivative T (ro)
along a radial line (bottom)

field technique for computing T (ro) yields results that are in good agreement with the
closed-form solution (see Fig. 1), the RMS error for the featured set of grid points
being 1.5 10−3. It should be mentioned, however, that the accuracy of numerical es-
timates of T (ro) was found to deteriorate for values of ro/R close to unity, primarily
as a result of the near-singular nature of the integral representation for stresses at ob-
servation points close to the boundary.

5.2. Cavity embedded in a half-space

The configuration is as depicted in Fig. 2, with the ‘true’ spherical cavity, of diame-
ter D=0.4d, centered at (d, 0, 3d). In succession, the cavity is illuminated by 16 axial
point sources acting on the surface of a semi-infinite solid. For each source location,
the surface motion uobs is monitored at 25 sensors distributed over the square testing
grid; here, this data is simulated using the BEM formulation of the forward problem.
Four excitation frequencies ω̄ ≡ ωd

√

ρ/µ = 1, 2, 4, 8 have been considered.

For this testing configuration, the values of T (xo) are computed over the horizon-
tal surface Sh = {ξ ∈ Ω| − 5d<ξ1 <5d, −3d<ξ2 <3d, ξ3 = 3d} passing through
the centroid of the ’true’ cavity and plotted in Fig. 3 for the above-defined set of fre-
quencies. The computational grid is chosen so that the sampling points xo are spaced
by 0.25d in both ξ1 and ξ2 directions. In the display, the red tones indicate negative
values of T and thus possible cavity location; for comparison, the true cavity is out-
lined in white in each of the diagrams. The results clearly demonstrate the usefulness
of the topological derivative as a computationally efficient tool for exposing the ap-
proximate cavity location, with “higher” frequencies (ω̄ = 2, 4) providing in general
better resolution. From the diagram for ω̄ = 8 where λs/D ≈ 1, however, it is also
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Figure 2. Cavity embedded in a half-space: definition and notation

evident that the infinitesimal-cavity assumption embedded in [4] performs best when
used in conjunction with wave lengths exceeding the cavity diameter.

For completeness, the variation of T (xo) across the vertical planar region Sv =
{ξ∈Ω|−5d<ξ1 <5d, ξ2 =0, 0.25d<ξ3 <6d} is given in Fig. 4. Similar to the earlier
diagram, the sampling points xo are spaced by 0.25d in the ξ1 and ξ3 directions. The
fact that both source and receiver points are limited to a single planar surface clearly
leads to a diminished resolution compared to the previous result. The contour plots
for ω̄ = 2 and 4 exhibit greater accuracy than that for ω̄ = 1, but are also plagued with
local minima that are absent in the former diagram. The non-informative distribution

ω=1 ω=2

ω=4 ω=8

Figure 3. Cavity embedded in a half-space: distribution of (µd)−1T (xo) in the ξ3 =
3d (horizontal) plane
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Figure 4. Cavity embedded in a half-space: distribution of (µd)−1T (xo) in the ξ2 = 0
(vertical) plane

of T for ω̄ = 8 indicates that the use of topological derivative in elastic-wave imaging
is most effective at ‘low’ excitation frequencies, i.e. those inside the resonance region.

With diagrams such as those in Figs. 3 and 4, an algorithm for identifying plausible
cavity locations could be thus devised on the basis of the non-zero distribution of

T̂ (xo) = T (xo)H(−C − T (xo)) [21]

where C < 0 denotes a suitable threshold value and H(·) is the Heaviside step func-
tion. With such definition, it is also possible to combine the individual advantages of
different probing wavelengths by employing the product of [21] at several frequencies.
As an illustration of the latter approach, Fig. 5 plots the distribution of the product of
T̂ |ω̄=1 and T̂ |ω̄=2 in the vertical plane, with C set to approximately 40% of the global
minima of the respective distributions in Fig. 4. Despite the limited accuracy and mul-
tiple minima characterizing respectively the individual solutions for ω̄ = 1 and ω̄ = 2,
the combined result stemming from [21] points to a single cavity with its centre and
size closely approximating the true void configuration.

5.3. Cavity embedded in a cube

To illustrate the utility of topological derivative as a preliminary tool for elastic-
wave sounding of finite bodies, this example deals with the delineation of a spherical
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Figure 5. Distribution of (µd)−2T̂ |ω̄=1 × T̂|ω̄=2 in the ξ2 = 0 plane

cavity of radius atrue =0.5d, hidden inside a solid cube of size 6d × 6d × 6d. Similar
to the previous example, the elastic solid is characterized by the shear modulus µ,
mass density ρ, and Poisson’s ratio ν =0.3. With reference to a Cartesian coordinate
system aligned with the box edges (see Fig. 6), the cube and the cavity are centered
respectively at (0, 0, 0) and (d, 1.5d, d). The cubical body, with external surface S, is
fixed (u(ξ)=0, ξ∈SD) over the bottom patch SD ={ξ∈S|−5.4d<ξ1<5.4d, −5.4d<
ξ3 <5.4d, ξ3 = −3d}. Prior to the application of time-harmonic excitation used to
illuminate the cavity, the rest of the external surface, SN =S\SD, is traction free. As
indicated in Fig. 6, surfaces of the cube and the cavity are discretized using 600 and
64 eight-node (quadratic) boundary elements, respectively.

In sequence, a virtual elastodynamic experiment is performed on each of the four
vertical faces of the cube. With reference to the vertical testing face ξ1 = −3d, the
experiment parameters are chosen so that i) Γobs = {ξ ∈ SN , |ξ1 = −3d, −3d<ξ2<
3d, −3d < ξ3 < 3d}, and ii) the cavity is illuminated in sequence by five localized
(pyramid-shaped) distributions pq(ξ) (ξ ∈ Γobs, q = 1, 2, . . . 5) of surface tractions,
each of resultant P = µd2, centered at (−3d, 0, 0) and (−3d,±1.8d,±1.8d), respec-

x/d

z/d

y/d

Figure 6. Cavity embedded in a cube: BEM mesh
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Figure 7. Distribution of T (xo)/d in coordinate planes: a) ξ3 =d, b), ξ2 =1.5d, and
c) ξ1 =d containing the center of the true cavity (top: ω̄ = 1, bottom: ω̄ = 2)

tively, applied over square patches of four boundary elements. Virtual experiments on
the remaining vertical faces, i.e. ξ1 =3d, ξ2 =−3d and ξ2 =3d, are performed in an
analogous fashion with the applied normal tractions (pressure) acting respectively in
the negative ξ1-, positive ξ2-, and negative ξ2-direction, respectively. The cost function
J is of least-squares format with W=I2, and its topological derivative T is calculated
by summing the contribution from all 4 × 5 = 20 experiments. Again, all elastody-
namic calculations are performed using the boundary element analysis in [PAK99].

Figure 7 illustrates the distribution of topological derivative corresponding to ex-
citation frequencies ω̄ = 1 and ω̄ = 2. In both displays, the distribution is plotted in
three coordinate (cutting) planes containing the center of the true cavity. To provide a
reference, intersection of each plane with the true cavity surface is outlined in white.
One may observe that each distribution indeed points toward the true cavity through
negative values of T (xo). Unfortunately, the “low-frequency” map suffers from blur-
ring, while an increased resolution of the “higher-frequency” map is diminished by the
appearance of spurious minima. One should mention, however, that both excitation
frequencies fall into the so-called resonance region [COL92] where the wave lengths
are larger than the size of the scatterer: (λs/d)|ω̄=1=2π and (λs/d)|ω̄=2=π, where d
is the cavity diameter and λs denotes the shear wave length. The particular effective-
ness of long wavelengths for preliminary imaging by way of topological derivative is
not surprising, since the assumption of an infinitesimal cavity, implicit to [9], is better
conformed with by finite cavities that are ‘small’ relative to the probing wavelength.

In addition, Fig. 8 plots the distribution of the product T̂ (xo)|ω̄=1×T̂ (xo)|ω̄=2 in
three coordinate planes containing the center of the true cavity, where T̂ (xo) is defined
by [21] with C = 0.5 infxo T (xo). Again, this distribution clearly points to a single
cavity with its center and size closely approximating the true void configuration.
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Figure 8. Distribution of (1/d2)T̂ |ω̄=1× T̂|ω̄=2 in coordinate planes: a) ξ3 = d, b),
ξ2 =1.5d, and c) ξ1 =d containing the center of the true cavity

6. Summary

In this study, the concept of topological derivative that has its origins in elasto-
statics and shape optimization is extended to 3D elastic-wave imaging of solids. The
proposed derivation follows a pattern which is generic, i.e. transposable to i) other
numerical techniques (e.g. BIE, BEM, or FDM), ii) variety of physical problems de-
scribed by linear field equations such as acoustics, heat transfer, and electromagnetics,
and iii) other types of infinitely small objects, such as inhomogeneities or cracks. Nu-
merical results suggest that the topological derivative is a useful tool for outlining
hidden objects from surface measurements at a modest computational cost.
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