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ABSTRACT

We propose a new method for reconstructing
defects in bulk materials, via the recovery of the
electronic volume density ne in the material, us-
ing doubly Compton-scattered gamma photons in
transmission imaging modality. We establish an
integral relationship between the photon flux den-
sity after a double scattering and the product of
electronic densities at two different sites. This pho-
ton flux density at different scattering angles can
be measured by an energy-position detector in a
fixed configuration. Thus the reconstruction of ne

can be formulated as an inverse problem of the in-
tegral relation, which is bilinear in the electronic
densities. This theoretical result opens the way for
a new imaging principle, which exploits scattered
radiation rather than discarding it as in most ex-
isting imaging procedures. In this new procedure,
the motion of the detector is no longer necessary
as it is the case of conventional tomography.

NOMENCLATURE

g(D,S|τ) : flux density at detection site D

due to incoming pencil source beam
having a trace at S on the detector.

G(D, τ) : flux density at site D for given τ .
l : distance slab-detector.
L : thickness of slab.
ne(M) : electronic density at site M.

also noted ne(D, τ).

n0
e, n

1
e : constant electronic density in surro-

unding medium and in defect.
Φ0 : constant incident flux density.
ρ : distance |DS|.
τ : cotangent of the scattering angle θ.

INTRODUCTION

The goal in non-destructive control is to obtain
information (location, form, representative param-
eters) about defects in bulk materials. This is up
to now done by X-ray or gamma ray transmission
imaging. In these methods of investigation, the
defect is represented by its linear attenuation dis-
tribution µ. The data consists of line integrals of
the attenuation density along lines joining source
points to detector points. A three dimensional re-
construction of the volume defect can be realized
if a complete set of data is obtained with various
directions of the incident source beam. However
this may not be always realizable in practical situ-
ations where the geometry of the piece of material
imposes severe restrictions on the motion of the
radiation source.

In this paper, we describe an alternative method
of investigation of defects. Instead of representing
the material under study by its absorption func-
tion, as usually done, we shall describe it alterna-
tively by its electronic density ne. Indeed at the
location of defects (inclusions, voids or cracks) ne

will change drastically and will exhibit discontin-
uous jumps in values. The distribution of scat-
tered photons will change accordingly. The deter-
mination of ne from single scattered photons (in-
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stead of non-scattered ones) has been introduced in
Compton Scatter Tomography [6]. But no analyti-
cal inversion procedure is available. In the present
work we propose an analytical inversion method for
obtaining ne from the series of doubly Compton-
scattered photon distributions at various scattering
angles. Moreover we show that in this procedure
the motion of the detector is no longer necessary
and consequently may be more interesting from the
point of view of operational level [2, 3].

In order to focus solely on the scattering aspect,
the attenuation mainly due to photoelectric effect
shall be neglected here. This hypothesis is accept-
able in the low energy range of gamma photons. In
a transmission imaging system with collimated de-
tector, if the material slab is of thickness L and lim-
ited by parallel planes, for incoming gamma pho-
tons perpendicularly to the slab to emerge parallel
to the incident direction, there must be at least
two Compton collisions. This is why we propose to
exploit the properties of double Compton scatter-
ing for determining ne, since higher order collisions
have much weaker probability of occurrence.

The paper is organized as follows. In the next
section, we establish the basic relation connecting
the flux density of photons G(D, τ) - image mea-
sured on the detector plane - to ne(r) - the elec-
tronic distribution in the bulk material. This re-
lation will be called also the ”imaging equation”.
Next, we introduce the concept of Transmission
Pencil Source Function (TPSF), which plays the
role of the well-known PSF in emission imaging.
Then images of cracks of simple form are computed
as illustrations with the use of the TPSF. In the fol-
lowing section, the inverse problem of determining
the volume extent of the crack using the measured
flux density G(D, τ), is considered. It is shown
that an analytical solution exists if one makes use
of the whole set of data collected at all scattering
angles θ. This theoretical result opens the way for
a new transmission imaging principle in which one
takes advantage of the double Compton scatter-
ing whereby the complete data is obtained without
moving the detector. Conclusions and outlook are
given in the last section.

IMAGING EQUATION

We consider an incident gamma-ray beam of ini-
tial energy E0 and of constant flux density Φ0 on
a slab of material of thickness L, in which the elec-
tronic density is ne(r). Normally the gamma rays
at this energy will go through the object, if no at-
tenuation is assumed. They are collected on the
plane of a collimated gamma camera, which has an
axis parallel to the incident beam, and located at
a distance l from the slab face.

However part of the gamma rays will undergo
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Figure 1: Schematic representation of the func-

tioning principle

Compton scattering, and actually two scattering if
they are to emerge parallel to the incident direc-
tion (see figure 1). They form images parameter-
ized by the scattering angle θ, or alternatively by
the outgoing photon energy E. The photon energy
recorded after two collisions with the same scatter-
ing angle θ is given by the Compton formula:

E =
E0

1 + 2ǫ(1 − cos θ)
,

where ǫ = E0

mc2
is the ratio of the initial photon

energy to the rest energy of the electron. This for-
mula has the same form as the formula for one
collision, but with 2ǫ instead of ǫ.

Let Φ0 be the constant incident flux density.
Now the flux density of photons Φ(M), scattered
at a site M (ξM , ηM , ζM ) (first collision site) in the
bulk material into a solid angle dΩN is given by
the expression:

Φ0r
2
eP (θ)dΩNne(M)dM = Φ(M)dσN

where dΩN = dσN/MN2, dσN being
the elementary surface subtended at site
N (ξN , ηN , ζN )(second collision site). The
differential Compton cross section is the term
r2

eP (θ) where re is the classical electron radius
and P (θ), the so-called Klein-Nishina probability
function [1].

P (θ) =
1

2[1 + ε(1 − cos θ)]2

[

1 + cos2 θ +
ε2(1 − cos θ)2

1 + ε(1 − cos θ)

]

. (1)
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The flux density of photons arriving at site N is
then obtained by dividing out dσN . This flux will
be scattered next at site N into the solid angle
dΩD. Finally the flux density photons collected at
detection site D ((ξD, ηD, 0) reads:

Φ0r
2
eP (θ)

ne(M)

MN2
dMr2

eP (θ)
ne(N)

ND2
dN.

In figure 1, we have given also the coordinate
system to be used in the calculations to come. The
scattering site M has coordinates:

ξM = ξD + r sin θ′ cos φ,
ηM = ηD + r sin θ′ sin φ,
ζM = ζN + r cos θ′.

where (r, θ′, φ) are the local spherical coordinates
centered at N.

The total flux density G(D, τ) on the detector is
the summation on contributions of:

• for given N, all sites M in the medium on a
cone of apex N, opening angle θ and axis Oζ,

• all sites N on a vertical at site D, verifying
l < ζN < ∞, since the slab is put at a distance l
from the detector.

Thus we introduce the corresponding integration
measures:

δ(Cone) = r−1δ(θ′ − θ)
δ(Line) = δ(ξN − ξD)δ(ηN − ηD).

Consequently the photon flux density at D is
given by:

G(D, τ) = [r2
eP (θ)]2

∫

∞

l

δ(Line) dξNdηNdζN

∫

1

r
δ(θ′ − θ)r2drdθ′ sin θ′dφ

1

r2
ne(M)

1

ζ2
ne(N)Φ0.

(2)
(Recall that Φ0 is the incident flux density of pho-
tons.)

Some integrations are now performed in order
to eliminate the δ-functions. The result may be
expressed in terms of the constant:

K(τ) = [r2
eP (θ)]2 sin θ.

where τ = cot θ and reads as:

G(D, τ)

K(τ)
=

∫

∞

l

dζN

ζ2
N

ne(D, ζN )

∫

∞

0+

dr

r

∫ 2π

0

dφ

ne(ξD +r sin θ cos φ, ηD +r sin θ sin φ, ζN +cos θ)Φ0.

Introducing now the projection of site M on
the detector plane S, we observe that ξS = ξD +
r sin θ cos φ, ηS = ηD + r sin θ sin φ and ζS = 0. We
may put the result as:

G(D, τ) = K(τ)

∫

∞

0+

dr

r

∫ 2π

0

dφ

∫

∞

l

dζN

ζ2
N

ne(D, ζN )ne(S, ζN + r cos θ)Φ0, (3)

here this expression is evidently bilinear in the elec-
tron densities. Let us call ρ = r sin θ, the distance
between sites D and S, i.e. |D − S| = ρ, then we
can rewrite conveniently this expression as:

G(D, τ) = K(τ)

∫

∞

0+

ρdρ

ρ2

∫ 2π

0

dφ

∫

∞

l

dζN

ζ2
N

ne(D, ζN )ne(S, ζN + ρτ)Φ0,

this can be rearranged as an integral over S as:

G(D, τ) =

∫

beamsection

dSg(S,D|τ)Φ0, (4)

where g(S,D|τ), is defined as the Transmission
Pencil Source Function (TPSF) of the problem.
The TPSF represents the transmission image by
double Compton scattering of a unit flux density
pencil source at infinity incoming normally on the
detector plane. This function will play the role of
the PSF function in emission imaging. It is given
by:

g(S,D|τ) =
K(τ)

ρ2

∫

∞

l

dζN

ζ2
N

ne(D, ζN )ne(S, ζM ).

(5)
where ζM = (ζN + ρτ). This function describes
thus the illumination of the material slab by an
incoming pencil beam and serves to explore the
structure of defects in the bulk.

For an arbitrary incoming beam with finite sec-
tion, e.g. from an extended source far away, φ0 =
φ0(S) and this must be taken care of in the inte-
gration standing in equation (4).

IMAGES OF SIMPLE SYSTEMS

The purpose of this section is to illustrate the
imaging mechanism of the TPSF on simple sys-
tems. As already mentioned, gamma rays can be
used to reconstruct variations of the electronic den-
sity at very small (atomic) scales. But for the local-
ization of macroscopic defects in materials, these
details are irrelevant and homogeneous medium
can be considered to have a constant electronic
density equal to its mean macroscopic value [4].
Defects may appear as cracks or voids where the
electronic density drops brutally to zero or filled
volumes with a different value of the electronic den-
sity. And this is precisely what we wish to detect.

1-Image of a homogeneous material slab

As the electronic density is assumed to be con-
stant and equal to n0

e, the TPSF can be explicitly

3
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Figure 2: TPSF Flux density at θ = 36 degrees
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Figure 3: TPSF Flux density at θ = 90 degrees

evaluated:

g(S,D|τ)

K(τ)(
n0

e

ρ
)2

=







Y (L − ρτ) (L−ρτ)
l(l+L−ρτ)

if τ > 0

Y (L + ρτ) (L+l+ρτ)
(l+L)(−ρτ)

if τ < 0
L

l(l+L)
if τ = 0.

(6)
Here Y (x) stands for the Heaviside unit step func-
tion. Rotational symmetry around the incident
pencil beam is reflected by the sole dependence on
ρ. This image will serve as basis for detecting de-
fects. Fig 2 and Fig.3 give a representation of the
TPSF at two scattering angles.

At 90 degrees scattering angle, the TPSF has a
very simple behavior, i.e. its varies as ρ−2.

Finally the form of the peak changes according
to the ratio l/L.

2-Image of a linear defect

Consider a linear defect situated on a line per-
pendicular to the detector plane at a site S0 on the
detector plane. The defect has a length h << L
and its middle point is at a distance ζ0 from S0.
On the defect there is an electronic density n1

e, dif-
ferent from the slab electronic density n0

e . The
question is now how would the TPSF detect this
defect? Two situations are possible:

• if the defect is not exactly positioned on the
direction of the incoming beam and the detection
site D different from S0, then the measured flux
density g(S,D|τ) is the same as in the case of the
homogeneous slab (see equation 6). But if D is
precisely at S0 then the measured flux density is,
for τ > 0, given by:

g(S,D|τ) =
K(τ)

ρ2
0

{

(n0
e)

2(L − ρ0τ)

l(l + L − ρ0τ)
−

[(n0
e)

2 − (n1
e)

2]h

ζ2
0 − 1

4
h2

}

, (7)

where ρ0 = |S0D|. When n1
e → 0, the defect be-

comes a crack, and when h → 0 we get the limit
of the point defect. Then it is clear that the TPSF
cannot ”see” a point defect since we recover the
flux density of equation 6.

• if the probing pencil beam falls directly on the
defect, then one would measure, also for τ > 0 or
the scattering angle 0 < θ < π/2 :

g(S,D|τ) =
K(τ)

ρ2

{

(n0
e)

2(L − ρτ)

l(l + L − ρτ)
−

[(n0
e)

2 − (n1
e)

2]h

(ζ0 − ρτ)2 − 1
4
h2

}

. (8)

Thus a linear vertical defect would cause a jump in
the recorded flux density as compared to the pat-
tern of a homogeneous slab. For τ < 0 or a scat-
tering angle larger than π/2, the main features of
the pictures remains the same but the expressions
are slightly modified.

3-Image of a rectangular defect

Having studied in detail the case of a linear per-
pendicular defect in the previous section, it is now
easy to treat many other cases. The simplest one
which can be generated is the case of the rectan-
gle perpendicular to the detector with center at
(ρ0, ζ0), with sides (h′, h) respectively parallel and
orthogonal to the detector.

• Despite the non-zero width h′, the behavior
of the TPSF with respect to this kind of defect is
exactly the same as in the case of the linear defect
of the previous subsection, if the incident pencil
beam does not cross the defect and if the detection
line (the line perpendicular to the detector at D)

4
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Figure 4: Rectangular defect plane with S and

D inside the plane.

crosses the defect. To see the spread of the defect
parallel to the detector one should move D along
the detector plane so that (ρ0 − h′/2) < ρ < (ρ0 +
h′/2).

• The interesting case occurs when the lines per-
pendicular to the detector at S and at D are inside
the rectangle and at a distance ρ < h′.

Then there are two values of the flux density
depending on τ :

a) if ρτ ≤ h and ρ < h′ we have:

g(S,D|τ) =
K(τ)

ρ2
{

2n0
en

1
e(

(ζ0 − ρτ)

(ζ0 − ρτ)2 − 1
4
h2

−
ζ0

ζ2
0 − 1

4
h2

)+

(n1
e)

2(
(h − ρτ)

(ζ0 −
1
2
h)(ζ0 − ρτ + 1

2
h)

+

(n0
e)

2(
(L − ρτ)

l(l + L − ρτ)
−

(h + ρτ)

(ζ0 + 1
2
h)(ζ0 − ρτ − 1

2
h)

}

b) but if ρτ > h and ρ < h′ we have:

g(S,D|τ) =
K(τ)

ρ2

{

(n0
e)

2(
(L − ρτ)

l(l + L − ρτ)

−
h

(ζ0 − ρτ)2 − 1
4
h2

−
h

ζ2
0 − 1

4
h2

)

+n0
en

1
e(

h

(ζ0 − ρτ)2 − 1
4
h2

+
h

ζ2
0 − 1

4
h2

)

}

(9)

From these results one can draw several conclu-
sions:

• for h → 0, we get the limit of an infinitely
thin horizontal defect: the flux density is that
of the homogeneous medium, in other words
it is ”invisible” by the TPSF. Also it is easy
to generalize to a horizontal disk defect or to
any horizontal planar defect: they cannot be
detected by the TPSF.

• for n1
e → 0, we get the limit of a rectangu-

lar crack. This crack does present a non-zero
”thickness” h with respect to the direction of
the incoming probing radiation.

• There are similar results for τ < 0.

4-Image of an arbitrary defect

From the previous considerations, we can make
general observations on how images are formed by
the TPSF. First of all, it must present a certain
”thickness” with respect to the incoming pencil ra-
diation. Then we can decompose the problem into
planar imaging problem by considering the inter-
section of the plane (π) which contains the two par-
allel lines perpendicular to the detector at D and
at S and the the slab of material to be investigated.

If these lines do not intersect the section of a
defect (Σ) in (π), then the flux density recorded
on the detector is that of a homogeneous medium.
Now if the perpendicular line at D intersects (Σ),
then the measured flux density has the pattern of a
linear perpendicular defect studied in the previous
subsection. Note that the height of such a defect
varies as site D moves on the detector plane, and
in the previous subsection we have looked at a par-
ticular section (Σ), which is a simple rectangle. Of
course, the interesting case would be the case where
both perpendicular lines at D and S intersect (Σ),
but this times the intersection lengths are no longer
equal. The general effect remains similar.

So in principle, a general image obtained of an
arbitrary defect of nonzero measure in the vertical
direction by the TPSF, can be constructed from the
TPSF image of a finite linear perpendicular defect.
The question is now how the defect in the bulk can
be reconstructed in space when a set of images, la-
belled by τ , or equivalently by the scattering angle
θ has been collected beforehand.

THE INVERSE PROBLEM

This is the problem of reconstructing the elec-
tronic density ne(r) from measurements made on
the detector. In this section, we show that this
problem has a solution, provided that certain work-
ing conditions are assumed. More precisely, we
show that the TPSF images can be used effectively
to reconstruct the electronic density as follows.

5
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Introducing the one-dimensional Fourier repre-
sentation of the electronic densities:

ne(D, ζN ) =

∫

∞

−∞

dw e2iπwζN ñe(D, w),

ne(S, ζ) =

∫

∞

−∞

dw′ e2iπw′ζ ñe(S, w′),

in equation (5), the TPSF can be recast under the
form:

g(S,D|τ) =
K(τ)

ρ2

∫ ∫

dw dw′ ñe(D, w) ñe(S, w′)

Jl(w + w′) exp[2iπ(lw + lw′ + w′ρτ)], (10)

where:

Jl(w) =

∫

∞

l

dζN

ζ2
N

e2iπ(w+w′)ζN = 2iπw

{e2iπlw [Ci(2πl|w|) − i ε(w) Si(2πl|w|)] −
i

2πwl
},

ε(w) being the sign function of w [5]. Now since
τ ∈ R, we could use it as Fourier variable to invert
equation 10, and obtain:

∫

∞

−∞

dτ e−2iπντ g(S,D|τ)

K(τ)
=

1

ρ2
ñe(S,

ν

ρ
)e

2iπl ν
ρ

∫

∞

−∞

dw ñe(D, w)Jl(w +
ν

ρ
)e2iπlw.

Here the left hand side appears as a superposition
of TPSF images taken at various scattering angles,
however the right hand side remains a bilinear con-
struct in the electronic densities at two different

sites. To get a better insight, we transform the
right hand side by back Fourier transform into:

∫

∞

−∞

dw ñe(D, w)Jl(w +
ν

ρ
)e2iπlw =

∫

∞

l

dζ

ζ2
ne(D, ζ)e

2iπ ν
ρ
(ζ−l)

,

and end up, after another Fourier inversion with a
final form:

∫

∞

−∞

dτ e−2iπντ g(S,D|τ)

K(τ)
=

1

ρ2
ñe(S,

ν

ρ
)

∫

∞

l

dζ

ζ2
ne(D, ζ) e

2iπ ν
ρ

ζ
. (11)

Remark. One could exchange the roles of D and S:
the incoming pencil beam falls perpendicularly on
the detector at site D and S becomes the detection
site. Then one has, with the same separation ρ:

∫

∞

−∞

dτ e−2iπντ g(D,S|τ)

K(τ)
=

1

ρ2
ñe(D,

ν

ρ
)

∫

∞

l

dζ

ζ2
ne(S, ζ) e

2iπ ν
ρ

ζ
.

Inversion is in fact based on one of these equa-
tions. In general, we have thus a pair of inte-
gral equations which are quadratic in the unknown
functions ne(r). To our knowledge a general solu-
tion does not exist. However under certain prac-
tical hypotheses, an inversion procedure may be
constructed.

Let us consider equation (11), which describes
the imaging of the medium by the TPSF centered
at S, the measurement of flux density being made
at site D. If S is chosen in such a way that ñe(S, ν

ρ
)

is known, one may locate in the sample a vertical
line to the detector along which the material is ho-
mogeneous, i.e. free of defects. Then we have:

ne(S, ζ) =

{

n0
e if l < ζ < (L + l)

0 otherwise.

Then ñe(S, ν
ρ
) may be exactly evaluated:

ñe(S,
ν

ρ
) =

n0
eρ

πν
e
−iπ ν

ρ
(2l+L)

sin π
ν

ρ
L.

Hence
∫

∞

l

dζ

ζ2
ne(D, ζ) e

2iπ ν
ρ

ζ
=

πνρ

n0
e

e
iπ ν

ρ
(2l+L)

sin π ν
ρ
L

∫

∞

−∞

dτ e−2iπντ g(S,D|τ)

K(τ)
. (12)

6
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To extract now the electronic density at D, we per-
form inverse Fourier transformation by multiplying
equation (12) on both sides by

∫

∞

−∞

d(
ν

ρ
) e

2iπ ν
ρ

ζ′

,

and integrate over ( ν
ρ
) to get the expression of the

electronic density at site (D, ζ′):

ne(D, ζ′) = ζ′2

∫

∞

−∞

d(
ν

ρ
) e

2iπ ν
ρ
( 2l+L

2
−ζ′) πνρ

n0
e

1

sin π ν
ρ
L

∫

∞

−∞

dτ e−2iπντ g(D,S|τ)

K(τ)
. (13)

An alternative way of inverting consists of choos-
ing a fixed detection site D with a perpendicular
line along which the electronic density is constant.
Then one can calculate immediately:

∫

∞

l

dζ

ζ2
ne(D, ζ) e

2iπ ν
ρ

ζ
= n0

eJl(
ν

ρ
).

Hence one deduces the Fourier transform ñe(S, ν
ρ
)

of ne(S, τ) and consequently:

ne(S, ζ′) =

∫

∞

−∞

d(
ν

ρ
) e

2iπ ν
ρ

ζ′

ρ2

n0
eJl(

ν
ρ
)

∫

∞

−∞

dτ e−2iπντ g(D,S|τ)

K(τ)
. (14)

This time we keep the detection site fixed, and
move around the incoming pencil beam to collect
the data before computing the reconstruction of
the defect. This is an equivalent procedure and the
choice between the two may depend on the practi-
cability of the measures at hand.

CONCLUSIONS AND OUTLOOK

In this work, we propose an analytical inverse
method to determine the electronic density from
double Compton scattering in transmission imag-
ing. This result is used for the detection of defects
in homogeneous medium. This detection procedure
does not require the motion of neither the incident
radiation source nor the material under investiga-
tion. This represents a real advantage in some non-
destructive controls in which the number of views
in conventional tomography is very limited.
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