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INTRODUCTION

The goal in non-destructive control is to obtain information (location, form, representative parameters) about defects in bulk materials. This is up to now done by X-ray or gamma ray transmission imaging. In these methods of investigation, the defect is represented by its linear attenuation distribution µ. The data consists of line integrals of the attenuation density along lines joining source points to detector points. A three dimensional reconstruction of the volume defect can be realized if a complete set of data is obtained with various directions of the incident source beam. However this may not be always realizable in practical situations where the geometry of the piece of material imposes severe restrictions on the motion of the radiation source.

In this paper, we describe an alternative method of investigation of defects. Instead of representing the material under study by its absorption function, as usually done, we shall describe it alternatively by its electronic density ne. Indeed at the location of defects (inclusions, voids or cracks) ne will change drastically and will exhibit discontinuous jumps in values. The distribution of scattered photons will change accordingly. The determination of ne from single scattered photons (in-stead of non-scattered ones) has been introduced in Compton Scatter Tomography [START_REF] Hussein | Compton Scatter Imaging Systems[END_REF]. But no analytical inversion procedure is available. In the present work we propose an analytical inversion method for obtaining ne from the series of doubly Comptonscattered photon distributions at various scattering angles. Moreover we show that in this procedure the motion of the detector is no longer necessary and consequently may be more interesting from the point of view of operational level [START_REF] Mai | Apparent image formation by Compton scattered photons in gamma-ray imaging[END_REF][START_REF] Nguyen | On an integral transform and its inverse in nuclear imaging[END_REF].

In order to focus solely on the scattering aspect, the attenuation mainly due to photoelectric effect shall be neglected here. This hypothesis is acceptable in the low energy range of gamma photons. In a transmission imaging system with collimated detector, if the material slab is of thickness L and limited by parallel planes, for incoming gamma photons perpendicularly to the slab to emerge parallel to the incident direction, there must be at least two Compton collisions. This is why we propose to exploit the properties of double Compton scattering for determining ne, since higher order collisions have much weaker probability of occurrence.

The paper is organized as follows. In the next section, we establish the basic relation connecting the flux density of photons G(D, τ ) -image measured on the detector plane -to ne(r) -the electronic distribution in the bulk material. This relation will be called also the "imaging equation". Next, we introduce the concept of Transmission Pencil Source Function (TPSF), which plays the role of the well-known PSF in emission imaging. Then images of cracks of simple form are computed as illustrations with the use of the TPSF. In the following section, the inverse problem of determining the volume extent of the crack using the measured flux density G(D, τ ), is considered. It is shown that an analytical solution exists if one makes use of the whole set of data collected at all scattering angles θ. This theoretical result opens the way for a new transmission imaging principle in which one takes advantage of the double Compton scattering whereby the complete data is obtained without moving the detector. Conclusions and outlook are given in the last section.

IMAGING EQUATION

We consider an incident gamma-ray beam of initial energy E0 and of constant flux density Φ0 on a slab of material of thickness L, in which the electronic density is ne(r). Normally the gamma rays at this energy will go through the object, if no attenuation is assumed. They are collected on the plane of a collimated gamma camera, which has an axis parallel to the incident beam, and located at a distance l from the slab face.

However part of the gamma rays will undergo Compton scattering, and actually two scattering if they are to emerge parallel to the incident direction (see figure 1). They form images parameterized by the scattering angle θ, or alternatively by the outgoing photon energy E. The photon energy recorded after two collisions with the same scattering angle θ is given by the Compton formula:

E = E0 1 + 2ǫ(1 -cos θ) ,
where ǫ = E 0 mc 2 is the ratio of the initial photon energy to the rest energy of the electron. This formula has the same form as the formula for one collision, but with 2ǫ instead of ǫ.

Let Φ0 be the constant incident flux density. Now the flux density of photons Φ(M), scattered at a site M (ξM , ηM , ζM ) (first collision site) in the bulk material into a solid angle dΩN is given by the expression: The differential Compton cross section is the term r 2 e P (θ) where re is the classical electron radius and P (θ), the so-called Klein-Nishina probability function [START_REF] Barrett | Radiological Imaging I and II[END_REF].

P (θ) = 1 2[1 + ε(1 -cos θ)] 2 1 + cos 2 θ + ε 2 (1 -cos θ) 2 1 + ε(1 -cos θ) . (1) 
The flux density of photons arriving at site N is then obtained by dividing out dσN . This flux will be scattered next at site N into the solid angle dΩD. Finally the flux density photons collected at detection site D ((ξD, ηD, 0) reads:

Φ0r 2 e P (θ)

ne(M) M N 2 dMr 2 e P (θ) ne(N) N D 2 dN.
In figure 1, we have given also the coordinate system to be used in the calculations to come. The scattering site M has coordinates:

ξM = ξD + r sin θ ′ cos φ, ηM = ηD + r sin θ ′ sin φ, ζM = ζN + r cos θ ′ .
where (r, θ ′ , φ) are the local spherical coordinates centered at N.

The total flux density G(D, τ ) on the detector is the summation on contributions of:

• for given N, all sites M in the medium on a cone of apex N, opening angle θ and axis Oζ,

• all sites N on a vertical at site D, verifying l < ζN < ∞, since the slab is put at a distance l from the detector.

Thus we introduce the corresponding integration measures:

δ(Cone) = r -1 δ(θ ′ -θ) δ(Line) = δ(ξN -ξD)δ(ηN -ηD).
Consequently the photon flux density at D is given by:

G(D, τ ) = [r 2 e P (θ)] 2 ∞ l δ(Line) dξN dηN dζN 1 r δ(θ ′ -θ)r 2 drdθ ′ sin θ ′ dφ 1 r 2 ne(M) 1 ζ 2 ne(N)Φ0.
(2) (Recall that Φ0 is the incident flux density of photons.) Some integrations are now performed in order to eliminate the δ-functions. The result may be expressed in terms of the constant:

K(τ ) = [r 2 e P (θ)] 2 sin θ.
where τ = cot θ and reads as: Introducing now the projection of site M on the detector plane S, we observe that ξS = ξD + r sin θ cos φ, ηS = ηD + r sin θ sin φ and ζS = 0. We may put the result as:

G(D, τ ) K(τ ) = ∞ l dζN ζ 2 N ne(D, ζN ) ∞ 0 + dr r
G(D, τ ) = K(τ ) ∞ 0 + dr r 2π 0 dφ ∞ l dζN ζ 2 N ne(D, ζN )ne(S, ζN + r cos θ)Φ0, (3)
here this expression is evidently bilinear in the electron densities. Let us call ρ = r sin θ, the distance between sites D and S, i.e. |D -S| = ρ, then we can rewrite conveniently this expression as:

G(D, τ ) = K(τ ) ∞ 0 + ρdρ ρ 2 2π 0 dφ ∞ l dζN ζ 2 N ne(D, ζN )ne(S, ζN + ρτ )Φ0,
this can be rearranged as an integral over S as:

G(D, τ ) = beamsection dSg(S, D|τ )Φ0, (4)
where g(S, D|τ ), is defined as the Transmission Pencil Source Function (TPSF) of the problem. The TPSF represents the transmission image by double Compton scattering of a unit flux density pencil source at infinity incoming normally on the detector plane. This function will play the role of the PSF function in emission imaging. It is given by:

g(S, D|τ ) = K(τ ) ρ 2 ∞ l dζN ζ 2 N ne(D, ζN )ne(S, ζ M ).
(5) where ζM = (ζN + ρτ ). This function describes thus the illumination of the material slab by an incoming pencil beam and serves to explore the structure of defects in the bulk.

For an arbitrary incoming beam with finite section, e.g. from an extended source far away, φ0 = φ0(S) and this must be taken care of in the integration standing in equation [START_REF] Cesaro | Interactions of keV Photons with Matter and New Applications[END_REF].

IMAGES OF SIMPLE SYSTEMS

The purpose of this section is to illustrate the imaging mechanism of the TPSF on simple systems. As already mentioned, gamma rays can be used to reconstruct variations of the electronic density at very small (atomic) scales. But for the localization of macroscopic defects in materials, these details are irrelevant and homogeneous medium can be considered to have a constant electronic density equal to its mean macroscopic value [START_REF] Cesaro | Interactions of keV Photons with Matter and New Applications[END_REF]. Defects may appear as cracks or voids where the electronic density drops brutally to zero or filled volumes with a different value of the electronic density. And this is precisely what we wish to detect.

1-Image of a homogeneous material slab

As the electronic density is assumed to be constant and equal to n 0 e , the TPSF can be explicitly g(S, D|τ )

K(τ )( n 0 e ρ ) 2 =    Y (L -ρτ ) (L-ρτ ) l(l+L-ρτ ) if τ > 0 Y (L + ρτ ) (L+l+ρτ ) (l+L)(-ρτ ) if τ < 0 L l(l+L) if τ = 0.
(6) Here Y (x) stands for the Heaviside unit step function. Rotational symmetry around the incident pencil beam is reflected by the sole dependence on ρ. This image will serve as basis for detecting defects. At 90 degrees scattering angle, the TPSF has a very simple behavior, i.e. its varies as ρ -2 .

Finally the form of the peak changes according to the ratio l/L.

2-Image of a linear defect

Consider a linear defect situated on a line perpendicular to the detector plane at a site S0 on the detector plane. The defect has a length h << L and its middle point is at a distance ζ0 from S0. On the defect there is an electronic density n 1 e , different from the slab electronic density n 0 e . The question is now how would the TPSF detect this defect? Two situations are possible:

• if the defect is not exactly positioned on the direction of the incoming beam and the detection site D different from S0, then the measured flux density g(S, D|τ ) is the same as in the case of the homogeneous slab (see equation 6). But if D is precisely at S0 then the measured flux density is, for τ > 0, given by:

g(S, D|τ ) = K(τ ) ρ 2 0 (n 0 e ) 2 (L -ρ0τ ) l(l + L -ρ0τ ) - [(n 0 e ) 2 -(n 1 e ) 2 ]h ζ 2 0 -1 4 h 2 , (7) 
where ρ0 = |S0D|. When n 1 e → 0, the defect becomes a crack, and when h → 0 we get the limit of the point defect. Then it is clear that the TPSF cannot "see" a point defect since we recover the flux density of equation 6.

• if the probing pencil beam falls directly on the defect, then one would measure, also for τ > 0 or the scattering angle 0 < θ < π/2 :

g(S, D|τ ) = K(τ ) ρ 2 (n 0 e ) 2 (L -ρτ ) l(l + L -ρτ ) - [(n 0 e ) 2 -(n 1 e ) 2 ]h (ζ0 -ρτ ) 2 -1 4 h 2 . (8) 
Thus a linear vertical defect would cause a jump in the recorded flux density as compared to the pattern of a homogeneous slab. For τ < 0 or a scattering angle larger than π/2, the main features of the pictures remains the same but the expressions are slightly modified.

3-Image of a rectangular defect

Having studied in detail the case of a linear perpendicular defect in the previous section, it is now easy to treat many other cases. The simplest one which can be generated is the case of the rectangle perpendicular to the detector with center at (ρ0, ζ0), with sides (h ′ , h) respectively parallel and orthogonal to the detector.

• Despite the non-zero width h ′ , the behavior of the TPSF with respect to this kind of defect is exactly the same as in the case of the linear defect of the previous subsection, if the incident pencil beam does not cross the defect and if the detection line (the line perpendicular to the detector at D) crosses the defect. To see the spread of the defect parallel to the detector one should move D along the detector plane so that (ρ0 -h ′ /2) < ρ < (ρ0 + h ′ /2).

• The interesting case occurs when the lines perpendicular to the detector at S and at D are inside the rectangle and at a distance ρ < h ′ .

Then there are two values of the flux density depending on τ : a) if ρτ ≤ h and ρ < h ′ we have:

g(S, D|τ ) = K(τ ) ρ 2 { 2n 0 e n 1 e ( (ζ0 -ρτ ) (ζ0 -ρτ ) 2 -1 4 h 2 - ζ0 ζ 2 0 -1 4 h 2 )+ (n 1 e ) 2 ( (h -ρτ ) (ζ0 -1 2 h)(ζ0 -ρτ + 1 2 h) + (n 0 e ) 2 ( (L -ρτ ) l(l + L -ρτ ) - (h + ρτ ) (ζ0 + 1 2 h)(ζ0 -ρτ -1 2 h) b) but if ρτ > h and ρ < h ′ we have: g(S, D|τ ) = K(τ ) ρ 2 (n 0 e ) 2 ( (L -ρτ ) l(l + L -ρτ ) - h (ζ0 -ρτ ) 2 -1 4 h 2 - h ζ 2 0 -1 4 h 2 ) +n 0 e n 1 e ( h (ζ0 -ρτ ) 2 -1 4 h 2 + h ζ 2 0 -1 4 h 2 ) (9)
From these results one can draw several conclusions:

• for h → 0, we get the limit of an infinitely thin horizontal defect: the flux density is that of the homogeneous medium, in other words it is "invisible" by the TPSF. Also it is easy to generalize to a horizontal disk defect or to any horizontal planar defect: they cannot be detected by the TPSF.

• for n 1 e → 0, we get the limit of a rectangular crack. This crack does present a non-zero "thickness" h with respect to the direction of the incoming probing radiation.

• There are similar results for τ < 0.

4-Image of an arbitrary defect

From the previous considerations, we can make general observations on how images are formed by the TPSF. First of all, it must present a certain "thickness" with respect to the incoming pencil radiation. Then we can decompose the problem into planar imaging problem by considering the intersection of the plane (π) which contains the two parallel lines perpendicular to the detector at D and at S and the the slab of material to be investigated.

If these lines do not intersect the section of a defect (Σ) in (π), then the flux density recorded on the detector is that of a homogeneous medium. Now if the perpendicular line at D intersects (Σ), then the measured flux density has the pattern of a linear perpendicular defect studied in the previous subsection. Note that the height of such a defect varies as site D moves on the detector plane, and in the previous subsection we have looked at a particular section (Σ), which is a simple rectangle. Of course, the interesting case would be the case where both perpendicular lines at D and S intersect (Σ), but this times the intersection lengths are no longer equal. The general effect remains similar.

So in principle, a general image obtained of an arbitrary defect of nonzero measure in the vertical direction by the TPSF, can be constructed from the TPSF image of a finite linear perpendicular defect. The question is now how the defect in the bulk can be reconstructed in space when a set of images, labelled by τ , or equivalently by the scattering angle θ has been collected beforehand.

THE INVERSE PROBLEM

This is the problem of reconstructing the electronic density ne(r) from measurements made on the detector. In this section, we show that this problem has a solution, provided that certain working conditions are assumed. More precisely, we show that the TPSF images can be used effectively to reconstruct the electronic density as follows. dw ′ e 2iπw ′ ζ ñe(S, w ′ ), in equation ( 5), the TPSF can be recast under the form:

Plane

g(S, D|τ ) = K(τ ) ρ 2 dw dw ′ ñe(D, w) ñe(S, w ′ ) J l (w + w ′ ) exp[2iπ(lw + lw ′ + w ′ ρτ )], (10) 
where: Here the left hand side appears as a superposition of TPSF images taken at various scattering angles, however the right hand side remains a bilinear construct in the electronic densities at two different sites. To get a better insight, we transform the right hand side by back Fourier transform into:

J l (w) = ∞ l dζN ζ 2 N e 2iπ(w+w ′ )ζ N = 2iπw {e 2iπlw [Ci(2πl|w|) -i ε(w) Si(2πl|w|)] - i 2πwl }, ε ( 
∞ -∞ dw ñe(D, w) J l (w + ν ρ )e 2iπlw = ∞ l dζ ζ 2 ne(D, ζ)e 2iπ ν ρ (ζ-l) ,
and end up, after another Fourier inversion with a final form:

∞ -∞ dτ e -2iπντ g(S, D|τ ) K(τ ) = 1 ρ 2 ñe(S, ν ρ ) ∞ l dζ ζ 2 ne(D, ζ) e 2iπ ν ρ ζ . (11) 
Remark. One could exchange the roles of D and S: the incoming pencil beam falls perpendicularly on the detector at site D and S becomes the detection site. Then one has, with the same separation ρ:

∞ -∞ dτ e -2iπντ g(D, S|τ ) K(τ ) = 1 ρ 2 ñe(D, ν ρ ) ∞ l dζ ζ 2 ne(S, ζ) e 2iπ ν ρ ζ .
Inversion is in fact based on one of these equations. In general, we have thus a pair of integral equations which are quadratic in the unknown functions ne(r). To our knowledge a general solution does not exist. However under certain practical hypotheses, an inversion procedure may be constructed.

Let us consider equation (11), which describes the imaging of the medium by the TPSF centered at S, the measurement of flux density being made at site D. If S is chosen in such a way that ñe(S, 

This time we keep the detection site fixed, and move around the incoming pencil beam to collect the data before computing the reconstruction of the defect. This is an equivalent procedure and the choice between the two may depend on the practicability of the measures at hand.

CONCLUSIONS AND OUTLOOK

In this work, we propose an analytical inverse method to determine the electronic density from double Compton scattering in transmission imaging. This result is used for the detection of defects in homogeneous medium. This detection procedure does not require the motion of neither the incident radiation source nor the material under investigation. This represents a real advantage in some nondestructive controls in which the number of views in conventional tomography is very limited.
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 1 Figure 1: Schematic representation of the functioning principle
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 2 P (θ)dΩN ne(M)dM = Φ(M )dσN where dΩN = dσN /M N 2 , dσN being the elementary surface subtended at site N (ξN , ηN , ζN )(second collision site).

  +r sin θ cos φ, ηD +r sin θ sin φ, ζN +cos θ)Φ0.
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 23 Figure 2: TPSF Flux density at θ = 36 degrees

  Fig 2 and Fig.3 give a representation of the TPSF at two scattering angles.

Figure 4 :

 4 Figure 4: Rectangular defect plane with S and D inside the plane.
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 5 Figure 5: Arbitrary object analysis

  w) being the sign function of w[START_REF] Lavoine | Transformation de Fourier des Pseudo-fonctions avec Tables de Nouvelles Transformées[END_REF]. Now since τ ∈ R, we could use it as Fourier variable to invert equation 10, and obtain:dw ñe(D, w) J l (w + ν ρ )e 2iπlw .

,

  known, one may locate in the sample a vertical line to the detector along which the material is homogeneous, i.e. free of defects. Then we have: the electronic density at D, we perform inverse Fourier transformation by multiplying equation (12) on both sides by and integrate over ( ν ρ ) to get the expression of the electronic density at site (D, ζ ′ ):ne(D, ζ ′ ) = ζ e -2iπντ g(D, S|τ ) K(τ ) . (13)An alternative way of inverting consists of choosing a fixed detection site D with a perpendicular line along which the electronic density is constant. Then one can calculate immediately: e -2iπντ g(D, S|τ ) K(τ ) .