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Identification of poroelastic constants of deep argillaceous rocks 
II: inverse analysis 

Brice Lecampion & Andrei Constantinescu 
Laboratoire de Mecanique des So/ides, CNRS UMR 7649, Ecole Polytechnique, France 

ABSTRACT: This paper discusses the identification of poroelastic constants from drained isotropic confine­
ment and pulse test. Closed form solutions of the direct problem are obtained for a very thin specimen. The 
validity of these solutions for a realistic aspect ratio of the core is assessed by a comparison with a finite element 
model. The identification problem is solved by minimizing a least square functional using an explicit gradient 
and a Levenberg-Marquardt algorithm. Uniqueness of this inverse problem as well as the effect of noise on 
input data are fully discussed. The identification procedure is then applied to measurements performed on a deep 
argillaceous rock (argillite of Meuse Haute-Mame). 

INTRODUCTION 

This paper presents the quantitative identification 
of poroelastic parameters from laboratory tests. Our 
interest lies in the hydromechanical coupling in the 
isotropic confining and the pulse test performed on 
deep argillaceous rocks. The detailed description of 
the test is presented in the companion paper (see 
(Malinsky L. et al. 2002) for details and a qualita­
tive interpretation of the tests) also presented at this 
conference. The aim of this paper is to discuss only 
the identification problem. 

Next we shall interpret these tests within the 
framework of linear poroelasticity (Biot M.A. 1941; 
Detoumay E. and Cheng A.H.D. 1993). 

In the first part we shall discuss the closed form 
solution of the direct problems in the case of a 
very slender specimen and compare it with solutions 
obtained from finite element simulations. In this case, 
the solution of the pulse test is similar to the one 
obtained by (Hsieh P.A. et al. 1981) for the uncoupled 
case. 

Next, the parameter identification problem is for­
mulated as the minimization of a cost functional and 
solved using the direct differentiation of the closed 
form solution and a minimization algorithm. 

Finally, we present the results obtained from tests 
performed on a deep argillaceous rock. 

2 DIRECT P ROBLEM 

All tests are performed on a cylindrical core ((r,z) E 
[O,R] x [O,L]) under axisymmetric conditions. 

In the general case, the poroelastic coupling does 
not allow to obtain a closed form solution for these par­
ticular configurations (Adachi J.I. and Detoumay E. 
1997). The problems are fully two-dimensional (see 
figure 1 ). This is due to the hydromechanical boundary 
condition on the radial surface: no hydraulic flux and 
an applied radial stress. Despite the apparent simplic­
ity of these boundary conditions, the theory of linear 
poroelasticity imply non homogeneous hydromechan­
ical fields in the core during the transient phase. 
(Adachi J.I. and Detoumay E. 1997) have also shown 
that under the assumption of a very thin specimen 
(m= R/L « 1), the problems reduce to one dimen­
sion. We will derived closed form solutions in that 
particular case. 

2.1 Isotropic corifinement test 

Boundary conditions 
This test consists in the sudden application at t = 0 of 
an isotropic confining normal stress a on all the speci­
men surfaces: u · n =a H(t)n, where H (t) denotes the 
Heavyside function. 

The radial surface of the sample remains undrained 
while the top and bottom surfaces are drained. 

Solution in the slender case 
In the case where m = R/ L « 1, the stress and pore 
pressure fields are homogeneous. The evolution of 
pore pressure is therefore solution of the one dimen­
sional diffusion equation: 

ap a2p ai - D 
azz = -Ba8(t) (1) 
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Figure 1. Contour of the shear component of the stress ten­
sor during the transient phase of an isotropic confining test. 
Finite element model , axisymmetry, poroelastic 
coupling. 

p(L, t) p(O. t) = 0 p(z, 0) 0 
where B(t) is the Dirac distribution. B [ · ] 1 is the 
Skempton dimensionless coefficient. The diffusivity 
D [L2T-1] is given by (Detournay E. and Cheng 
A.H.D. 1993): 

K 
D klvf-- (3) 

Ku 
where: 

k [M-1L3T] the hydraulic conductivity of the 
specimen related to the intrinsic permeability K [L2]: 
k = 11! is the fluid viscosity, 

• M [ML-1T-2] is the Biot Modulus, 
• K [ML- 1 T-2] is the drained bulk modulus, 
• K [ML-1T-2] is the undrained bulk modulus. 

We now use the following dimensionless variables: 

t* = 
Dt 

z' z CT p 
(4) L (J 

The dimensionless pore pressure is given by (Carslaw 
H.S. and Jaeger J.C. 1959): 

TI(z*,t*) = -B [ ,t*;�)d� (5) 

1 Between brackets [ · ] we indicate the physical dimensions 

of the parameters 

with t): 
00 

exp(-4n2n2t*)sin(2nrrz*) (6) 

In this case, the linear poroelastic constitutive 
equations in cylindrical coordinates (Biot M.A. 1941; 
Detoumay E. and Cheng A.H.D. 1993) are \Vritten as 
follows: 

3
: (1 +bTI(z*, (7) 

(8) 

where b [ · ] denotes the Biot coefficient. 
From bB one obtains the overall axial, 

and the radial displacement at the middle of the spec­
imen. These displacements are recorded during an 
experimental test. 

t*) = (J (1 L 3K

--R- - 3
: (i 

(9) 

(10) 

fo1 K(�, IS by the following 
series: 

00 7 
2 '"""" 2 2 * (1 cos nn )-L.,. exp (-n Jr r ) - - --�-

11 11 

(11) 

The series (7) and ( 11) are precisely estimated even 
for small value oft* when keeping the 10 first terms 
of the series. 

2.2 Pulse test 

Boundary conditions 
Prior to the beginning of the test, the sample is in an 
homogeneous and isotropic stress state. The applied 
stress is kept constant during the test. The hydraulic 
boundary conditions are: 
" no flux on the radial surfaces 
" the pore pressure on the boundary r,.e between the 

reservoir and the specimen is equal to the fluid pres­
sure of the reservoir Pr· The pore pressure does not 
vary spatially on r re: 

p(r, t) Pr(t) on lre at all time instants. 
At t = 0, the fluid pressure in the reservoir p,. is 

suddenly increased to the so called injection value p0. 
Taking into account the reservoir stiffness C,., we can 
w1ite the fluid mass balance in the reservoir as: 

1 1 dp,(t) 
-kVp(r,t) · ndf' = , -

d
-

rre c,. t 
(12) 
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Solution in the slender case 
In the slender case, the diffusion equation is indepen­
dent of the mechanical state. Its solution is therefore 
similar to the classical one given by (Hsieh P.A. et al. 
1981). 

We use a similar set of dimensionless variables as 
for the isotropic test. The dimensionless pore pres­
sure is here scaled using the injection pressure p0: 
n = .E.... Another dimensionless parameter related to PD 
the constitutive parameters is introduced: 

MK 
y= ---­

C,.KurrR2L 
(1 3) 

The diffusion equation together with the initial and 
boundary conditions give the following system of 
equations: 

an a2n 
- -- =0 
at• a z*' 

dn arr
y 0 in z* = 0 

dt* 
-

az• = 

an 
-. (1/2, t*) = 0 
az• 

nco, o) = 1 n(z*, O) = o 

The solution in the Laplace domain is given by: 

- ycosh(Js(l/2-z*)) n(z*, s) = (14) 
ys cash ( 4) + Js sinh ( 4)

No simple analytical expression of the inverse 
Laplace transform exists for the last expression. The 
inversion is performed numerically using Stehfest 
algorithm (Cheng A.H-D et al. 1994). 

2.3 Consistency of the closed form solutions 

A series of axisymmetric finite element simulations 
using the object oriented code have been 
performed for different aspect ratios. 

For both configurations, the comparison is done 
using the following set of parameters : 

K = 6 GP a Ku = 7 .1 GP a G = 4 GP a 

M=4GPa D=0.7x10-3m2·s-1 

The relative error between the numerical and the 
closed form solution for different aspect ratio is dis­
played on figure 2 for the isotropic confinement test. 
We note, as expected, that the error is only significant 
during the transient phase. A similar pattern can be 
observed for the pulse test. 

For the aspect ratio ofour specimen (m = 0.25) the 
coupling effect is negligible, i.e. the relative error e on 
the axial strain is at most of 1 %. 

E% 

0.2 0.4 0.6 0.8 l.O 
t*=..QJ. 

L2 

l.2 1.4 l.6 

Figure 2. Relative error on the axial strain between the 
closed form and the coupled finite element solution for 
different aspect ratio m = R/ L. 

A series of computations for different value of G 
did not show a major influence on this error. 

In the case of a thin specimen, it is therefore possi­
ble to use the closed form solution without losing any 
accuracy. In doing so, a large amount of computation 
time is saved compared to finite element simulations. 

3 INVERSE PROBLEM 

3 .1 Formulation 

We want to identify a certain set of parameters c from 
the recorded displacements or reservoir pressure. 

• For the isotropic confinement test, c = (K,Ku,D) 
will be identified from the evolution of the axial
(uz(t)) and/or radial (u,(t)) displacements.

• In the case of the pulse test, c = (y, D) will
be identified from the recorded reservoir pressure
p,(t) decay.

The estimation of unknowns parameters from 
measurements is an inverse problem. For the con­
figurations under study, algebraic manipulations of 
expression (10) and (14) permit to prove that the 
knowledge of the history of measurements uniquely 
determines the set of parameters c. Details of this 
proof will not be presented here. 

This uniqueness result does not guarantee the sta­
bility of the inverse problem, i.e.: a small variation in 
input data can induce a large variation of the identified 
parameters. 

3.2 Identification procedure 

In spite of the knowledge the closed form solution, 
we do not possess an analytical expression directly 
relating the unknown parameters to the measurements. 
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Figure 3. Dimensionless total axial displacement u,/ Land 
associated sensitivity coefficient on K, Ku and D during an 
isotropic confinement test. 

The solution of the identification problem will be 
based on the minimization of a cost functional 
measuring the distance between predictions and 
measurements. 

1 
n 

J(c) = 2 L (f (c, t;) - fmeas(t;))2 i=l (15) 

n is the number of measurements recorded during 
the test. f denotes the measured quantity : radial or 
axial displacement for the confinement test, reservoir 
pressure for the pulse test. 

The minimization of this functional is performed 
using a Levenberg-Marquardt gradient based algo­
rithm (see (Gill P.E. et al. 1982) for details). 

As displayed in figure 4, the cost functional can be 
considered as convex in the explored region and does 
not have multiple minima. This assesses the choice of 
a gradient based algorithm. 

The closed form (semi explicit) solutions are dif­
ferentiated with respect to the constitutive parameters 
in order to obtain the gradient of the cost functional. 
The sensitivity coefficient (partial derivatives with 
respect to constitutive parameters) on the axial dis­
placement in the case of the isotropic confinement 
test are displayed on figure 3. We can remark that 
the experimental response contains information on the 
undrained modulus at early time. At large time, the dis­
placement only depends on the drained modulus. The 
sensitivity on the diffusivity coefficient is maximum 
during the transient phase. 

3. 3 Effect of noise and initial guess

In order to investigate the stability of the identifica­
tion problems related to the isotropic confinement test 
and pulse test, we have simulated a series of mea­
surements with a so called optimum set of parameters 
Copt· The identification is then performed for different 

1-.li 
Ku 

0.328 
0.256 
0.184 
0.112 
0.04 ............... --........ """",.-'""'_,__,..._ __ ........,......,........._-r-..-I 9.5e-4 9.76e-4 l.002e-3 1.028c-3 l.054e-3 l.080e-3 

..Q_ 3K 

Figure 4. Contour of the cost functional in the plane 
( 1-K /Ku, a /3K) in the case ofrecorded axial displacement. 
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Figure 5. Stability of the identification (isotropic con­
finement test). Evolution of s, with the level of white 
noise. 

initial guesses. The optimum parameters are always 
retrieved in few iterations. 

The effect of a white noise on simulated data 
has also been studied. From the identified param­
eters Cnoise. we can compute the following stability 
estimator: 

llcnoise - Copt II Es=----� llcop1ll 
(16) 

One can see on figure 5 the astonishing stability of 
the identification problem with respect to white noise. 
Of course, in the case of real measurements, if the 
poroelastic model is not adequate, the identification 
may be more unstable. 

4 RESULTS AND DISCUSSION 

Next, the experimental tests qualitatively discussed 
in (Malinsky L. et al. 2002) are used to identify the 
poroelastic constants. 
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Figure 6. Experimental and identified response (axial 
strain) to an isotropic confinement test performed on argillite 
of Meuse Haute-Mame. 

Table 1. Estimation of the intrinsic permeability 
for different values of the Biot modulus with K = 
l .04GPa, Ku=9.82GPa and D=4.02 x 10-9 m2 ·s-1. 
Identification performed on axial displacement. 

M(GPa.) 

5 
10 
15 

4.1 Isotropic confinement 

7.5 x 10-21 
3.7 x 10-21 
2.5 x 10-21 

The identification performed using only the axial dis­
placement of the isotropic drained consolidation on 
sample n°2 gives a perfect fit (figure 6). The same 
parameters are obtained for different initial guesses: 

K = 1.04 GPa; Ku= 9.82 GPa; 

D = 4.02 x 10-9 m2s-1

It is also possible to compute the intrinsic permeability 
for different estimated value of the Biot's modulus M. 
Table 1 presents the results. An intrinsic permeability
of the order of magnitude of I x 10-21 m2 matches
known values for a damage argillite. 

The identification performed using only the radial 
displacement at the middle of the specimen gives the 
following parameters: 

K = 2.12 GPa; Ku = 16.9 GPa; 

D = 1.74 x 10-9 m2 
· s-1

The important anisotropy between axial and radial 
displacement can be explained by the high level of 
damage of the sample (see (Malinsky L. et al. 2002)). 

A close inspection of figure 7 shows on the one hand 
that the measured radial displacement has not reach its 

l.?e-3,-----------------� 

l.3e-3 

u 
R o.9e-3 Identified 

.,,_, ,/ .... /' 
Experimental 

O.le-3+----.----.--,----.----.--,----f 
0 6 8 

t (Days) 
10 

Figure 7. Radial strain (isotropic confinement). 

12 14 

asymptotic value after 15 days, whether the computed 
one tends to its asymptot. On the other hand, at early 
time the measured initial delay due to the diffusion 
process is rather small when compared to the computed 
one. These discrepancies are an effect of the simple 
poroelastic model, not an aterfact of the identification. 

It is possible to quantify the degree of confidence 
on the identified parameters. The sensitivity coeffi­
cient at the optimum point provides an information on 
the correlation between the parameters (Tarantola A. 
1987). The correlation between the drained bulk mod­
ulus and the diffusivity is large (CKD = 0.85). These 
can be explained by the influence of other physical 
phenomena (swelling, chemical reaction). 

We can report that the correlations obtained from 
axial displacement are very small, as one could expect 
with independently identified parameter. 

4.2 Pulse test 

The identification method has also been applied to a 
pulse test conducted in 1999 on a slightly different 
argillite (Coste F. et al. 1999). The experimental as well
as the identified response are displayed on figure 8. 

Table 2 presents the identified parameters for dif­
ferent values of the initial guess and the correlation 
between the identified parameters. The high value of 
correlation can be explained by the lack of data at large 
time or by the discrepancy between the experimental 
and identified response during the transient phase. 

It is important to remark that the exact value of 
the reservoir stiffness C, was not precisely known at 
this time. Table 3 display the value of the coefficient 
MK/ Ku and of the intrinsic permeability K for a range 
of acceptable values of C,. 

We can notice that the obtained values matches 
standard physical values for an argillite. 

5



n 
_Identified ····· Experimental 

············· ························· 
o.------��-���---..-�--< 

2e5 4e5 6c5 
t(s) 

8e5 10e5 12e5 

Figure 8. Pulse test on a argillite from Meuse Haute-Mame. 

Table 2. Pulse test on a argillite (1999). Results of the 
identification for different initial guess. 

y 1J s-1 .J CyD 

initial 0.8 I x 10-6 0.216 
final 0.6531 3.186 x 10-7 0.09084 0.8373 

initial 1.8 I x  105 2.872 
final 0.653 3.19 x 10-1 0.09084 0.8372 

initial 0.1 1.5 x 10-7 16.65 
final 0.6537 3.195 x 10-7 0.0906 0.8381 

Table 3. Estimation of the coefficient MK/Ku and the 
intrinsic permeability for different values of the reservoir 
compressibility. y = 0.653, D = 3.53£ - 9 m2 · s-• 

C,(GPa.m-3) �� (MPa) K (m2) 

8 x 107 15.536 2.27 x 10-22 
4 x 107 7.76 4.54 x 10-22
1.33 x 107 2.58 2.654 x 1 0-21 

5 CONCLUSIONS 

In this communication, we have discussed the identifi­
cation of several poroelastic parameters from drained 
isotropic confinement test and pulse test. We have 
shown that for specimen with an aspect ratio R/ L « 
0.25, we can use the closed form solutions obtained 
for a very thin specimen. This permits to speed up the 
identification procedure. 

The proposed identification method has shown to 
provide robust and efficient solution to this inverse 
problem. 

The identified values of the constitutive parameters 
for the argillite of Meuse Haute-Mame are within the 
expected range. The mismatches between the model 
and the experiment show on the one hand that the 
samples were damaged prior to the test and on the 
other hand that probably others physical phenomena 
(swelling, chemical reaction ... ) should also be taken 
into account. 

We can conclude that the combination of the drained 
isotropic confinement and the pulse test permits a com­
plete identification of the poroelastic parameters with 
the exception of the shear modulus. The methodology 
presented here can be extended to the identification of 
others porous material. 
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