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We study the existence and nonexistence of classical solutions to a general Gierer-Meinhardt system with Dirichlet boundary condition. The main feature of this paper is that we are concerned with a model in which both the activator and the inhibitor have different sources given by general nonlinearities. Under some additional hypotheses and in case of pure powers in nonlinearities, regularity and uniqueness of the solution in one dimension is also presented.

Introduction and the main results

The systems of nonlinear equations of Gierer-Meinhardt type have received a considerable attention in the last decade. These problems arise in the study of biological pattern formation by auto and cross catalysis being related to known biochemical processes and cellular properties. The general model proposed by Gierer and Meinhardt [START_REF] Gierer | A theory of biological pattern formation[END_REF][START_REF] Meinhardt | Generation and regeneration of sequence of structures during morphogenesis[END_REF] may be written as

     u t = d 1 ∆u -αu + cρ u p v q + ρ 0 ρ in Ω × (0, T ), v t = d 2 ∆v -βv + c ′ ρ ′ u r v s in Ω × (0, T ), (1.1) 
subject to Neumann boundary conditions. Here Ω ⊂ R N (N ≥ 1) is a bounded domain, u, v represent the concentrations of the activator and inhibitor with the source distributions ρ and ρ ′ respectively. Also d 1 , d 2 are diffusion coefficients with d 1 << d 2 and α, β, c, c ′ , ρ 0 are positive constants. The exponents p, q, r, s ≥ 0 verify the relation qr > (p-1)(s+1) > 0. The system (1.1) is of reaction-diffusion type and involves the determination of an activator and an inhibitor concentration field. In a biological context, the Gierer-Meinhardt system (1.1) has been used to model several phenomena arising in morphogenesis and cellular differentiation.

The model presented by Gierer and Meinhardt [START_REF] Gierer | A theory of biological pattern formation[END_REF] originates in the Turing's one [START_REF] Turing | The chemical basis of morphogenesis[END_REF] for morphogenesis in the linear case and is based on the short range of activation and on the long range of inhibition. Also the model introduced in [START_REF] Gierer | A theory of biological pattern formation[END_REF] takes into account the classification between the concentration of activators and inhibitors, on the one hand, and the densities of their sources, on the other hand. A complete description of entire dynamics of system (1.1) is given in the recent paper of Ni, Suzuki and Takagi [START_REF] Ni | The dynamics of a kynetics activato-inhibitor system[END_REF], where it is shown that the dynamics of the system (1.1) exhibit various interesting behaviors such as periodic solutions, unbounded oscillating global solutions, and finite time blow-up solutions.

Many recent works have been devoted to the study of the steady-states solutions of (1.1), that is, solutions of the stationary system      d 1 ∆u -αu + cρ u p v q + ρ 0 ρ = 0 in Ω,

d 2 ∆v -βv + c ′ ρ ′ u r v s = 0 in Ω, (1.2) 
subject to Neumann boundary conditions. Such systems are difficult to treat due to the lack of a variational structure or a priori estimates. In this case it is more convenient to consider the shadow system associated to (1.2). More exactly, dividing the second equation of (1.2) by d 2 and then letting d 2 → ∞, we reduce the system (1.2) to a single equation. The nonconstant solutions of such equation present interior or boundary peaks or spikes, i.e., they exhibit a point concentration phenomenon. Among the great number of works in this direction, we refer the reader to [START_REF] Ni | On the shape of least-energy solutions to a semilinear Neumann problem[END_REF][START_REF] Ni | Locating the peaks of least-energy solutions to a semilinear Neumann problem[END_REF][START_REF] Ni | On positive solutions concentrating on spheres for the Gierer-Meinhardt system[END_REF][START_REF] Wei | On the interior spike layer solutions for some singular perturbation problems[END_REF][START_REF] Wei | Spikes for the Gierer-Meinhardt system in two dimensions: the strong coupling case[END_REF][START_REF] Wei | Existence and stability analysis of asymmetric for the Gierer-Meinhardt system[END_REF] and the reference therein, as well as to the survey paper of Ni [START_REF] Ni | Difussion, cross-difusion, and their spike-layer steady states[END_REF]. For the study of instability of solutions to (1.2), we also mention here the works of Miyamoto [START_REF] Miyamoto | An instability criterion for activator-inhibitor systems in a two-dimensional ball[END_REF] and Yanagida [START_REF] Yanagida | Mini-maximizers for reaction-diffusion systems with skew-gradient structure[END_REF].

In the case Ω = R N (N = 1, 2) it has been shown in [START_REF] Del Pino | The Gierer-Meinhardt system: the breaking of homoclinics and multi-bump ground states[END_REF][START_REF] Del Pino | Multi-bump ground states of the Gierer-Meinhardt system in R 2[END_REF] that there exist ground state solutions of (

with single or multiple bumps in the activator which, after a rescaling of u, are approaching a universal profile.

Let Ω ⊂ R N (N ≥ 1) be a bounded domain with smooth boundary. In this paper we consider the stationary Gierer-Meinhardt system for a wide class of nonlinearities subject to homogeneous Dirichlet boundary conditions. More exactly, we are concerned with the following elliptic system

             ∆u -αu + f (u) g(v) + ρ(x) = 0, u > 0 in Ω, ∆v -βv + h(u) k(v) = 0, v > 0 in Ω, u = 0, v = 0 on ∂Ω, (S) 
where α, β > 0, ρ ∈ C 0,γ (Ω), (0 < γ < 1), ρ ≥ 0, ρ ≡ 0 and f, g, h, k ∈ C 0,γ [0, ∞) are nonnegative and nondecreasing functions such that g(0) = k(0) = 0. This last assumption on g and k, together with the Dirichlet conditions on ∂Ω makes the system singular at the boundary. Another difficulty is due to the non-cooperative (i.e., non-quasimonotone) character of our system.

We are mainly interested in the case where the activator and inhibitor have different source terms, that is, the mappings t -→ f (t)/h(t) and t -→ g(t)/k(t) are not constant on (0, ∞). Our study is motivated by some questions addressed by Choi and McKenna [1,[START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations: the classical case[END_REF] or Kim [START_REF] Kim | A class of singular Gierer-Meinhardt systems of elliptic boundary value problems[END_REF][START_REF] Kim | Singular Gierer-Meinhardt systems of elliptic boundary value problems[END_REF] concerning existence and nonexistence or even uniqueness of the classical solutions for the model system

           ∆u -αu + u p v q + ρ(x) = 0 in Ω, ∆v -βv + u r v s = 0 in Ω, u = 0, v = 0 on ∂Ω. (1.3)
In [START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations[END_REF][START_REF] Kim | A class of singular Gierer-Meinhardt systems of elliptic boundary value problems[END_REF] it is assumed that the activator and inhibitor have common sources and the approach rely on the Schauder's fixed point theorem through a decouplization of the system. More precisely, subtracting the two equations of (1.3) we obtain in the case p = r and q = s a linear equation in w = u -v. This is suitable to obtain a priori estimates in order to control the map whose fixed points are solutions of (1.3).

In Choi and McKenna [2] it is obtained the existence of radially symmetric solutions of (1.3) in the case Ω = (0, 1) or Ω = B 1 ⊂ R 2 and p = r > 1, q = 1, s = 0. In [START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations: the classical case[END_REF] a priori bounds are obtained via sharp estimates of the associated Green function.

In Section 2 we give a nonexistence result for classical solutions to (S). To our best knowledge, there are no results of this type in the literature. The main idea is to speculate the asymptotic behavior of v in the second equation of (S). This will be then used in the first equation of the system and by classical arguments (see, e.g., [START_REF] Ghergu | Sublinear singular elliptic problems with two parameters[END_REF]Theorem 1.1]) we obtain the desired nonexistence result. A special attention is payed to the case of pure powers in nonlinearities. In this sense we obtain some relations between the exponents p, q, r and s for which the system (1.3) has no classical solutions.

In Section 3 we give an existence result for classical solutions of (S) under the additional hypothesis β ≤ α.

In fact, this assumption is quite natural if we look at the steady-state system (1.2). We have only to divide the first equation by d 1 , the second one by d 2 and to take into account the fact that d 1 << d 2 . The existence in our case is obtained without assuming any growth condition on ρ near the boundary since we are able to provide more general bounds for the regularized system associated to (S). In particular, we obtain that (1.3) has solutions provided that r -p = s -q ≥ 0 and q > p -1.

The uniqueness of the solution is a delicate matter. Actually, there is only one result in the literature in this direction (see [START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations[END_REF]Theorem 1]) and concerns the one dimensional case of system (1.3) with ρ ≡ 0 and p = q = r = s = 1. Using the same idea as in [START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations[END_REF], we are able to extend the uniqueness of the solution to (S) in one dimension to the following range of exponents: 0 < q ≤ p ≤ 1 and r -p = s -q ≥ 0. It is worth pointing out here that the uniqueness of the solution for systems like (S) seems to be a particular feature of the Dirichlet boundary conditions. As we can see in the above mentioned works, in the case of Neumann boundary conditions the Gierer-Meinhardt system does not have a unique solution.

A nonexistence result

Several times in this paper we shall use the following result. We refer the reader to [6, Lemma 2.1] for a complete proof.

Lemma 2.1. Let Ψ : Ω × (0, ∞) → R be a Hölder continuous function such that the mapping (0, ∞) ∋ t -→ Ψ(x, t) t is strictly decreasing for each x ∈ Ω. Assume that there exist v 1 , v 2 ∈ C 2 (Ω) ∩ C(Ω) such that (a) ∆v 1 + Ψ(x, v 1 ) ≤ 0 ≤ ∆v 2 + Ψ(x, v 2 ) in Ω; (b) v 1 , v 2 > 0 in Ω and v 2 ≤ v 1 on ∂Ω; (c) ∆v 1 ∈ L 1 (Ω) or ∆v 2 ∈ L 1 (Ω). Then v 2 ≤ v 1 in Ω.
Another useful tool is the following result which is a direct consequence of the maximum principle.

Lemma 2.2. Let k ∈ C(0, ∞) be a positive nondecreasing function and a 1 , a 2 ∈ C(Ω) with 0 < a 2 ≤ a 1 in Ω.

Assume that there exist

β > 0, v 1 , v 2 ∈ C 2 (Ω) ∩ C(Ω) such that v 1 , v 2 > 0 in Ω, v 1 ≥ v 2 on ∂Ω and ∆v 1 -βv 1 + a 1 (x) k(v 1 ) ≤ 0 ≤ ∆v 2 -βv 2 + a 2 (x) k(v 2 ) in Ω. Then v 2 ≤ v 1 in Ω. Let Φ : [0, 1) → [0, ∞) defined by Φ(t) = t 0 1 2 1 τ 1 k(θ) dθ dτ, 0 ≤ t < 1.
Set a = lim t→1 Φ(t) and consider Ψ : [0, a) → [0, 1) the inverse of Φ. The main result of this section is the following t nonexistence property.

Theorem 2.1. Assume that

a 0 tf (mt) g(M Ψ(t)) dt = +∞, (2.1) 
for all 0 < m < 1 < M . Then the system (S) has no classical solutions.

Proof. Assume, by contradiction, that there exists a classical solution (u, v) of the system (S) and let ϕ 1 be the normalized first eigenfunction of -∆ in H 1 0 (Ω). As it is well known, ϕ 1 ∈ C 2 (Ω) and we can assume that ϕ 1 > 0 in Ω. Let ζ denote the unique solution of the problem

     ∆ζ -αζ + ρ(x) = 0 in Ω, ζ = 0 on ∂Ω. (2.2)
By standard elliptic arguments and the classical maximum principle we deduce that ζ ∈ C 2 (Ω) and ζ > 0 in Ω.

In view of Hopf's maximum principle and taking into account the regularity of the domain, there exist

c 1 , c 2 > 0 such that c 1 d(x) ≤ ϕ 1 , ζ ≤ c 2 d(x) in Ω, (2.3) 
where d(x) = dist(x, ∂Ω). 

Since      ∆(u -ζ) -α(u -ζ) ≤ 0 in Ω, u -ζ = 0 on ∂Ω,
u(x) ≥ md(x) in Ω, (2.4) 
for some m > 0 small enough. Set C = max x∈Ω h(u(x)) > 0. Then v satisfies

           ∆v -βv + C k(v) ≥ 0 in Ω, v > 0 in Ω, v = 0 on ∂Ω.
(2.5)

Let c > 0 be such that

cϕ 1 ≤ min{a, d(x)} in Ω. (2.6)
We need the following auxiliary result.

Lemma 2.3. There exists

M > 1 large enough such that v = M Ψ(cϕ 1 ) satisfies ∆v -βv + C k(v) ≤ 0 in Ω. (2.7)
Proof. Since Φ(Ψ(t)) = t for all 0 ≤ t < a, we get Ψ(0) = 0 and Ψ ∈ C 1 (0, a) with

Ψ ′ (t) = 2 1 Ψ(t) 1 k(τ )dτ for all 0 < t < a. (2.8) This yields            -Ψ ′′ (t) = 1 k(Ψ(t))
for all 0 < t < a,

Ψ ′ (t), Ψ(t) > 0 for all 0 < t < a, Ψ(0) = 0.
(2.9) By Hopf's maximum principle, there exist ω ⋐ Ω and δ > 0 such that

|∇ϕ 1 | > δ in Ω \ ω and ϕ 1 > δ in ω. (2.10) Fix M > 1 large enough such that M (cδ) 2 > C and M cλ 1 δΨ ′ (c ϕ 1 ∞ ) > C min x∈ω k(Ψ(cϕ 1 )) . (2.11) 
We have

-∆v = M c 2 k(Ψ(cϕ 1 )) |∇ϕ 1 | 2 + M cλ 1 ϕ 1 Ψ ′ (cϕ 1 ) in Ω.
By (2.11) we get

-∆v ≥ M cλ 1 ϕ 1 Ψ ′ (cϕ 1 ) ≥ M cλ 1 δΨ ′ (c ϕ 1 ∞ ) ≥ C k(v) in ω, -∆v ≥ M c 2 k(Ψ(cϕ 1 )) |∇ϕ 1 | 2 ≥ C k(Ψ(cϕ 1 )) ≥ C k(v)
in Ω \ ω.

The last two inequalities imply that v satisfies (2.7). This finishes the proof of the Lemma.

By virtue of Lemma 2.2, relations (2.5) and (2.7) yield v ≤ v in Ω. Using (2.4) we get

f (u) g(v) ≥ f (md(x)) g(M Ψ(cϕ 1 )) in Ω. Furthermore, u satisfies            ∆u -αu + f (md(x)) g(M Ψ(cϕ 1 )) ≤ 0 in Ω, u > 0 in Ω, u = 0 on ∂Ω.
(2.12)

In order to avoid the singularities in (2.12) near the boundary, we consider the approximated problem

           ∆w -αw + f (md(x)) g(M Ψ(cϕ 1 )) + ε = 0 in Ω, w > 0 in Ω, w = 0 on ∂Ω.
(2.13)

Clearly w = u is a super-solution of (2.13) while w = 0 is a sub-solution. By classical results, the problem (2.13) has a unique solution w ε ∈ C 2 (Ω) such that w ε ≤ u in Ω. Moreover, the maximum principle yields

w ε > 0 in Ω.
In order to get a contradiction, we multiply by ϕ 1 in (2.13) and then we integrate over Ω. We obtain

(α + λ 1 ) Ω w ε ϕ 1 dx = Ω ϕ 1 f (md(x)) g(M Ψ(cϕ 1 )) + ε dx.
Since w ε ≤ u in Ω we have

(α + λ 1 ) Ω uϕ 1 dx ≥ ω ϕ 1 f (md(x)) g(M Ψ(cϕ 1 )) + ε dx for all ω ⋐ Ω.
Let C = (α + λ 1 ) Ω uϕ 1 dx. Passing to the limit in the above inequality we deduce

ω ϕ 1 f (md(x)) g(M Ψ(cϕ 1 )) dx ≤ C < +∞ for all ω ⋐ Ω.
Hence,

Ω ϕ 1 f (md(x)) g(M Ψ(cϕ 1 )) dx ≤ C < +∞.
Let now Ω 0 = {x ∈ Ω : d(x) < a}. The above inequality combined with (2.6) produces

Ω0 d(x) f (md(x)) g(M Ψ(d(x)))
dx < +∞, but this clearly contradicts (2.1). Hence the system (S) has no positive classical solutions. This completes the proof of Theorem.

If k(t) = t s , s > 0, condition (2.1) can be written more explicitly by describing the asymptotic behavior of Ψ. We have. (iii) 0 < s < 1 and

a 0 tf (mt) g(Mt) dt = +∞, for all 0 < m < 1 < M .
Then, the system (S) has no positive classical solutions.

Proof. The main idea is to describe the asymptotic behavior of Ψ near the origin. Notice that in our case the

mapping Ψ : [0, a) → [0, 1) satisfies            -Ψ ′′ (t) = Ψ -s (t)
for all 0 < t < a, Ψ ′ (t), Ψ(t) > 0 for all 0 < t < a,

Ψ(0) = 0.
(2.14)

(i) If s > 1 then the mapping (0, ∞) ∋ t -→ (1 + s) 2 2(1 -s) 1/(1+s)
• t 2/(s+1) , satisfies (2.14). Hence, there exist two positive constants c 1 , c 2 > 0 such that

c 1 t 2/(s+1) ≤ Ψ(t) ≤ c 2 t 2/(s+1) for all 0 < t < a.
Now, (i) follows directly from the above inequality.

(ii) Using the fact that Ψ is concave, we deduce that Ψ(t) > tΨ ′ (t), for all 0 < t < a. From (2.14) it follows that

-Ψ ′′ (t) < 1 tΨ ′ (t)
for all 0 < t < a.

We multiply by Ψ ′ in the last inequality and then we integrate over [t, b], 0 < b < a. We get

(Ψ ′ ) 2 (t) -(Ψ ′ ) 2 (b) ≤ 2(ln b -ln t) for all 0 < t ≤ b < a.
Hence, there exist c 1 > 0 and 

δ 1 ∈ (0, b) such that Ψ ′ (t) ≤ c 1 √ -
(t) = 1 Ψ(t) ≥ 1 c2 • 1 t √ -ln t for all 0 < t ≤ δ 2 .
An integration over [t, δ 2 ] in the last inequality yields

Ψ ′ (t) ≥ 2 c 2 √ -ln t --δ 2 for all 0 < t ≤ δ 2 .
Therefore, there exist c 3 > 0 and δ 3 ∈ (0, δ 2 ) such that Ψ ′ (t) ≥ c 3 √ -ln t for all 0 < t ≤ δ 3 . Proceeding in the same manner as above, there exist c 4 > 0 and δ 4 ∈ (0, δ 3 ) such that Ψ(t) ≥ c 4 t √ -ln t for all 0 < t ≤ δ 4 .

(2.17)

From (2.16) and (2.17) we get

c 3 t √ -ln t ≤ Ψ(t) ≤ c 4 t √ -ln t for all 0 < t ≤ δ 4 .
Now, (ii) follows from the above estimates.

(iii) By (2.8) we have

Ψ ′ (t) = 2 1 Ψ(t) τ -s dτ = 2 1 -s (1 -Ψ 1-s (t))
, for all 0 < t < a.

Hence 0 < Ψ ′ (0) = 2/(1 -s) < +∞ which implies Ψ ∈ C 1 [0, a) and c 1 t ≤ Ψ(t) ≤ c 2 t in (0, a) for some c 1 , c 2 > 0. This proves (iii).

In the case of pure powers in the nonlinearities, we have the following nonexistence result for (1.3).

Corollary 2.2. Let p, q, r, s > 0 be such that one of the following conditions hold (i) s > 1 and 2q ≥ (s + 1)(p + 2);

(ii) s = 1 and q > p + 2;

(iii) 0 < s < 1 and q ≥ p + 2.

Then, the system (1.3) has no positive classical solutions.

Proof. The proofs of (i) and (iii) are simple exercices of calculus. For (ii), by Corollary 2.2 we have that (1.3) has no classical solutions provided s = 1 and

1/2 0 t 1+p-q (-ln t) -q/2 dt = +∞. (2.18) 
On the other hand, for a, b ∈ R we have

1/2 0 t a (-ln t) b dt < +∞ if and only if a > -1 or a = -1 and b < -1.
Now condition (2.18) reads q > p + 2. This concludes the proof.

Existence results

For all t 1 , t 2 > 0 we define

A(t 1 , t 2 ) = f (t 1 ) h(t 1 ) - g(t 2 ) k(t 2 ) .
In this section we assume that A fulfills (A 1 ) A(t 1 , t 2 ) ≤ 0 for all t 1 ≥ t 2 > 0.

We also assume that

(A 2 ) k ∈ C 1 (0, ∞) is nonnegative and nondecreasing function such that lim t→+∞ K(t) h(t+c) = +∞, for all c > 0, where K(t) = t 0 k(τ )dτ .
Here are some examples of nonlinearities that fulfill (A1) and (A2).

(i) f (t) = t p , g(t) = t q , h(t) = t r , k(t) = t s , t ≥ 0, p, q, r, s > 0, r -p = s -q ≥ 0 and p -q < 1;

(ii) f (t) = ln(1 + t p ), g(t) = e t q -1, h(t) = t p and k(t) = t q , t ≥ 0, p, q > 0, p -q < 1;

(iii) f (t) = log(1 + at), g(t) = log(1 + t), h(t) = at and k(t) = t, t ≥ 0, a ≥ 1;
We give in what follows a general method to construct nonlinearities f, g, h, k that verify hypotheses (A1) and (A2). Let f, g, h, k : [0, ∞) → [0, ∞) be nondecreasing functions such that k and h verify (A2) and one of the following assumptions hold: (a) f k = gh and the mapping (0, ∞) ∋ t -→ f (t)/h(t) is nonincreasing;

(b) there exists m > 0 such that f (t)/h(t) ≤ m ≤ g(t)/k(t), for all t > 0.

Then the mapping A verifies (A1).

For instance, the mappings given in example (i) satisfy the condition (a) while the mappings given in example (ii) verify the condition (b).

The first result of this section concerns the existence of classical solutions for the general system (S). The existence of a solution to (S) is obtained by considering the regularized system

             ∆u -αu + f (u + ε) g(v + ε) + ρ(x) = 0 in Ω, ∆v -βv + h(u + ε) k(v + ε) = 0 in Ω, u = 0, v = 0 on ∂Ω. (S) ε Lemma 3.1. Let u ε , v ε ∈ C 2 (Ω) ∩ C(Ω)
be a positive solution of (S) ε . Then, there exists M > 0 which does not depend on ε such that

max{ u ε ∞ , v ε ∞ } ≤ M. (3.1) 
Proof. Let w ε = u ε -v ε and ω = {x ∈ Ω : w ε > 0}. In order to prove the Lemma, it suffices to provide an uniform upper bound for v ε and w ε . From (S) ε we get

∆w ε -αw ε + ρ(x) = (α -β)v ε - f (u ε + ε) g(v ε + ε) + h(u ε + ε) gk(v ε + ε) = (α -β)v ε - h(u ε + ε) g(v ε + ε) A(u ε + ε, v ε + ε) in Ω.
Let us notice that A(u ε + ε, v ε + ε) ≥ 0 in ω and w ε = 0 on ∂ω. This yields

∆w ε -αw ε ≥ ρ(x) in ω. Let ζ ∈ C 2 (Ω) be the unique solution of (2.2). Then      ∆(w ε -ζ) -α(w ε -ζ) ≥ 0 in ω, w ε -ζ ≤ 0 on ∂ω.
Furthermore, by the weak maximum principle [8, Corollary 3.2] we have

w ε ≤ ζ in ω. Since w ε ≤ 0 in Ω \ ω, it follows that w ε ≤ ζ in Ω. (3.2)
We multiply by k(v ε ) in the second equation of (S) ε and we deduce that

k(v ε )∆v ε -βv ε k(v ε ) + k(v ε ) k(v ε + ε) h(u ε + ε) = 0 in Ω. (3.3) But k(v ε )∆v ε = ∆K(v ε ) -k ′ (v ε )|∇v ε | 2 in Ω. (3.4) 
Since k is nondecreasing, we have

K(v ε ) = vε 0 k(t)dt ≤ v ε k(v ε ) in Ω. (3.5) 
Using now (3.4) and (3.5) in (3.3) we deduce

∆K(v ε ) -k ′ (v ε )|∇v ε | 2 -βK(v ε ) + k(v ε ) k(v ε + ε) h(u ε + ε) ≥ 0 in Ω. Hence ∆K(v ε ) -βK(v ε ) + h(u ε + ε) ≥ 0 in Ω. (3.6) 
By [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 3.7], there exists a positive constant C > 1 depending only on Ω such that sup

Ω K(v ε ) ≤ C sup Ω h(u ε + ε) ≤ C sup Ω h(v ε + ζ ∞ + 1).
Using the assumption (A2) we deduce that (v ε ) ε is uniformly bounded, i.e., v ε ∞ ≤ m for some m > 0 independent on ε. This yields

u ε = v ε + w ε ≤ m + ζ ∞ in Ω and the proof of Lemma 3.1 is now complete. Lemma 3.2. For all 0 < ε < 1 there exists a solution (u ε , v ε ) ∈ C 2 (Ω) × C 2 (Ω) of the system (S) ε .
Proof. We use topological degree arguments. Consider the set

U := (u, v) ∈ C 2 (Ω) × C 2 (Ω) : u ∞ , v ∞ ≤ M + 1 u, v ≥ 0 in Ω, u | ∂Ω = v | ∂Ω = 0 ,
where M > 0 is the constant in (3.1). Define

Φ t : U → U, Φ t (u, v) = (Φ 1 t (u, v), Φ 2 t (u, v)), by Φ 1 t (u, v) = u -t(-∆ + α) -1 f (u + ε) g(v + ε) + ρ , Φ 2 t (u, v) = v -t(-∆ + β) -1 h(u + ε) k(v + ε) .
Using Lemma 3.1 we have Φ t (u, v) = (0, 0) on ∂U, for all 0 ≤ t ≤ 1. Therefore, by the invariance of the topological degree at homotopy we have

deg (Φ 1 , U, (0, 0)) = deg (Φ 0 , U, (0, 0)) = 1.
Hence, there exists (u, v) ∈ U such that Φ 1 (u, v) = (0, 0). This means that the system (S) ε has at least one classical solution.

Proof of Theorem 3.1.

Let (u ε , v ε ) ∈ C 2 (Ω) × C 2 (Ω) be a solution of (S) ε . Then      ∆(u ε -ζ) -α(u ε -ζ) ≤ 0 in Ω, u ε -ζ = 0 on ∂Ω,
where ζ is the unique solution of (2.2). Hence ζ ≤ u ε in Ω. By (3.2) it follows that

w ε ≤ ζ ≤ u ε in Ω. ( 3.7) 
Let ξ ∈ C 2 (Ω) be the unique positive solution of the boundary value problem

     ∆ξ -βξ + h(ζ) k(ξ + 1) = 0 in Ω, ξ = 0 on ∂Ω. (3.8) 
In view of Lemma 2.2 we have ξ ≤ v ε in Ω, so that, by Lemma 3.1, the following estimates hold

     ζ(x) ≤ u ε (x) ≤ M in Ω, ξ(x) ≤ v ε (x) ≤ M in Ω.
(3.9)

Now, standard Hölder and Schauder estimates can be employed in order to deduce that

{(u ε , v ε )} 0<ε<1 con- verges (up to a subsequence) in C 2 loc (Ω) × C 2 loc (Ω) to (u, v) ∈ C 2 (Ω) × C 2 (Ω).
It remains only to obtain an upper bound near ∂Ω for (u ε , v ε ) which leads us to the continuity up to the boundary of the solution (u, v). Consider ψ ∈ C 2 (0, ∞) such that ψ ′ > 0 and ψ ′′ < 0 on (0, ∞) and set φ(x) = ψ(δ(x)), x ∈ Ω 0 . Then

∆φ(x) = ψ ′ (δ(x))∆δ(x) + ψ ′′ (δ(x))|∇δ(x)| 2 = N -1 |x -y| ψ ′ (δ(x)) + ψ ′′ (δ(x)) ≤ N -1 R ψ ′ (δ(x)) + ψ ′′ (δ(x)) in Ω 0 . Let us choose now ψ(t) = C √ t, t > 0, where C > 0. Therefore ∆φ(x) ≤ C 4 δ -3/2 (x) 2(N -1)δ(x) R -1 ≤ - C 8 δ -3/2 (x) < 0 in Ω.
We choose C > 0 large enough such that ∆φ ≤ -h(M + 1) in Ω 0 (3.11) and

φ | ∂Ω0\∂Ω > K(M ) ≥ sup Ω0 K(u ε ). (3.12)
Furthermore, by (3.10), (3.11) and (3.12) we obtain

     ∆(φ -K(v ε )) ≤ 0 in Ω 0 , φ -K(v ε ) ≥ 0 on ∂Ω 0 . This implies φ(x) ≥ K(v ε ) in Ω 0 , that is, 0 ≤ v ε ≤ K -1 (φ(x)) in Ω 0 .
Passing to the limit with ε → 0 in the last inequality we have 0

≤ v ≤ K -1 (φ(x)) in Ω 0 . Hence 0 ≤ lim x→x0 v(x) ≤ lim x→x0 K(φ(x)) = 0.
Since x 0 ∈ ∂Ω was arbitrary choosen, it follows that v ∈ C(Ω). Using the fact that

u ε = w ε + v ε ≤ ζ + v ε in
Ω, in the same manner we conclude u ∈ C(Ω). This finishes the proof of Theorem 3.1.

The next result concerns the following system

           ∆u -αu + u p v q + ρ(x) = 0 in Ω, ∆v -βv + u p+σ v q+σ = 0 in Ω, u = v = 0 on ∂Ω, (3.13) 
where σ ≥ 0 is a non-negative real number.

Theorem 3.2. Assume that p, q ≥ 0 satisfy p -q < 1.

(i) Then the system (3.13) has solutions for all σ ≥ 0;

(ii) For any solution (u, v) of (3.13), there exist c 1 , c 2 > 0 such that

c 1 d(x) ≤ u, v ≤ c 2 d(x) in Ω. (3.14)
Moreover, the following properties hold.

(ii1) If -1 < p -q < 0 then u, v ∈ C 2 (Ω) ∩ C 1,1+p-q (Ω); (ii2) If 0 ≤ p -q < 1 then u, v ∈ C 2 (Ω).
Proof. Existence follows directly from Theorem 3.1 since conditions (A1) and (A2) are fulfilled.

(ii) Recall that from (2.3) we have u ≥ ζ ≥ cϕ 1 in Ω. From the second equation in (3.13) we deduce ∆v -βv + c p+σ ϕ p+σ

1 v q+σ ≤ 0 in Ω. Since p -q < 1, we also get that v = cϕ 1 satisfies ∆v -βv + c p+σ ϕ p+σ 1 v q+σ ≤ 0 in Ω,
provided c > 0 is sufficiently small. Therefore, by virtue of Lemma 2.2, we obtain v ≥ cϕ 1 in Ω.

Let us prove now the second inequality in (3.14). To this aim, set w = u -v. With the same idea as in Lemma 3.1 one gets ∆w -αw + ρ(x) ≥ 0 in the set {x ∈ Ω : w(x) > 0}. Hence

w ≤ ζ ≤ cϕ 1 in Ω. (3.15) Let w + = max{w, 0}. Then v satisfies      ∆v -βv + (w + + v) p+σ v q+σ ≥ 0 in Ω, v = 0 on ∂Ω. Consider now the problem            ∆z -βz + 2 p+σ z p-q = 0 in Ω, z > 0 in Ω, z = 0 on ∂Ω. (3.16)
The existence of a classical solution to (3.16) follows from [START_REF] Shi | On a singular nonlinear semilinear elliptic problem[END_REF]Lemma 2.4]. Moreover, if 0 ≤ p -q < 1 then z ∈ C 2 (Ω) and with the same arguments as in [9, Theorem 1.1] we have z ∈ C 2 (Ω) ∩ C 1,1+p-q (Ω) in the case -1 < p -q < 0. Furthermore z ≤ mϕ 1 in Ω for some m > 0. On the other hand, cϕ 1 is a subsolution of (3.16) provided c > 0 is small enough. Therefore, by Lemma 2.1 we get z ≥ cϕ 1 in Ω. This last inequality together with (3.15) allows us to choose M > 1 large enough such that M z ≥ w + in Ω. Hence

∆(M z) -β(M z) + (w + + M z) p+σ (M z) q+σ ≤ ∆(M z) -β(M z) + 2 p+σ (M z) p-q = M ∆z -βz + 2 p+σ z p-q = 0 in Ω.
This means that v := M z verifies ∆v -βv + (w + + v) p+σ v q+σ ≤ 0 in Ω and v = 0 on ∂Ω.

Remark now that Ψ(x, t) = -βt + (w + (x)+t) p+σ t q+σ , (x, t) ∈ Ω × (0, ∞) satisfies the hypotheses in Lemma 2.1 since p -q < 1. Furthermore, we have

∆v + Ψ(x, v) ≤ 0 ≤ ∆v + Ψ(x, v) in Ω, v, v > 0 in Ω, v = v = 0 on ∂Ω and ∆v ∈ L 1 (Ω).
Hence, by Lemma 2.1 we obtain

v ≤ v ≤ cϕ 1 in Ω. ( 3.17) 
Combining (3.15) and (3.17) we deduce u = w + v ≤ Cϕ 1 in Ω, for some C > 0. This completes the proof of (ii1). As a consequence, there exists M > 1 such that 0

≤ u p v q , u p+σ v q+σ ≤ M ϕ p-q 1 in Ω.
If 0 ≤ p -q < 1 then by classical regularity arguments we have u, v ∈ C 2 (Ω). If -1 < p -q < 0, then the same method as in [9, Theorem 1.1] can be employed in order to obtain u, v ∈ C 2 (Ω) ∩ C 1,1+p-q (Ω).

This finishes the proof of Theorem 3.2.

Proof of Theorem 4.1 completed.

Set

I + = {x ∈ [0, 1] : U (x) ≥ 0}, I -= {x ∈ [0, 1] : U (x) ≤ 0}, J + = {x ∈ [0, 1] : V (x) ≥ 0}, J -= {x ∈ [0, 1] : V (x) ≤ 0}.

According to Proposition 4.1, the above sets consist of finitely many disjoint closed intervals. Therefore,

I + = ∪ m i=1 I + i .
For simplicity, let I + denote any interval I + i and we use similar notations for I -, J + and J -. We have Lemma 4.1. For any intervals I + , I -, J + and J -defined above, the following situations can not occur:

(i) I + ⊂ J + ;

(ii) I -⊂ J -;

(iii) J + ⊂ I -;

(iv) J -⊂ I + .

Proof. (i) Assume that I + ⊂ J + . Since v 2 ≥ v 1 in I + we deduce that the inequality (4.2) holds in I + . Using the fact that u 2 = u 1 on ∂I + , by virtue of Lemma 2.1 we get u 2 ≤ u 1 in I + . Hence, u 2 ≡ u 1 in I + , which contradicts Proposition 4.1. Similarly we can prove the statement (ii).

(iii) Assume that J + ⊂ I -. Then u p+σ

1 /v q+σ 1 ≥ u p+σ 2 /v q+σ 2 in J + . Notice that V = v 2 -v 1 verifies        V ′′ -βV = u p+σ 1 v q+σ 1 - u p+σ 2 v q+σ 2 ≥ 0 in J + , V = 0 on ∂J + .
By the maximum principle, it follows that V ≤ 0 in J + , i.e., v 2 ≤ v 1 in J + . This yields v 2 ≡ v 1 in J + which again contradicts Proposition 4.1. The proof of (iv) follows in the same manner.

From now on, the proof of Theorem 4.1 is the same as in [1, Theorem 6]. The solution (u, v) of the system (S ε ) with α = 1, β = 0.5, p = q = 1, ε = 10 -2 and ρ(x) = sin(πx). We have chosen σ = 0 (on the left) and σ = 2 (on the right).

Remark. As a consequence of Theorem 3.1, the solution (u, v) of the system (3.13) can be approximated by the solutions of (S) ε . Furthermore, the shooting method combined with the Broyden method in order to avoid the derivatives, are suitable to numerically approximate the solution of (3.13). We have considered α = 1,

Corollary 2 . 1 .-

 21 Assume that k(t) = t s , s > 0, and one of the following conditions hold (i) s > 1 and a 0 tf (mt) g(Mt 2/(1+s) ) dt = +∞, for all 0 < m < 1 < M ; ln t) dt = +∞, for all 0 < m < 1 < M ;

Theorem 3 . 1 .

 31 Assume that the hypotheses (A1) -(A2) are fulfilled. Then the system (S) has classical solutions.

  This will be done by combining standard arguments with the estimate (3.7). First, by (3.6) we have∆K(v ε ) + h(M + 1) ≥ 0 in Ω. (3.10) Fix x 0 ∈ ∂Ω. Since ∂Ω is smooth, there exist y ∈ R N \Ω and R > 0 such that Ω∩B(y, R) = ∂Ω∩B(y, R) = {x 0 }. Let δ(x) = |x -y| -R and Ω 0 = {x ∈ Ω : 4(N -1)δ(x) < R}.

Figure 1 :

 1 Figure1: The solution (u, v) of the system (S ε ) with α = 1, β = 0.5, p = q = 1, ε = 10 -2 and ρ(x) = sin(πx). We have chosen σ = 0 (on the left) and σ = 2 (on the right).
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Uniqueness of the solution in one dimension

In this section we are concerned with the uniqueness of the solution associated to the one dimensional system            u ′′ -αu + u p v q + ρ(x) = 0 in (0, 1), v ′′ -βv + u p+σ v q+σ = 0 in (0, 1),

Our approach is inspired by the methods developed in [START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations[END_REF], where a C 2 -regularity of the solution up to the boundary is needed. So, we restrict our attention to the case 0 < q ≤ p ≤ 1. Thus, by virtue of Theorem 3.2, any solution of (4.1) belongs to

. By Hopf's maximum principle we also have that u ′ (0) > 0, v ′ (0) > 0, u ′ (1) < 0 and v ′ (1) < 0 for any solution (u, v) of system (4.1).

The main result of this section is the following Theorem 4.1. Assume that 0 < q ≤ p ≤ 1, σ ≥ 0. Then the system (4.1) has a unique solution (u, v) ∈

Proof. Existence follows from Theorem 3.2. We prove here only the uniqueness. Suppose that there exist

First we claim that we can not have

and by Lemma 2.2 we get v 2 ≥ v 1 in [0, 1]. On the other hand

Note that the mapping Ψ(x, t) = -αt + t p v2(x) q + ρ(x), (x, t) ∈ (0, 1) × (0, ∞) satisfies the hypotheses in Lemma 2.1 since p ≤ 1. Hence u 2 ≤ u 1 in [0, 1], that is u 1 ≡ u 2 . This also implies v 1 ≡ v 2 , contradiction. Replacing u 1 by u 2 and v 1 by v 2 , we also get that the situation

From the above arguments, both U and V change sign in (0, 1). The key result in the approach is the following. Proof. We write the system (4.1) as

where W = (U, V ) and A(x) = (A ij (x)) 1≤i,j≤2 is a 2 × 2 matrix defined as

Therefore, A ∈ C(0, 1) and A 12 (x) = 0, A 21 (x) = 0 for all x ∈ (0, 1). Moreover, xA(x), (1 -x)A(x) are bounded in L ∞ (0, 1). Indeed, let us notice first that, by (3.14) in Theorem 3.2, there exist c 1 , c 2 > 0 such that

Then, by the mean value theorem, we have

We obtain similar estimates for xA 11 , xA 21 and xA 22 . This allows us to employ Lemma 7 and Lemma 8 in [START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations[END_REF]. Note that condition xA(x) ∈ L ∞ (0, 1) suffices in order to obtain the same conclusion as in [1, Lemma 8].

In particular, we get that U and V vanish only at finitely many points in any compact interval [a, b] ⊂ (0, 1).

It remains to show that U and V can not have infinitely many zeroes in the neighborhood of x = 0 and x = 1. We shall consider only the case x = 0, the situation where u or v vanishes for infinitely many times near x = 1 being similar.

Without loosing the generality, we may assume that U has infinitely many zeroes in a neighborhood of x = 0. Since U ∈ C 2 [0, 1] by Rolle's Theorem we get that both U ′ and U ′′ have infinitely many zeros near x = 0. As a consequence, we obtain U ′ (0) = 0, that is, u ′ 1 (0) = u ′ 2 (0). If V ′ (0) = 0, then W(0) = W ′ (0) = 0 and by [START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations[END_REF]Lemma 8] we deduce W ≡ 0 in [0, 1/2] which is a contradiction. Hence V ′ (0) = 0. Subtracting the first equation in (4.1) corresponding to u 1 and u 2 we have

Therefore, U ′′ has constant sign in a small neighborhood of x = 0 which contradicts the above arguments.

The proof of Proposition 4.1 is now complete. β = 0.5, p = q = 1, ε = 10 -2 and ρ(x) = ϕ 1 (x) = sin(πx). In the above figure we have plotted the solution (u, v) of (S ε ) for σ = 0 (on the left) and σ = 2 (on the right) respectively.