Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF
Résumé
Tabulated chemistry and presumed probability density function (PDF) approaches are combined to perform RANS modeling of premixed turbulent combustion. The chemistry is tabulated from premixed flamelets with three independent parameters: the equivalence ratio of the mixture, the progress of reaction, and the specific enthalpy, to account for heat losses at walls. Mean quantities are estimated from presumed PDFs. This approach is used to numerically predict a turbulent premixed flame diluted by hot burnt products at an equivalence ratio that differs from the main stream of reactants. The investigated flame, subjected to high velocity fluctuations, has a thickened-wrinkled structure. A recently proposed closure for scalar dissipation rate that includes an estimation of the coupling between flame wrinkling and micromixing is retained. Comparisons of simulations with experimental measurements of mean velocity, temperature, and reactants are performed.